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The genetic control of plant architecture in crops is critical for agriculture and
understanding morphological evolution. This study showed that an open reading frame
(ORF) of the rice domestication gene PROG1 appeared 3.4–3.9 million years ago
(Mya). Subsequently, it acquired a novel protein-coding gene function in the genome
of O. rufipogon (˜0.3–0.4 Mya). This extremely young gene and its paralogous C2H2
genes located nearby define the prostrate architecture of O. rufipogon and, thus, are
of adaptive significance for wild rice in swamp and water areas. However, selection
for dense planting and high yield during rice domestication silenced the PROG1
gene and caused the loss of the RPAD locus containing functional C2H2 paralogs;
hence, domesticated lines exhibit an erect plant architecture. Analysis of the stepwise
origination process of PROG1 and its evolutionary genetics revealed that this zinc-
finger coding gene may have rapidly evolved under positive selection and promoted
the transition from non- or semi-prostrate growth to prostrate growth. A transgenic
assay showed that PROG1 from O. rufipogon exerts a stronger function compared with
PROG1 sequences from other Oryza species. However, the analysis of the expression
levels of PROG1 in different Oryza species suggests that the transcriptional regulation of
PROG1 has played an important role in its evolution. This study provides the first strong
case showing how a fundamental morphological trait evolved in Oryza species driven
by a gene locus.

Keywords: rice, Oryza species, PROG1, plant architecture, evolution, domestication

INTRODUCTION

Unlike ancient genes, which often perform critical functions in species, newly evolved genes have
been considered to be dispensable or to have minor biological functions (Miklos and Rubin,
1996; Zhang et al., 1999; Krylov et al., 2003). Previously, de novo origin of a protein-coding gene
from non-coding sequences was even generally considered impossible (Jacob, 1977). Although
recent works have reported that the existence of physiologically essential de novo genes and novel
genes from gene duplication, to date, there are no reports of such genes controlling fundamental
morphological traits (Chen et al., 2010; Li C.Y. et al., 2010; Li D. et al., 2010).

Frontiers in Plant Science | www.frontiersin.org 1 June 2020 | Volume 11 | Article 876

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2020.00876
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2020.00876
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2020.00876&domain=pdf&date_stamp=2020-06-23
https://www.frontiersin.org/articles/10.3389/fpls.2020.00876/full
http://loop.frontiersin.org/people/511308/overview
http://loop.frontiersin.org/people/468004/overview
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00876 June 23, 2020 Time: 15:1 # 2

Huang et al. Evolution of Rice Architecture

With the increasing amounts of genome data for Oryza species
being reported, there species have become good model species
for plant comparative genomics and phenotype studies, and the
relationships between genotype and phenotype can be studied
systematically in these taxa. Although a recent study identified
several de novo genes based on expression at the RNA or protein
level in Oryza sativa (Zhang L. et al., 2019), domestication genes
that have been fixed in cultivated rice via a loss of function and
their evolution progress have not been detected.

Asian cultivated rice (O. sativa) was domesticated ∼8,000–
10,000 years ago (Sharma et al., 2000; Vaughan et al., 2008;
Fuller et al., 2010). In the course of domestication, some traits,
such as shattering (Konishi et al., 2006; Li et al., 2006), panicle
architecture (Ishii et al., 2013; Zhu et al., 2013) and pericarp
and hull colors (Sweeney et al., 2006; Zhu et al., 2011), were
changed. In particular, plant architecture underwent extensive
changes associated with efficient agricultural use, including the
change from prostrate growth in the cultivated rice progenitor to
an erect structure in both Asian and African cultivars. In previous
studies, the monogenetic domestication gene PROG1 in O. sativa
and its paralog in Oryza rufipogon were cloned and identified
as transcription factors based on their ∼90 bp C2H2-type zinc-
finger motifs (Jin et al., 2008; Tan et al., 2008). These paralogs
were found to have undergone strong artificial selection during
the history of rice domestication (Jin et al., 2008; Tan et al., 2008;
Wu et al., 2018). Although other genes controlling tiller angle and
branching that play important roles in rice architecture, such as
Tiller Angle Controlling (TAC1), LA1 (LAZY1), IDEAL PLANT
ARCHITECTURE1 (IPA1), and OsTb2, have been cloned in O.
sativa, these genes have undergone selection only via artificial
selection for high-density planting during domestication (Li et al.,
2007; Yoshihara and Iino, 2007; Yu et al., 2007; Jiang et al., 2012;
Lu et al., 2013; Lyu et al., 2020), with no evidence of a history of
both natural and artificial selection.

In this study, the domestication gene PROG1 was analyzed
and identified as a young gene in Oryza that has driven
the evolution of plant architecture. The open reading frame
(ORF) of PROG1 arose in O. punctata and evolved via natural
selection into a prostrate-growth gene in O. rufipogon. More
interestingly, PROG1 was then functionally lost in O. sativa
through artificial selection, which accompanied locus deletions
(RICE PLANT ARCHITECTURE DOMESTICATION, RPAD)
linked to the PROG1 gene during artificial selection on
architecture in the domestication of cultivated rice (Wu et al.,
2018). Therefore, we hypothesize that the successive gain and loss
of function of PROG1 locus under natural and artificial selection,
respectively, could result in variation of plant architecture during
Oryza evolution.

MATERIALS AND METHODS

PROG1 Locus Sequence Alignment and
Origin Analysis
Ten released genomes of Oryza species [O. sativa (Sasaki
and International Rice Genome Sequencing Project, 2005),
O. glaberrima (Wang et al., 2014), O. longistaminata (Zhang

et al., 2015), O. meridionalis (Zhang et al., 2014), O. glumaepatula
(Zhang et al., 2014)], O. brachyantha (Chen et al., 2013),
O. rufipogon (Stein et al., 2018), O. nivara (Stein et al., 2018),
O. barthii (Stein et al., 2018), O. punctata (Stein et al., 2018), and
the B. distachyon genome (Vogel et al., 2010) were used in this
study. The PROG1 locus and its neighboring genes (two upstream
and two downstream) were extracted from the O. sativa genome,
and BLAST (Altschul et al., 1997) was used to obtain the genome
sequences of remaining species, which were then annotated and
aligned by using MEGA6 (Tamura et al., 2013).

Phylogenetic Tree Construction and
Divergence Time Estimation for 10 Oryza
Species
Blastall (v2.2.21) (Altschul et al., 1997) with a threshold of
“-e 1e-5” was used to align peptide sequences from the 10
Oryza species, and gene families were clustered by OrthoMCL
(v1.4) (Li et al., 2003). From the identified single-copy gene
families, 4-fold degenerated (4D) sites in the coding sequences
of the genes were extracted and concatenated. Multiple sequence
alignments were performed by MUSCLE (v3.7) (Edgar, 2004),
and a phylogenetic tree with settings nst = 6, rates = invgamma
and ngen = 1,000,000 was reconstructed using MrBayes (v3.1.2)
(Ronquist and Huelsenbeck, 2003). To estimate divergence
times among the 10 species, the program MCMCTree in
PAML9 (v4.4) (Yang, 1997) with the parameters “clock = 3 and
RootAge≤ 0.1” was used. The divergence times were constrained
by the fossil calibration times from TimeTree (0.4 Mya between
O. sativa and O. rufipogon, 0.6–2.0 Mya between O. punctata
and O. meridionalis and 9–15 Mya between O. punctata and
O. brachyantha) (Hedges et al., 2006).

Vector Construction and Rice
Transformation
The PROG1 promoter (1.5 kb) from O. rufipogon and coding
sequences (CDSs) from O. sativa, O. rufipogon (Yuanjiang),
O. nivara, O. longistaminata, O. meridionalis, O. glumaepatula,
and O. punctata were amplified and inserted into the expression
cassette pCAMBIA1300, and the ProPROG1:PROG1-NOS
vectors were constructed. The recombinant plasmids
were transferred into calli of the japonica rice cultivar
Zhonghua11 (ZH11) by an Agrobacterium tumefaciens-mediated
transformation method. The forward primer for the PROG1
promoter was 5′-AATCAGCTCGAGCTAGGTCTTTG-3′,
and the reverse primer for the PROG1 promoter was 5′-
GAAAGGAAAATGGGACAAGCTAT-3′. The forward primer
for the PROG1 CDS was 5′-ATGGATCCCTCATCGGCTTC-
3′, and the reverse primer for the PROG1 CDS was
5′-CTAGAGGCCGAGCTCGAGGA-3′.

PROG1 Locus Expression Analysis

Eight transcriptomes of O. sativa (Zhang et al., 2010), two
transcriptomes of O. nivara and O. barthii (Wang et al.,
2014), two transcriptomes of O. punctata (SRR1171006 and
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FIGURE 1 | Alignment of the PROG1 locus in different Oryza species and the outgroup B. distachyon. (A) Collinearity of the PROG1 region in different species.
153300, 153400, 154100, and 154300 represent the flanking genes Os07g0153300, Os07g0153400, Os07g0154100, and Os07g0154300, respectively. Blue
blocks and tricolor (black, red, and purple) blocks represent neighboring genes and PROG1 (the red blocks represent C2H2-type zinc-finger sequences). Arrows
indicate other annotated genes in different genomes, green arrows indicate ORFs without homology with PROG1, and red arrows represent ORFs with C2H2 type
zinc-finger sequences. (B) Alignment of the sequence of the PROG1 locus in different species. Black, red, and purple blocks represent alignable 5′-termini, C2H2
type zinc-finger and 3′-terminal sequences, respectively; black and purple striped blocks represent unalignable 5′-termini and 3′-terminal sequences, respectively;
green and blue triangles represent in-frame deletions and insertions, respectively. The red triangles (O. barthii and O. meridionalis) represent frameshift indels (red
triangles above the lines represent frameshift insertions, and red triangles represent frameshift deletions), and the green vertical line represents the M6 site in
O. sativa.

SRR1171007 in NCBI), two transcriptomes of O. brachyantha
(Chen et al., 2013) and 11 transcriptomes of B. distachyon
(Davidson et al., 2012) were downloaded from NCBI. Eight
transcriptomes of O. longistaminata were obtained previously
work (Zhang et al., 2015). RNA-seq reads from each sample
were mapped to the corresponding reference genome with
TopHat 2.0.3 with default parameters, and Cufflinks was then
used to evaluate the FPKM values (Trapnell et al., 2012) of
the PROG1 locus and the internal control gene Actin1. To
investigate the expression of the PROG1 locus at the tiller
base in O. rufipogon, O. nivara, O. barthii, O. longistaminata
and O. glumaepatula, total RNA was extracted using TRIzol
reagent (Invitrogen, United States) and reverse transcribed
using the Revert Aid H Minus First Strand cDNA Synthesis
Kit (Thermo Fisher Scientific) following the manufacturer’s
instructions. qRT-PCR of PROG1 was performed following the
manufacturer’s instructions, and the Tubulin gene was used
as the internal control. The forward primer for PROG1 was
5′-GATCCCTCATCGGCTTCTT-3′, and the reverse primer for
PROG1 was 5′-GGAACAGCCTCACTTGCTTG-3′. The forward
primer for Tubulin was 5′-GCTCCGTGGCGGTATCAT-
3′, and the reverse primer for Tubulin was
5′-CGGCAGTTGACAGCCCTAG -3′.

Field Experiment and Plant Architecture
Survey
To investigate the plant architectures of Oryza species, 10 species
(O. sativa, O. rufipogon, O. nivara, O. glaberrima, O. barthii,

O. longistaminata, O. meridionalis, O. glumaepatula, O. punctata,
and O. brachyantha) were grown in Xishuangbanna, Southwest
China. The plant architectures were surveyed after 3 months.

Tests of Selection on PROG1 in
O. rufipogon Populations
PROG1 population data (Tan et al., 2008) for O. rufipogon were
downloaded from NCBI and aligned using MEGA6 (Tamura
et al., 2013). Tajima’s D test and Fu and Li’s test were conducted
using DnaSP 5 (Librado and Rozas, 2009).

Monte Carlo Simulations
Monte Carlo simulations were performed to determine the
possibility that a random sequence could produce a C2H2
gene. Random sequences of 90 bp length (seed sequences) were
generated accordance with the A, T, G, and C frequencies
of the rice genome. The total number of seed sequences per
simulation was a quotient of genome size and seed sequence
length (T). A set of 100,000 simulations run with T seed
sequences in each simulation was used. The number of C2H2
motifs for each seed sequence was counted by searching the
motif pattern “Ø-X-C-X2,4,5-C-X3-Ø-X5-Ø -X2-H-X3,4-H” in
all six reading frames (Klug and Schwabe, 1995). The distribution
of the observed number of C2H2 genes was illustrated using
kernel density estimation as implemented in R. The p-value
(observed≥ expected) was calculated by counting the frequencies
of observed C2H2 genes that were equal to or larger than the
expected C2H2 genes.
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FIGURE 2 | Monte Carlo simulation results for the random de novo origination of a C2H2 motif. (A) Distribution of Monte Carlo simulations of C2H2 motifs.
(B) Clustering relationships of the 189 C2H2 transcription factor genes (Agarwal et al., 2007) in the genome of O. sativa. A red triangle indicates the PROG1
(LOC_Os07g05900) of O. sativa.
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FIGURE 3 | Role of Oryza PROG1s in controlling prostrate plant architecture
driven by the O. rufipogon PROG1 promoter. Transgenic verification of various
PROG1 alleles in O. sativa (Zhonghua 11). OsPROG1, PROG1 from O. sativa.
OrPROG1, PROG1 from O. rufipogon. OnPROG1, PROG1 from O. nivara.
OmPROG1, PROG1 from O. meridionalis. OgPROG1, PROG1 from
O. glumaepatula. OpPROG1, PROG1 from O. punctata. OlPROG1, PROG1
from O. longistaminata. Transgenic lines for each gene, n >15. The 6/18 ratio
indicates that 6 lines exhibit a prostrate phenotype among 18 transgenic lines.

Clustering of C2H2 Transcription Factor
Genes in the Genome of O. sativa
The amino acid sequences of 189 C2H2 transcription factor genes
(Agarwal et al., 2007) were divided into three types: full-length
sequences, sequences with only the C2H2 motif, and sequences
without the C2H2 motif. Multiple sequence alignments were
performed using MUSCLE (v3.7) (Edgar, 2004). A phylogenetic
tree was constructed with FastTree (2.1.10) (Price et al., 2009) and
viewed with ETE (Huerta-Cepas et al., 2016).

RESULTS

The ORF of PROG1 Appeared in
O. punctata and Has Experienced
Different Evolutionary Fates in Different
Oryza Species
The PROG1 locus was analyzed by using the available genome
sequences of eight AA genome Oryza species, i.e., O. sativa
(Sasaki and International Rice Genome Sequencing Project,
2005), O. glaberrima (Wang et al., 2014), O. longistaminata
(Zhang et al., 2015), O. glumaepatula (Zhang et al., 2014),
O. meridionalis (Zhang et al., 2014), O. rufipogon (Stein
et al., 2018), O. nivara (Stein et al., 2018), and O. barthii
(Stein et al., 2018); one BB genome from O. punctata (Stein
et al., 2018); and one FF genome from O. brachyantha (Chen
et al., 2013). One non-Oryza Gramineae species, Brachypodium
distachyon (Vogel et al., 2010), was used as an outgroup.
Based on genomic alignment of the syntenic PROG1 sequence,
O. rufipogon shares homologous syntenic regions with the other
species assessed in this study (Supplementary Table S1). Highly
similar flanking genes, such as Os07g0153300 and Os07g0153400
in the 5′ upstream region of PROG1 and Os07g0154100 and
Os07g0154300 downstream were found in the eight AA genome
Oryza species (Figure 1A). Although annotated genes in the

neighboring loci were found, sequences homologous to PROG1
but without traces of the short C2H2-type zinc-finger motif
sequence (∼90 bp) were identified in the two distant species
O. brachyantha and B. distachyon. The absence of the C2H2
motif in non-Oryza-species results in the lack of any homology
to the peptide sequence. In the BB genome of O. punctata,
the homologous OPUNC07G03350.1 coding sequence, which
was similar to that of O. rufipogon in length, showed four
in-frame deletions, two in-frame insertions and more than 44
non-synonymous mutations (Supplementary Table S2). There
was also a frameshift deletion in O. barthii or a frameshift
insertion in both O. nivara and O. meridionalis (Figure 1B and
Supplementary Figures S1, S2). Although the remaining three
AA genomes (O. sativa, O. longistaminata, and O. glumaepatula)
showed several mutations, they appeared to contain intact ORF
sequences homologous to the O. rufipogon PROG1 gene including
a number of non-synonymous substitutions, two deletions and
two insertions in O. longistaminata and one deletion and two
insertions in O. glumaepatula (Supplementary Table S2 and
Supplementary Figures S1, S2). Considering the fully prostrate
architecture of O. rufipogon and the fact that the O. rufipogon
PROG1 gene is different from those in other Oryza species based
on the sequence alignment, PROG1 of O. rufipogon may have a
highly effective function in controlling the prostrate phenotype.
Therefore, we speculate that PROG1 is a new gene, the ORF
of which appeared in O. punctata, and may have undergone
functionalization only in O. rufipogon.

PROG1 May Have Arose via Gene
Duplication
Considering the sequence mutation data, PROG1 appears to
have arisen via gene duplication in O. rufipogon. To test this
hypothesis, the possibility that C2H2 genes could originate
in the rice genome by random chance was analyzed. In this
analysis, Monte Carlo simulations of C2H2 motifs with repeated
sampling for 100,000 iterations were conducted, and the expected
number of C2H2 motifs was compared with the observed
number (Figure 2A). Previous studies have identified 189 C2H2
transcription factors in the rice genome (Agarwal et al., 2007).
Before clustering these genes, the conserved C2H2 motifs were
deleted. Based on the computed distance matrices, the 189 genes
were clustered into five groups (Figure 2B). This observation
showed that these 189 C2H2 transcription factor genes were
likely duplicated from five ancestral genes, or “starter gene.”
We then performed Monte Carlo simulations with 100,000
iterations, using the number of starter genes as the expected
number and the number of simulated C2H2 motifs as the
observed number. We found that the chance of C2H2 motifs
originating in the rice genome by random chance was 99.055%,
suggesting that ab initio origination of a C2H2 gene is possible
in the rice genome. These observations indicated that a C2H2
gene can be easily generated by random mutations in the rice
genome. Moreover, the assessment of large gene families in the
rice genome, such as PROG1 (LOC_Os07g05900), showed an
incidental gene duplication stemming from of a proto-PROG1
gene (Figure 2B). The RPAD locus, which also participates
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FIGURE 4 | The different expression patterns of PROG1 in different Oryza species. qRT-PCR analysis of PROG1 in unelongated basal tiller internodes of various
accessions (Supplementary Table S5) of Oryza species. Error bars indicate the standard deviation (SD) of three biological repeats.

in domesticated plant architecture in both Asian and African
cultivated rice, harbors a tandem repeat of zinc-finger genes
(including the PROG1 gene) controlling plant architecture in
wild rice (Wu et al., 2018). To determine whether the tandem
repeats of zinc-finger genes originated from the same proto-
PROG1 gene, further phylogenetic tree analysis was performed,
which clustered eight C2H2 genes, including PROG1, into one
group (Supplementary Figure S3). This finding implies that
the tandem repeats of the zinc-finger genes were produced by
gene duplication. These results indicate that PROG1 may have
been produced from other C2H2-containing paralogous genes by
gene duplication.

PROG1 of O. rufipogon Has a Strong
Function in the Prostrate Plant
Architecture
Interestingly, PROG1 of O. sativa was found to be a pseudogene
selected by a strong artificial selection (Jin et al., 2008; Tan
et al., 2008; Xu et al., 2011; Huang et al., 2012). The transgenic
experiments demonstrated that although PROG1 in O. sativa
has lost its function, it is actively involved in the prostrate
phenotype of O. rufipogon (Figure 3); this finding is consistent
with previous studies (Jin et al., 2008; Tan et al., 2008).
All PROG1-homologous coding sequences from other Oryza
species (except for that of O. barthii) driven by PROG1
promoter of O. rufipogon were transformed into the Zhonghua
11 variety of O. sativa to verify their functions. The results
suggested that O. rufipogon PROG1 clearly has a function
in producing a prostrate phenotype (Figure 3). The PROG1
homologs of other Oryza species have no function or only
weakly affect plant architecture. Interestingly, some transgenic
lines expressing O. longistaminata PROG1 showed divergent
architecture (Figure 3).

Because PROG1 functions in the tiller base of O. rufipogon and
determines plant architecture, real-time PCR (qRT-PCR) was
conducted to determine the expression of the PROG1 homologs
of O. rufipogon, O. nivara, O. barthii, O. longistaminata,
and O. glumaepatula. This expression analysis showed that
the PROG1 gene was expressed in the unelongated basal
tiller internodes of O. rufipogon, O. longistaminata, and
O. glumaepatula (Figure 4). Previous studies also reported high
expression of PROG1 in the unelongated basal tiller internodes
of O. rufipogon (Jin et al., 2008). However, an extremely low
level of expression in the unelongated basal internodes was
detected in O. sativa (Jin et al., 2008), O. nivara, and O. barthii
(Figure 4). In two transcriptomes (leaf and panicle) of O. nivara
and O. barthii (Wang et al., 2014), only an extremely low
level of expression of a pseudo-PROG1 gene was detected in
the panicle transcriptome of O. barthii, and no expression
was detected in O. nivara. In eight transcriptomes from the
rhizome, stem, rhizome tips, stem tips, stamens, pistils, hybrid
line stamens, and hybrid line pistils of O. longistaminata (Zhang
et al., 2015), low levels of expression were detected in only
the rhizome tips and stamens (Supplementary Table S3).
The transgenic test in this study revealed PROG1 as an
expressible pseudogene in O. glumaepatula that possibly
plays a role in regulating rhizome transverse elongation in
O. longistaminata. In the NCBI database of the BB genome of
O. punctata, no expression of OPUNC07G03350.1 was detected
in the two transcriptomes (root and panicle) (Supplementary
Table S3). In the two transcriptomes of O. brachyantha
(Chen et al., 2013) and 11 transcriptomes of B. distachyon
(two transcriptomes from 20-day leaves, two transcriptomes
from embryos 25 days after pollination, endosperm 25 days
after pollination, early inflorescence, emerging inflorescences,
pistils, seeds 5 days after pollination, anthers, and seeds 10
days after pollination) (Davidson et al., 2012), no expression
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FIGURE 5 | Evolution of plant architecture in Oryza species. The evolutionary process of the young orphan gene PROG1 was labeled on the corresponding
branches, and the plant architecture phenotypes of 10 Oryza species are shown to the right of the phylogenetic tree. The estimated divergence time is labeled at
each node. The numbers marked with blue were estimated with whole-genome data, and those marked with purple are from TimeTree.

of annotated non-homologous genes at the PROG1 locus was
detected (Supplementary Table S4). Except in O. rufipogon,
the collective expression results of the Oryza species did
not indicate the PROG1 locus as a unique gene related to
tiller development. The very low expression of the PROG1
locus in the various tissues of different Oryza species
suggests the possibility that the PROG1 gene evolved as a
functional gene until the appearance of the most recent
O. rufipogon ancestor.

The Young PROG1 Gene Underwent
Strong Natural Selection in O. rufipogon
Using the whole genome, a phylogenetic tree of 10 Oryza species
was constructed, and their divergence times were estimated using
all the single-copy genes in their genomes. The phylogenetic
results of this study are similar to those shown in TimeTree
(Zhu and Ge, 2005; Hedges et al., 2006; Figure 5). For instance,
11.4 Mya in TimeTree and 12.1 Mya in our results were
the suggested divergence times of O. brachyantha. Likewise,
O. rufipogon diverged from other species at 0.4 Mya in TimeTree
and 0.3 Mya in this study. The first homologous ORF of PROG1
appeared in the BB genome of O. punctata at ˜3.4–3.9 Mya.
These results suggest that the PROG1 gene encoding a plant
architecture regulatory protein in O. rufipogon was notably
young (0.3–0.4 Mya).

To examine PROG1 as a gene controlling the prostrate plant
architecture in O. rufipogon, we grew O. rufipogon, O. nivara,

O. glaberrima, O. barthii, O. longistaminata, O. glumaepatula, and
O. punctata to check their architectures. During this architecture
assessment, a fully prostrate plant architecture was observed
only in O. rufipogon. The other Oryza species showed non-
prostrate or semi-prostrate architectures that were either strictly
erect or semi-erect with some angled tillers (Supplementary
Table S5 and Figure 5). The published population data of
PROG1 in O. rufipogon (Tan et al., 2008) were analyzed to assess
the hypothesis of a selective sweep of PROG1 in O. rufipogon.
Tajima’s D test detected a significant departure from neutrality
in this gene (3.03762, P < 0.001) and suggested strong natural
selection on PROG1 in O. rufipogon. Furthermore, Fu and Li’s
test was conducted using the outgroup sequences of PROG1
loci from four Oryza species (O. punctata, O. glumaepatula,
O. longistaminata, and O. sativa). A significant signal of positive
selection was detected in O. rufipogon in relation to either
of the outgroup sequences, with a p < 0.05 for both the D
and F statistics of Fu and Li’s test (Supplementary Table S6).
These results provide evidence that the prostrate architecture is
a derived trait that has undergone strong natural selection in
O. rufipogon and that the trait is conferred or enhanced by the
PROG1 gene.

DISCUSSION

Plant architecture plays important roles in plant survival and
adaptation to diverse conditions. It has been reported that
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O. rufipogon inhabits swamps with moderately deep water
(Grillo et al., 2009), and thus, the prostrate plant architecture
that evolved in O. rufipogon likely allowed it to spread across
the water to achieve greater access to light and chemical
nutrients and confers structural tenacity on variable surfaces.
Our study demonstrated that the critical PROG1 gene locus,
which regulates plant architecture in O. rufipogon, emerged
through a process of de novo origination from 3.4 to 3.9 Mya
in O. punctata and evolved into a functional gene strongly
affecting phenotype in O. rufipogon between 0.3 and 0.4 Mya.
Because PROG1 evolved recently, the adaptive evolution and
selection of PROG1 in O. rufipogon populations may still be
ongoing. Published population data for PROG1 in O. rufipogon
(Tan et al., 2008) were analyzed to examine the hypothesis of
a selective sweep of PROG1 in O. rufipogon. Tajima’s D test
revealed a significant departure from neutrality for this gene
(3.03762, P < 0.001) and suggested the existence of strong
natural selection on PROG1 in O. rufipogon. The sequence
evolution in the PROG1 gene, together with the derived prostrate
plant architecture of O. rufipogon, suggests strong adaptive
evolution that started with the fixation of this young gene
in ancestral O. rufipogon populations and continues in an
extant population.

Causative mutations including SNPs (Konishi et al., 2006;
Li et al., 2006; Lin et al., 2007), structural variations such
as small indels (Sweeney et al., 2006; Hua et al., 2015;
Bessho-Uehara et al., 2016; Jin et al., 2016), large structural
variations (Wu et al., 2018), and mobile DNA elements (Studer
et al., 2011) play important roles during crop domestication
and usually result in dysfunctions and/or alterations of
the expression patterns of domestication-related genes. New
genes can be produced in multiple ways, including gene
duplication and de novo origination from previously non-
coding sequences (Ding et al., 2012). The PROG1 gene
may have originated in the BB genome of O. punctata as
a C2H2 gene with an unknown function and been neo-
functionalized by gaining a function related to prostrate
architecture in O. rufipogon. Similar tandem repeats of zinc-
finger protein-coding genes have been found in the collinear
chromosomal region of the RPAD locus and might be
recognized as an ancient zinc-finger gene cluster with a
conserved functional role in the regulation of plant growth
habits. Because several C2H2 genes, including PROG1, ZnF5,
ZnF7, and ZnF8, function in the control of the prostrate-
growth trait (Wu et al., 2018), causative mutations cannot
be found in PROG1. A second hypothesis is that this
gene was not a functional gene before the evolution of
O. rufipogon, which is supported by evidence from transgenic
experiments, gene expression, phenotyping and assessments of
repeated ORF disruptions and remarkable sequence variability in
different species.

Interestingly, the PROG1 expression level in O. longistaminata
is as high as that in O. rufipogon. Considering that some
transgenic lines expressing O. longistaminata PROG1 exhibit a
semi-prostrate phenotype, whether O. longistaminata PROG1
functions in the lateral elongation of rhizomes needs further
investigation. The deletion site at the RPAD locus was

also a target of artificial selection during domestication in
both Asian and African rice (Wu et al., 2018). Although
it remains unclear whether the causative mutations within
the PROG1 promoter and coding sequence are associated
with prostrate function, variations in protein sequence and
expression were selected by rice breeding (Jin et al., 2008;
Tan et al., 2008).

Domestication-related genes such as fw2.2, fascinated (fas),
teosinte glume architecture (tga1), teosinte branched1 (tb1),
IPA1, and OsTb2, are responsible for agricultural advances and
morphological improvements during rice, tomato and maize
domestication (Doebley et al., 1997; Wang et al., 1999, 2005;
Frary et al., 2000; Cong et al., 2008; Lu et al., 2013; Lyu et al.,
2020). Mutations in genes such as tb1, tin1, IPA1, and OsTb2
brought about the change from wild Mexican grass (teosinte)
and O. rufipogon to the cultivate type architecture mainly for
branch numbers in maize and rice domestication (Doebley
et al., 1997; Wang et al., 1999; Lu et al., 2013; Zhang X. et al.,
2019; Lyu et al., 2020). Tiller angle controlling genes TAC1 and
LA1 (LAZY1) and PROG1 also play important roles in rice
architecture for high-density planting during rice domestication
(Li et al., 2007; Yoshihara and Iino, 2007; Yu et al., 2007; Jin
et al., 2008; Tan et al., 2008; Jiang et al., 2012; Lyu et al.,
2020). These observations lead us to speculate that these genes
contributed to survival and adaptation in the wild ancestor
species. A similar transition from prostrate to erect growth
occurred during the domestication of wheat (Waisel, 1987).
This finding provides another piece of evidence that a gene
influencing plant architecture can be adaptive in the ancestor
species, whereas its mutation can improve plant architecture and
yield in domesticated crops (Doebley et al., 1997; Clark et al.,
2006; Wang et al., 2018).

CONCLUSION

PROG1 is a new functional gene that was likely generated through
gene duplication, and its predicted young age could be a result of
a loss of sequence identity due to a high level of substitution in an
ancient gene. Natural selection in a swamp habitat led to PROG1
functionalization to produce fully prostrate plant architecture,
and artificial domestication aimed at maximizing yield via the
high-density planting of rice with an erect plant architecture
led to the pseudogenization of this gene and deletion of the
RPAD locus.
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