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Root-lesion nematodes (Pratylenchus spp.) and arbuscular mycorrhizal fungi (AMF)

occupy the same ecological niche in the phytobiome of many agriculturally important

crops. Arbuscular mycorrhizal fungi can enhance the resistance or tolerance of a plant to

Pratylenchus and previous studies have been undertaken to investigate the relationship

between these organisms. A restructuring of the AMF phylum Glomeromycota has

reallocated the species into genera according to molecular analysis. A systematic

review of the literature was synthesized to assess the interaction between Pratylenchus

spp. and AMF using the revised classification. Plants inoculated with AMF generally

exhibited greater tolerance as demonstrated by increased biomass under Pratylenchus

pressure. Species of AMF from the order Diversisporales tended to increase Pratylenchus

population densities compared to those from the order Glomerales. Species from the

genera Funneliformis and Glomus had a reductive effect on Pratylenchus population

densities. The interaction between AMF and Pratylenchus spp. showed variation in

responses as a result of cultivar, crop species, and AMF species. Putative mechanisms

involved in these interactions are discussed.

Keywords: arbuscular mycorrhizal fungi, Pratylenchus, root-lesion nematodes, phytobiome interactions,

Glomeromycota, systematic review

INTRODUCTION

Pratylenchus spp. or root-lesion nematodes, are migratory endoparasites (Singh et al., 2013). They
feed and move through the root cortex, penetrating parenchyma cells with their stylet, excreting
cell degrading enzymes, ingesting the cellular contents, and destroying cortical tissue. This results
in necrotic lesions, loss of root function and consequently, reductions in plant vigor, and yield of
economic products (Jones et al., 2013).

Root-lesion nematodes are polyphagous and have the broadest host range of all plant-parasitic
nematodes. They are responsible for substantial yield losses of many important crop species
including cereals, legumes, sugarcane, coffee, banana, potato, vegetables and fruit trees (Castillo and
Vovlas, 2007). There are over 68 recognized species of Pratylenchus associated with the phytobiome
and they are distributed in diverse habitats worldwide (Castillo and Vovlas, 2007). Historically,
Pratylenchus spp. were distinguished on the basis of their morphometric characteristics. With the
advent of molecular techniques, differences in the sequences of ribosomal DNA can distinguish
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between species despite high levels of intraspecific variation in
some Pratylenchus spp. High levels of intraspecific variability
occur within some Pratylenchus spp. such as P. coffeae and
P. penetrans while other species exhibit less intraspecific internal
transcribed spacer (ITS) variation, for example, P. goodeyi and
P. vulnus (de Luca et al., 2011; Jones et al., 2013).

Arbuscular mycorrhizal fungi (AMF), from the phylum
Glomeromycota are a ubiquitous group of soil microorganisms
associated with the phytobiome. Arbuscular mycorrhizal fungi
form a complex symbiosis with land plants which originated in
the Ordovician period 400 million years ago (Parniske, 2008).
They have remained morphologically unchanged since then,
forming an intrinsic part of ecosystem functionality (Powell
and Rillig, 2018). These obligate biotrophs form beneficial
mutualistic associations with the roots of an estimated 80%
of land plants including many agriculturally important crop
species with the notable exception of most species in the families
Brassicaceae and Chenopodiaceae (Lambers and Teste, 2013).
Their characteristic arbuscules (microscopic tree-like structures)
within the root cortical cells of compatible plants enable the
photosynthetically derived organic compounds supplied by the
plant to be exchanged for inorganic nutrients and water supplied
by the fungus from the soil. The fungus also aids in the
stabilization of soil aggregates through hyphal binding and
exudation of glomalin (Smith and Read, 2008; Leifheit et al.,
2014). It is estimated that up to 20% of the photosynthetic carbon
of plants is allocated to maintaining the fungal association (Smith
and Read, 2007). This carbon cost to the plant is outweighed
by the many benefits conferred by the fungi, foremost of which
are improved acquisition by the fungal hyphae of immobile
nutrients from the soil such as phosphorus (P) and zinc (Zn)
(Parniske, 2008).

Arbuscular mycorrhizal fungi have been promoted as a
natural tool to maintain and promote sustainable agriculture
due to their role as natural biofertilizers; increasing the levels
of nitrogen (N), P and Zn in the crop (Thompson, 1993;
Parniske, 2008; Smith et al., 2011; Baum et al., 2015; Berruti
et al., 2016). They also play a role in drought tolerance (Zhao
et al., 2015) and as bio-protectants against fungal, bacterial, and
nematode pathogens (Whipps, 2004; Pozo and Azcón-Aguilar,
2007; Veresoglou and Rillig, 2012; Yang et al., 2014).

Early classifications defined species within the order
Glomerales of the phylum Glomeromycota on the basis of spore
morphology (Morton and Benny, 1990). Schüßler and Walker
(2010) restructured the phylum Glomeromycota according
to molecular phylogenies based on the small subunit (SSU)
rRNA gene, the large subunit (LSU) rRNA gene, β-tubulin
sequence data and the ITS region. Consequently, the current
classification of the order Glomerales consists of two families
— the Glomeraceae and the Claroidoglomeraceae. A number of
Glomus species have been transferred to the genera Funneliformis
and Rhizophagus. Table 1 shows the phylum Glomeromycota
and the subdivisions into the orders Glomerales, Diversisporales,
Archaeosporales, and Paraglomerales (Redecker et al., 2013).

Plant-parasitic nematodes are classified according to their
feeding strategies. These include (i) ecto-parasitic nematodes
which feed externally on root cells and remain in the rhizosphere

TABLE 1 | Classification of the phylum Glomeromycota according to Redecker

et al. (2013).

Order Family Genus*

Diversisporales Diversisporaceae Tricispora

Otospora

Diversispora

Corymbiglomus

Redeckera

Acaulosporaceae Acaulospora

Sacculosporaceae Sacculospora

Pacisporaceae Pacispora

Gigasporaceae Scutellospora

Gigaspora

Intraornatospora

Paradentiscutata

Dentiscutata

Centraspora

Racocetra

Glomerales Claroideoglomeraceae Claroideoglomus

Glomeraceae Glomus

Funneliformis

Septoglomus

Rhizophagus

Sclerocystis

Archaeosporales Ambisporaceae Ambispora

Geosiphonaceae Geosiphon

Archaeosporaceae Archaeospora

Paraglomerales Paraglomeraceae Paraglomus

*Genera in bold were considered in this review.

such as Tylenchorhynchus spp., (ii) migratory endo-parasitic
nematodes which enter the plant root, feed, and move through
the root tissues destroying cells as they migrate such as
Pratylenchus spp., and, (iii) sedentary endo-parasitic nematodes
which convert vascular cells into specialized feeding cells where
they remain, such as the root-knot nematodes (Meloidogyne
spp.) and the cyst nematodes (Heterodera and Globodera spp.)
(Decraemer and Hunt, 2013).

The coexistence of AMF and nematodes in the phytobiome
has prompted a number of investigations into their interactive
effects on plants (reviews: Pinochet et al., 1996; meta-analyses:
Borowicz, 2001; Hol and Cook, 2005; Veresoglou and Rillig, 2012;
Yang et al., 2014). Published meta-analyses describe the generally
suppressive effect that AMF have on nematodes (Veresoglou
and Rillig, 2012; Yang et al., 2014). These analyses included
nematodes belonging to different genera and they grouped plant-
parasitic nematodes into their feeding modes (sedentary or
migratory). AMF reduced the numbers of the sedentary endo-
parasitic nematodes (Meloidogyne, Heterodera, and Globodera
spp.) and the ectoparasitic nematodes (Tylenchorhynchus spp.).
However, some analyses showed an increase in migratory
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endo-parasitic nematode numbers on inoculation with AMF
(Borowicz, 2001; Hol and Cook, 2005). Grouping the nematodes
into their broad feeding modes has the effect of obscuring the
data on interactions of AMF with Pratylenchus spp. and those
with other migratory endo-parasites including Radopholus spp.
and Hirschmanniella spp.

Due to the ubiquitous distribution and the great economic
importance of Pratylenchus spp. to agricultural crops worldwide,
this systematic review examines the relationship exclusively
between Pratylenchus spp. and AMF taking into account
the current classification of AMF genera. All life stages
of Pratylenchus spp., adults, juveniles, and eggs occupy the
same root cortex tissue as the AMF structures of hyphae,
arbuscules, and vesicles (Pinochet et al., 1996) and co-
occur with AMF extraradical hyphae and spores in the
rhizosphere soil.

The aims of this review are to determine (a) the responses in
Pratylenchus population densities to AMF, (b) the effects of AMF
on the growth of plants infested with Pratylenchus and, (c) the
effects of degree of AMF colonization on Pratylenchus population
density. The outcomes of the systematic review are discussed
in relation to putative mechanisms involved in the interaction
between Pratylenchus spp. and AMF. These mechanisms may
include: (a) enhanced plant tolerance to Pratylenchus as a result
of increased nutrient uptake and altered root morphology, (b)
direct competition between Pratylenchus and AMF for resources
and space, (c) effects on Pratylenchus through plant defense
mechanisms such as induced systemic resistance in the plant
from AMF colonization, and (d) altered rhizosphere interactions
(Pozo and Azcón-Aguilar, 2007; Schouteden et al., 2015).

METHODS

Selection of Studies
A systematic review of the literature was performed according
to PRISMA systematic review guidelines (Moher et al., 2009).
Studies investigating interactions between Pratylenchus spp. and
AMF were obtained from the databases,—Web of Science (www.
webofknowledge.com), SCOPUS (https://www.scopus.com) and
Google Scholar (https://scholar.google.com/).

The search parameters included the following terms,
“Pratylenchus,” “arbuscular mycorrhizal fungi” AND “root-
lesion nematode.” The papers were further screened to select
original research with quantitatively measured data of the
following response variables: (a) effects of AMF on Pratylenchus
population densities, (b) effects of Pratylenchus spp. on degree of
AMF colonization in the roots (mycorrhization), and (c) effects
of both organisms on plant biomass. Other pre-requisites for
eligibility for inclusion in the review were (a) studies with one
or more AMF species, but not mixed treatments with other
beneficial organisms, (b) studies with Pratylenchus species alone
not mixed with other plant-parasitic nematodes, and (c) studies
with a non-inoculated control. Reviews, meta-analyses and
book chapters were excluded from the analyses, but the original
research papers cited within were cross referenced and assessed
for suitability for inclusion.

Analyses of Response Variables
The “nematode response” was calculated using the
following formula:

nematode response =
(Pratylenchus− Pratylenchus plus AMF)

Pratylenchus
∗100

(1)

where “Pratylenchus” is the final population density of
Pratylenchus in nematode only treatments and “Pratylenchus plus
AMF” is the population density of Pratylenchus in co-inoculated
AMF and nematode treatments.

The “biomass response” was calculated using the
following formula:

biomass response

=
(Pratylenchus biomass−Pratylenchus plus AMF biomass)

Pratylenchus biomass
∗100

(2)

Where “Pratylenchus biomass” is the plant biomass in nematode
only inoculated treatments and “Pratylenchus plus AMF biomass”
is the plant biomass in co-inoculated AMF and nematode
treatments. Biomass data were expressed as shoot, root and total
biomass where available.

The “AMF response” was calculated using the
following formula:

AMF response = AMF % colonisation− AMF % colonisation plus Pratylenchus

(3)

where “AMF % colonization” is the percentage of mycorrhization
of plants with AMF alone and “AMF % colonization plus
Pratylenchus” is the percentage of mycorrhization of plants co-
inoculated with AMF and nematodes.

The effect of inoculation with AMF on the Pratylenchus
population density was categorized as decrease, no effect, or
increase based on statistical significance (P<0.05) of studies in
the original publications. A chi-squared test for independence
was performed to assess the relationship between order of AMF
(Glomerales and Diversisporales) and effect on Pratylenchus
population densities. Chi-squared values were calculated from
two-way contingency tables (Steel and Torrie, 1960) of AMF
order by Pratylenchus density effect for the 56 studies using the
following function:

χ2 = 6{
(

observed number− expected number
)2

/expected number}

(4)

The percentage AMF colonization of the roots of the plants in
these three categories of AMF effects on Pratylenchus population
densities for the studies with relevant data was subjected to
one-way analysis of variance (ANOVA) using GenStat (VSN
International, 2014).

The data were examined under other independent groupings
such as (a) restructured AMF genera according to the current
classification by Schüßuler and Walker (Schüßler and Walker,
2010) and (b) host plant functional group (grasses, trees,
herbs, shrubs).
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RESULTS

The initial search conducted on all available literature in the
three databases provided 519 potential papers for inclusion.

Further screening by removing duplicates and ineligible
papers resulted in 22 full text articles selected for the
systematic review (Table 2). Experiments within papers were

treated as separate studies when; (a) two or more AMF
species were studied independently, (b) more than one
plant cultivar was included, and (c) more than one time
of inoculation was used. If there were various times of
assessment for plant biomass over multiple years, the most

recent data set was used. In total, 60 studies were analyzed
(Supplementary Table 1).

Table 3 shows the response of Pratylenchus sp., arbuscular
mycorrhizal fungi (AMF) and plants to co-inoculation of AMF
and Pratylenchus sp. compared to Pratylenchus sp. alone in
glasshouse and microplot experiments. The data is statistically
significant as stated in the original papers. The majority of the
crops assessed were agriculturally or horticulturally important
with the exception of dune grass (Ammophilia arenaria). In
general, the experiments were undertaken in glasshouses with
some transplanting of pre-inoculated AMF colonized plants to
field microplots. There were 14 individual species of AMF used

TABLE 2 | PRISMA Flow Diagram for eligible articles to include in the qualitative review.
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TABLE 3 | Response of Pratylenchus spp., arbuscular mycorrhizal fungi (AMF) and plants to co-inoculation of AMF and Pratylenchus spp. compared to Pratylenchus sp.

alone in glasshouse and microplot experiments.

Plant species

(common name)

Pratylenchus

species

Response to AMF-Pratylenchus interaction (%)

AMF species Nematode AMF Biomass Shoot wt Root wt Reference

GRASS

Triticum aestivum (wheat) Mix: Claroideoglomus

etunicatum, F. coronatum,

Rhizophagus irregularis,

F. mosseae

P. neglectus 47 to 1171 ns ↓30 to ↓401 ND ↓31 to ↓441 Frew et al., 2018

Zea mays (maize) R. clarus P. brachyurus 990 ND ND ns ND Brito et al., 2018

Dentiscutata heterogama 353 ND ND ns ND

Gigaspora rosea 447 ND ND ns ND

C. etunicatum 441 ND ND ns ND

G. margarita 353 ND ND ns ND

S. calospora 900 ND ND ns ND

Ammophila arenaria

(dune grass)

Glomus sp. P. dunensis ↓382 ns ↓442 ND ND Rodríguez-Echeverría

et al., 2009

Glomus sp. P. penetrans ↓672 ns ns ND ND

Mix: Glomus spp.,

S. castanea

P. penetrans ↓47 to ↓863 ns ns ND ns de La Peña et al., 2006

Tree

Cydonia oblonga (quince) R. intraradices P. vulnus ns ↓26 ND 65 51 Calvet et al., 1995

Malus domestica (apple) C. claroideum P. penetrans ns ND ND ND ns Ceustermans et al.,

2018

Acaulospora longula ns ND ND ND ns

C. claroideum, A. longula ns ND ND ND 165

R. intraradices ns ND ND ND ns

AMF species mix (13) ↓97 ND ND ND ns

C. etunicatum ns ns ns 8 ns Forge et al., 2001*

R. aggregatus ns ns ns ns ns

R. clarus ns ns ns ns ns

F. mosseae ns ns 19 to 451 9 to 541 1 to 321

R. intraradices ns ns 19 to 431 12 to 491 5 to 371

G. versiforme ns ns ns 47 ns

Malus silvestris (crab apple) F. mosseae P. vulnus ↓51 ns ND 201 142 Pinochet et al., 1993

Pyrus communis (pear) R. intraradices ↓57 ns ND 403 209 Lopez et al., 1997

F. mosseae ↓63 ns ND 341 202

Prunus mahaleb (cherry) R. intraradices ns ns ND 89 78 Pinochet et al., 1995a

Prunus persica (peach) F. mosseae ↓42 ns ND ns ns Pinochet et al., 1995b

Prunus cerasifera X

P. munsoniana (Prunus

rootstock)

R. intraradices ns ↓14 ND ns 28 Pinochet et al., 1998

F. mosseae ns ↓14 ND ns ns

Prunus cerasifera (cherry

plum)

F. mosseae ns ↓341 ND ns 861 Camprubi et al., 1993

Herb

Musa sp. (banana) F. mosseae P. coffeae ↓761 ns ND 175 to 4331 192 to 3101 Elsen et al., 2003a

F. mosseae ↓79 to ↓801 ↓17 to ↓241 ND ns ns Elsen et al., 2003b

F. mosseae P. goodeyi ns ND ND 16 ns Jaizme-Vega and

Pinochet , 1997

R. aggregatus ns ND ND 14 ns

R. intraradices ns ND ND 8 ns

Phaseolus vulgaris

(common bean)

R. fasciculatus P. penetrans ns ND ND ND ND Elliott et al., 1984

(Continued)
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TABLE 3 | Continued

Plant species

(common name)

Pratylenchus

species

Response to AMF-Pratylenchus interaction (%)

AMF species Nematode AMF Biomass Shoot wt Root wt Reference

Daucus carota (carrot) F. mosseae P. penetrans ↓48 ns 207 ND ND Talavera et al., 2001

Lycopersicon esculentum

(tomato)

F. mosseae ↓87 ns ND ns ns Vos et al., 2012

Ananas comosus

(pineapple)

Glomus sp. P. brachyurus ↓24 to ↓744 ↓9 to ↓324 ND 105 to 3594 50 to 2694 Guillemin et al., 1994

Shrub

Gossypium hirsutum

(cotton)

Gigaspora margarita P. brachyurus ↓66 ND ND 556 544 Hussey and Roncadori,

1978

Coffea arabica (coffee) A. mellea 10493 ↓323 9463 ND ND Vaast et al., 1997

R. clarus 4323 ↓263 5043 ND ND

1Cultivar dependent; 2AMF, country of origin dependant; 3Time of inoculation dependent; 4Cultivar and time of inoculation dependent; ns, non-significant result; ND, not determined.

Nematode response, difference between Pratylenchus alone and co-inoculated with AMF; AMF response, difference between percentage mycorrhization of AMF alone and co-inoculated

with Pratylenchus; Biomass response; difference between Pratylenchus alone and co-inoculated with AMF; ↓ indicates negative effect of AMF x Pratylenchus interaction; *Glasshouse

data only.

in 43 studies, one undetermined species in ten studies, and
a mix of AMF species in seven studies. These species came
from both the order Glomerales which included the genera
Rhizophagus, Glomus, Funneliformis, Claroideoglomus, and the
order Diversisporales, which included the genera Acaulospora,
Dentiscutata, Gigaspora, and Scutellospora.

The studies involved seven Pratylenchus spp. namely
P. penetrans, P. vulnus, P. neglectus, P. coffeae, P. goodeyi,
P. brachyurus and P. dunensis. These species reviewed are many
of the species of Pratylenchus causing the most economic damage
worldwide (Jones and Fosu-Nyarko, 2014).

Responses in Pratylenchus Population
Densities to AMF
The effects of AMF inoculation on Pratylenchus population
densities varied from a decrease in population densities (n= 22),
no effect on Pratylenchus population densities (n = 28), to an
increase in Pratylenchus population densities (n= 10).

The taxonomic order of AMF species used had an effect
on Pratylenchus densities, whereby inoculation with species
from the order Glomerales tended to decrease Pratylenchus
population densities compared with species from the order
Diversisporales which tended to increase Pratylenchus population
densities (Table 4). Although there were fewer studies with
comparisons for Diversisporales than for Glomerales, the
differences in response between these groupings were highly
significant (Table 4).Within the Glomerales, inoculation with the
genera Glomus and Funnelifomis had a neutral to reductive effect
on Pratylenchus population densities.

Increases in Pratylenchus population densities due to AMF
inoculation in studies subdivided in relation to the host plant
functional group were predominantly found in the grasses
(increases in 8 out of 15 studies). No increase in Pratylenchus
population densities were found in trees (0 increases in 24
studies), or herbs (0 increases in 16 studies).

Effects of AMF on the Growth of Plants
Infested With Pratylenchus
Plant shoot biomass increased when AMF were co-inoculated
with Pratylenchus compared with infection with Pratylenchus
alone. From the 34 studies with data providing comparisons on
shoot biomass, 24 showed an increase in shoot biomass while 10
had no effect. No studies showed a reduction in shoot biomass.
Most studies calculated shoot biomass (n= 35) and root biomass
independently (n = 41), with fewer reporting results on total
biomass (n = 28). From these 28 studies, eight showed an
increase in total plant biomass, and three studies a decrease in
total plant biomass with 17 having no significant effect.

The change in root biomass between plants inoculated
with Pratylenchus and the plants co-inoculated with AMF and
Pratylenchus is shown in Table 3. The majority of the studies
showed an increase in root biomass when inoculated with AMF
(n= 22) in the presence of Pratylenchuswith the exception of two
studies by Frew et al. (2018).

Effects of Degree of AMF Colonization on
Pratylenchus Population Density
There were 58 studies with data on the degree of AMF
colonization of the roots. In most studies there was a decrease (n
= 21) or no effect (n= 27) on Pratylenchus population densities,
which were associated with relatively high percentage AMF
colonization of the roots (43.9 and 42.2% respectively), compared
to an increase in Pratylenchus population densities (n = 10),
which were associated with a significantly lower percentage AMF
colonization (20.1%) (Table 5).

DISCUSSION

This review is the first to examine the effects of specific
genera and order of AMF acting on Pratylenchus population
densities and demonstrates that the taxonomic order of AMF
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TABLE 4 | Number of studies investigating AMF-Pratylenchus interaction included in the systematic review and the effect of AMF order on Pratylenchus populations.

Order Genus Effect on Pratylenchus populations Total

studies
Increase No effect Decrease

Glomerales Rhizophagus 2 12 1 15

Glomus 0 2 8 10

Funneliformis 0 8 8 16

Claroideoglomus 1 2 0 3

AMF mix (Claroideoglomus, Rhizophagus, Funneliformis) 2 0 1 3

Total 5 24 18 47

Diversisporales Acaulospora 1 2 0 3

Dentiscutata 0 1 0 1

Gigaspora 2 0 1 3

Scutellospora 2 0 0 2

Total 5 2 2 9

χ2 = 10.43 with 2 d.f. P < 0.01

TABLE 5 | Effects of AMF inoculation on change in Pratylenchus population

densities in relation to degree of AMF colonization in the roots.

Change in

Pratylenchus

population density

Number of

comparisons

AMF % colonization

in presence

of Pratylenchus

loge SEa BTM (%)b

Decrease 21 3.7818 0.1419 43.9

No effect 27 3.7421 1.1252 42.2

Increase 10 2.9994 0.2057 20.1

Fprobability, 0.006 from ANOVA of the transformed data.
aSE, standard error.
bBTM, back-transformed mean.

has a significant influence on Pratylenchus population densities.
Previous reviews and meta-analyses showed a varied response of
AMF on migratory endo-parasites ranging from a suppressive
(Veresoglou and Rillig, 2012; Yang et al., 2014) to a stimulatory
effect (Borowicz, 2001; Hol and Cook, 2005).

Variation in functionalities between AMF families has been
reported (Smith et al., 2004). Members of the Glomeraceae are
typically fast colonizers, concentrating their hyphae within the
plant roots and can increase P uptake and promote plant growth
under pathogen attack and drought stress (Klironomos, 2000;
Hart and Reader, 2002; Maherali and Klironomos, 2007; Yang
et al., 2015; Seymour et al., 2019). Members of the Diversisporales
are typically slower to colonize roots, concentrating hyphae
externally to the plant root in the soil and are effective at
enhancing plant phosphorus uptake (Klironomos, 2000; Hart and
Reader, 2002; Maherali and Klironomos, 2007). However, from
the studies in this review, there was lack of data on the percentage
of AMF colonization of the controls in the order Diversisporales
(n = 2) therefore it remains unclear if Diversisporales are slower
to colonize from these studies.

From our review, species from the genera Glomus or
Funneliformis, in the order Glomerales decreased or had
no significant effect on the Pratylenchus population densities
compared with Rhizophagus andClaroideoglomus. The difference
in effects that AMF genera have on Pratylenchus population
densities could be due to differences in the secondary metabolites
produced under the symbiotic relationship. For example, in
tomato, although the metabolic pathways altered by the AMF
symbiosis were similar, different metabolites were produced,
depending on inoculation with F. mosseae or R. irregularis (Pozo
et al., 2002). An increase in the accumulation of bioactive forms
of jasmonic acid was found in roots colonized by F. mosseae
(Rivero et al., 2015). Jasmonic acid and its derivative methyl
jasmonate play a role in plant defense against herbivores
and they can reduce susceptibility of plants to infestation
by Pratylenchus (Soriano et al., 2004). Root metabolites may
influence populations of plant parasitic nematodes by acting
as attractants, repellents or affecting hatch rates of nematodes
(Sidker and Vestergård, 2019). Mycorrhizal colonization can
increase phenolics such as ferulic acid and gallic acid in the
host plants (López-Ráez et al., 2010; Li et al., 2015). Ferulic
acid inhibits mobility and is toxic to the burrowing nematode
R. similis but is ineffective against Pratylenchus penetrans (Wuyts
et al., 2006). Gallic acid acts as a nematicide to the root-knot
nematode M. incognita (Seo et al., 2013). High constitutive
total phenol contents were found in synthetic hexaploid wheat
genotypes resistant to P. thornei combined with high levels
of induced phenol oxidases (Rahaman et al., 2020). These
studies indicate that the biochemical responses of host plants
to both inoculation with AMF and infestation by plant-parasitic
nematodes are highly complex.

Even within populations of a single species of AMF, there
is a high genetic variability which may affect the host/fungal
relationship (Koch et al., 2006, 2017). Variations in the effects
that a single species of AMF have on Pratylenchus population
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densities were observed in the studies by Elsen et al. (2003b)
and Jaizme-Vega and Pinochet (1997). Both studies used the
same cultivar of banana and the same species of AMF, but
obtained different results depending on the Pratylenchus sp.
tested. Elsen et al. (2003b) stated that it was difficult to explain the
contrary results, however, the AMF strain and the environmental
conditions differed between experiments. As a different isolate of
F. mosseae was used as inoculum, it is important to emphasize
the traceability of isolates that are used in experiments. A similar
observation was made in dune grass whereby Pratylenchus sp.
were only reduced in the interaction with a community of AMF
isolated from Wales and not from an AMF community isolated
fromBelgium (Rodríguez-Echeverría et al., 2009). This highlights
the need to study interactions between specific crops, cultivars
and AMF species or communities.

Plant functional group influenced Pratylenchus population
densities in grasses but not in herbs and trees. Interestingly,
response to AMF can be attributed to plant functional groups
in which non-nitrogen fixing forbs and woody plants, and C4
grasses benefit more in plant growth by the fungal association,
compared to nitrogen fixing plants and C3 grasses (Hoeksema
et al., 2010). However, Yang et al. (2016) concluded that
nitrogen fixing plants had a greater mycorrhizal growth response
only when the host plant was a forb and not woody. A
practical application to improve tolerance, or plant growth,
when Pratylenchus is present may therefore be to pre-inoculate
tree species with AMF prior to transplanting into orchards,
taking into account the interaction between cultivars, their
mycorrhizal dependency and AMF species used as inoculum
sources (Pinochet et al., 1996). The potential of AMF inoculum
conferring benefits to crop production in high economic value
vegetable crops has been reviewed by Baum et al. (2015).
These include advantages such as increases in yield, increases
in commercial quality of the crop, protection against nematodes
and other pathogens, tolerance to drought and other abiotic
stressors and nutrient uptake. As the interaction between host,
AMF inoculum and environment can be very specific, future
research is needed to optimize the inoculation protocols to target
specific crop production limitations.

The outcomes of the present systematic review, in relation
to putative mechanisms involved in the interaction between
Pratylenchus spp. and AMF, are discussed below.

Enhanced Plant Tolerance
Plant shoot biomass increased when AMF were co-inoculated
with Pratylenchus compared with infection with Pratylenchus
alone. A number of studies investigated tolerance to Pratylenchus
spp. as a reflection of increasing vegetative plant nutrition. AMF
can increase the uptake of P and other nutrients such as Zn from
the soil (Parniske, 2008; Seymour et al., 2019). This increase in
nutrition can lead to a greater plant biomass response conferring
a compensatory effect against the damage done by nematodes.
Previous studies have shown that AMF confers tolerance to
Pratylenchus spp. by compensating for root damage caused by
Pratylenchus spp. through increasing the uptake of P and other
micronutrients, such as Fe, Mn, Zn, and Cu (Calvet et al., 1995;
Pinochet et al., 1998). However, improvement in the nutritional

status of the plant is not believed to be wholly responsible for the
biocontrol effect of AMF (Bødker et al., 1998; Jung et al., 2012).

Tolerance conferred by AMF to a crop under Pratylenchus
pressure has been described in the majority of the reviewed
papers (n= 41) with the exception of the following; peach,Musa
sp., maize, tomato, dune grass and wheat (Pinochet et al., 1995b;
Elsen et al., 2003a; Rodríguez-Echeverría et al., 2009; Vos et al.,
2012; Brito et al., 2018; Frew et al., 2018). This may be a reflection
of the mycorrhizal dependency of the cultivars assessed as some
tomato and wheat cultivars have a low mycorrhizal dependency
(Smith et al., 2009) while cultivars of maize, Musa sp. and peach
generally have higher mycorrhizal dependency (Pinochet et al.,
1995b; Kaeppler et al., 2000; Elsen et al., 2003a). A study by
Martín-Robles et al. (2018) found that domesticated crops benefit
more from the symbiosis with AMF under P limiting conditions.
It is worthwhile to note that most of the studies analyzed in this
review were undertaken in low P experimental conditions where
AMF function most efficiently (Supplementary Table 1).

The studies assembled in Table 3 demonstrate the pre-
dominantly beneficial effects AMF have on crop species,
alleviating the damage to the root and shoot biomass caused
by Pratylenchus. There were only three studies where AMF
decreased total biomass and root weight when co-inoculated
with Pratylenchus. These studies were on wheat and dune grass,
both C3 crops (Rodríguez-Echeverría et al., 2009; Frew et al.,
2018). Variations in root morphology between C3 and C4 grasses
determine their dependency on the mycorrhizal symbiosis
(Hetrick et al., 1991), which may help explain the reduction
in biomass. Wheat has a low to intermediate dependency
on mycorrhiza depending on genotype (Lehnert et al., 2017)
and modern plant breeding may contribute to a reduction in
dependency on the mycorrhizal symbiosis by screening and
selecting new varieties in high phosphate or highly fertile soils
(Hetrick et al., 1993). However, a modern wheat cultivar Batavia
was found to have high dependency on AMF colonization
under drought conditions on a field site infested with P. thornei
(Owen et al., 2010). Dune grass forms an association with AMF
promoting plant growth (Tadych and Blaszkowski, 1999). de La
Peña et al. (2006) suggested that evidence of biomass reduction in
dune grass was related to a species-specific interaction between a
geographically unique community of AMF from Wales and the
species of Pratylenchus (P. dunensis) studied. Biomass reduction
was not significant in another study of the interaction between
AMF and P. penetrans on dune grass (de La Peña et al., 2006).

Previous reviews have also demonstrated this positive effect
that AMF have on increasing plant growth under attack by
migratory nematodes (Hol and Cook, 2005; Yang et al., 2014).
This is contrary to the study by Borowicz (2001) that concluded
AMF increased the negative effects of nematodes on plant
biomass, indicating a reduced nematode tolerance.

The majority of studies showed an increase in root
biomass in the presence of Pratylenchus when inoculated with
AMF. Pratylenchus infestation negatively impacts root biomass,
resulting in a reduction in the quantity and length of root
branches (Fosu-Nyarko and Jones, 2016). Colonization by AMF
can also result in alterations to root morphology, causing either
an increase or decrease in root branching (Hooker et al., 1992;
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Sikes, 2010). A study on morphological changes within the
root system in Musa sp. under Pratylenchus pressure showed
that AMF increased root branching counteracting the negative
consequences of Pratylenchus infection (Elsen et al., 2003a). Berta
et al. (1995) also demonstrated in cherry plum (Prunus cerasifera)
that AMF increased the branching of all root orders. However,
there were variable effects on root diameter depending on which
genera of AMF were used.

Baylis (1975) hypothesized that plants with extensive fine
root systems with long dense root hairs were less reliant on the
mycorrhizal symbiosis in comparison to coarsely rooted plants.
However, recent evidence suggests that coarse roots are not
necessarily a good predictor of crop dependency on the AMF
symbiosis (Maherali, 2014). A meta-analysis by Yang et al. (2016)
found that although plants with fibrous roots responded less to
mycorrhizal colonization than tap rooted plant species, this was
only evident for C3 and not C4 grass species. Notwithstanding
this, plants that have a highly branched root system may still
benefit from the AMF association via other ecosystem functions
such as pathogen protection (Newsham et al., 1995).

Competition for Space Between
Pratylenchus and AMF
Degree of AMF colonization had an effect on the population
densities of Pratylenchus. Inoculation with AMF that resulted
in low levels of AMF colonization was associated with increases
in Pratylenchus population densities compared with other cases
with high levels of AMF colonization that were associated with
decreases or no effects on Pratylenchus population densities.
The nematode population density could also affect the rate of
colonization by AMF indicating a competition between species.
Both AMF and Pratylenchus occupy the same ecological niche
within the root cortical cells as described in various crop species,
for example, quince, cherry, peach, pear, banana, plum, and coffee
(Calvet et al., 1995; Pinochet et al., 1995a,b, 1998; Lopez et al.,
1997; Vaast et al., 1997; Elsen et al., 2003b). Pratylenchus sp. and
AMF were considered to have competed for space within the
cortical cells in quince, coffee, banana and dune grass (Calvet
et al., 1995; Vaast et al., 1997; Elsen et al., 2003b; de La Peña et al.,
2006).

Arbuscules are the metabolically active sites of exchange
between the plant and the fungus and a mature mycorrhizal
colonization of the plant, as evidenced by the production
of arbuscules, has been thought to be the prerequisite for a
biocontrol effect (Khaosaad et al., 2007). It has been hypothesized
that a greater colonization of AMF in plant roots would lead to a
greater biocontrol effect on nematodes.

Pratylenchus can affect the quantity and morphology of AMF
within the root cortical cells. For example, in quince, AMF
increased the production of arbuscules reflecting a metabolically
active state under Pratylenchus infestation, compared to an
increase in the production of vesicles in the absence of
infestation (Calvet et al., 1995). In banana, nematodes reduced
the frequency of colonization but not the intensity (Elsen
et al., 2003b). In pineapple, although nematodes reduced the
frequency of arbuscules when applied at a later time point during

transplanting, they did not affect the efficiency of the symbiosis
(Guillemin et al., 1994).

The time of inoculation was not a factor in how the nematode
population densities responded to AMF inoculation. AMF was
applied to the plants prior to nematode inoculation in the
majority of studies (n = 42), which gave the symbiosis a chance
to establish before being challenged with Pratylenchus. However,
this established symbiosis was not reflected in a decrease in
nematode population density, but may have aided the plant in
tolerance to nematode infestation through increased vegetative
growth as previously discussed.

Plant Defense and Induced Systemic
Resistance
Mycorrhiza-induced resistance that can operate systemically can
be effective against plant-parasitic nematodes andmay contribute
toward the biocontrol effect of AMF (Jung et al., 2012). Induced
systemic resistance has no association with pathogenesis related
proteins or salicylic acid but is regulated by jasmonic acids and
ethylene (Pieterse et al., 1998).

There is little available research on induced systemic resistance
by AMF against Pratylenchus as compared to other plant
pathogens. However, using split root experiments, the systemic
biocontrol effects of the AMF species F. mosseae and R. irregularis
on Pratylenchus were demonstrated in banana and tomato.
Rhizophagus irregularis induced a systemic suppression of
P. coffeae and R. similis in banana, though the pathways involved
in this suppression were not determined (Elsen et al., 2008).
In tomato, inoculation with F. mosseae reduced the number
of females of P. penetrans through a localized mechanism and
the number of juveniles through a systemic mechanism (Vos
et al., 2012). Contrary to this, only a localized suppression of
Pratylenchus population densities was observed in dune grass (de
La Peña et al., 2006).

Investigations into the metabolomics of AMF showed that
AMF colonization increased the production of AMF plant
signaling compounds and anti-herbivory defenses (Hill et al.,
2018). There is still very little research available on the
interactions between Pratylenchus and AMF on effects on the
metabolome. Frew et al. (2018) reported that AMF reduced
plant defense metabolites, specifically benzoxazinoids, which
accounted for an increase in P. neglectus population densities in
wheat. Studies involving root organ cultures of carrot showed
significant suppressive effects of AMF on P. coffeae female
population densities believed to be a result of biochemical
changes in the mycorrhized root (Elsen et al., 2003c). Exudates
from AMF can reduce the motility and penetration of sedentary
nematodes (Vos et al., 2012) but little research has been done on
their effects on migratory endo-parasites. An in-vitro chemotaxic
assay on the migratory endo-parasite R. similis demonstrated
that the exudation of a water-soluble compound, produced by
mycorrhizal roots, reduced attraction at a pre-infection stage
(Vos et al., 2012), but there is little information on how
exudates affect Pratylenchus spp. Further research is needed
to assess the mechanisms of AMF in influencing Pratylenchus
population densities.
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Alterations in the Rhizosphere
Alterations in chemical compounds in the rhizosphere as a
result of interactions between plant-parasitic nematodes and
AMF have been reviewed (Schouteden et al., 2015). These
involve changes in exudation of sugars, organic acids, amino
acids, phenolic compounds, flavonoids and strigolactones in
AMF colonized plants as compared to non-AMF plants.
AMF exudations into the rhizosphere promote beneficial
microorganisms such as plant-growth promoting rhizobacteria
(PGPR) (Jung et al., 2012; Javaid, 2017) and resultant changes
can be induced systemically, influencing the bacterial community
structure (Marschner and Baumann, 2003). This enhanced
microbial activity around plant roots has been termed the
mycorrhizosphere effect (Linderman, 1988). Plant growth
promoting rhizobacteria have been implicated in nitrogen
fixation, phosphate solubilization, modulating phytohormone
levels and the production of antibiotics and lytic enzymes
(Glick, 2012). Cameron et al. (2013) proposed that AMF
and PGPR act together to increase plant defenses against
biotic stressors in mycorrhiza-induced resistance. Studies on
multipartite interactions between Pratylenchus, AMF, PGPR and
crop hosts are lacking in the literature.

Species of PGPR in the genera Pseudomonas, Bacillus,
Streptomyces and Lysobacter have been implicated in reducing
Pratylenchus population densities (Walker et al., 1966; Stirling,
2014; Castillo et al., 2017), and some research has been conducted
on the interaction between AMF and these PGPR. In strawberry,
Pseudomonas chlororaphis suppressed populations of P. penetrans
(Hackenberg et al., 2000) while extracts from the AMF species
R. irregularis stimulated the growth of Pseudomonas chlororaphis
in vitro (Filion et al., 1999). Streptomyces spp. can reduce
Pratylenchus population densities (Meyer and Linderman, 1986;
Samac and Kinkel, 2001) and they can also stimulate spore
germination in F. mosseae and Gigaspora margarita (Tylka
et al., 1991). This indicates a link between the three types
of phytobiome organisms, though further research is needed
to assess AMF and PGPR combined effects on Pratylenchus
population densities.

LIMITATIONS OF THE REVIEW AND
FUTURE RESEARCH

The crops assessed in this review were agriculturally or
horticulturally important with the exception of dune grass
(Ammophilia arenaria). Most studies looked at a single species of
AMF alone and not in combination with species from different
orders and genera of AMF, or other beneficial microbes such
as PGPR. The taxonomic orders of AMF used in the studies
reviewed were limited to the Glomerales and Diversisporales.
Other orders such as the Archaeosporales and the Paraglomerales
are also present in soils, though they are under-represented in
experimental work. A study by Gosling et al. (2014), found
a wide distribution of the Paraglomerales in agricultural soils
in the UK. AMF species such as F. mosseae and R. irregularis
have a tendency to be over represented in this type of
experimental work due to their ease of multiplication in trap

cultures. The studies in this review were undertaken in low P
soils, predominantly in glasshouses, with some transplantations
to microplots. Arbuscular mycorrhizal fungi function most
efficiently under low to moderately high P conditions, and
therefore the benefit of AMF in improving plant nutrition and
plant biomass under Pratylenchus pressure could be overstated
for agricultural systems receiving continued high rates of P
fertilizers. Better matching of P fertilizer inputs to crop removal
is required in some agricultural systems to avoid excessive levels
of available P in soils for better harnessing of AMF functions,
stewardship of global P supplies and environmental quality
(Gianinazzi et al., 2010).

The number of studies in this highly specific review of the
interaction between Pratylenchus spp. and AMF was limited to
only 60 studies suitable for inclusion. Further research needs to
be undertaken in the area, using a broad range of crop cultivars
and AMF species from diverse orders to further increase our
understanding of the relationship between these organisms in
the rhizosphere.

Further research needs to be done in assessing themechanisms
involved in the effect of AMF on Pratylenchus population
densities through investigations into induced systemic resistance
and changes in the metabolome. As research is lacking on
the effects of AMF, Pratylenchus and beneficial bacteria in the
rhizosphere, more studies need to be undertaken on multipartite
interactions between these organisms in crop hosts.

CONCLUSION

The interactions between Pratylenchus and AMF reveal some
unique effects as influenced by crop species, crop cultivar,
AMF order and AMF genus. Our review showed increased
Pratylenchus densities in plants inoculated with species from
the order Diversisporales. Inoculation with the AMF genera
Glomus and Funneliformis from the order Glomerales, reduced
or had no effect on Pratylenchus densities in host roots. AMF
aids the tolerance of plants to Pratylenchus through increased
vegetative growth. The biocontrol effect of AMF is likely to be a
combination of increasing host tolerance, competition between
organisms, and systemic resistance, though further research is
needed to identify the mechanisms involved. Further studies will
need to take into account the specific interactions between crop,
cultivar and AMF species in both glasshouse and field trials.
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