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The typical plastid genome (plastome) of photosynthetic angiosperms comprises a pair of
Inverted Repeat regions (IRs), which separate a Large Single Copy region (LSC) from a
Small Single Copy region (SSC). The independent losses of IRs have been documented in
only a few distinct plant lineages. The majority of these taxa show uncommonly high levels
of plastome structural variations, while a few have otherwise conserved plastomes. For a
better understanding of the function of IRs in stabilizing plastome structure, more taxa that
have lost IRs need to be investigated. We analyzed the plastomes of eight species from
two genera of the putranjivoid clade of Malpighiales using Illumina paired-end sequencing,
the de novo assembly strategy GetOrganelle, as well as a combination of two annotation
methods. We found that all eight plastomes of the putranjivoid clade have lost their IRB,
representing the fifth case of IR loss within autotrophic angiosperms. Coinciding with the
loss of the IR, plastomes of the putranjivoid clade have experienced significant structural
variations including gene and intron losses, multiple large inversions, as well as the
translocation and duplication of plastome segments. However, Balanopaceae, one of the
close relatives of the putranjivoid clade, exhibit a relatively conserved plastome
organization with canonical IRs. Our results corroborate earlier reports that the IR loss
and additional structural reorganizations are closely linked, hinting at a shared mechanism
that underpins structural disturbances.

Keywords: plastome evolution, Inverted Repeat region loss, genomic rearrangement, Lophopyxidaceae, Putranjivaceae
INTRODUCTION

Plastids, such as chloroplasts, chromoplasts, and leucoplasts, are the place for photosynthesis and
the major organelle for organic product storage in plants. Plastids retain a semi-autonomous genetic
system with their own genome (plastome). Typically, the plastome of a photosynthetic angiosperm
is a circular molecule, with a length of 120–160 kb (Wicke et al., 2011). Structurally, such plastome
comprises a pair of Inverted Repeat regions (hereafter called IRs; ~25 kb), a Large Single Copy
region (LSC; ~85 kb), and a Small Single Copy region (SSC; ~15 kb) (Ruhlman and Jansen, 2014;
Mower and Vickrey, 2018). IRs may play an important role in maintaining plastome stability
.org June 2020 | Volume 11 | Article 9421
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(Maréchal and Brisson, 2010), which might be one of the reasons
why most autotrophic angiosperms possess canonical IRs. However,
IR losses have been documented in a few distinct angiosperm
lineages, namely the IR-Lacking Clade (IRLC) of Leguminosae
(Palmer and Thompson, 1981; Palmer and Thompson, 1982;
but see Choi et al., 2019), two Erodium lineages of Geraniaceae
(Guisinger et al., 2011; Ruhlman et al., 2017), Carnegiea gigantea
of Cactaceae, and Tahina spectabilis of Arecaceae (Choi et al.,
2019). Plastomes of the IRLC, C. gigantea (Sanderson et al.,
2015), Tahina spectabilis (Barrett et al., 2016) showed significant
higher rearrangement degrees compared to their sister clade,
while species in a lineage of Erodium that has lost one IR exhibit
an otherwise conserved plastome structure (Blazier et al., 2016).
Hence, further comparative study is needed to elucidate the
function of IRs in stabilizing plastome structure.

Malpighiales are one of the largest orders of flowering plants.
Plants in this order exhibit a remarkable morphological and
ecological diversity, with many species of great ecological and
economic importance (Xi et al., 2012). Previous studies have
revealed significant structural variations in the plastomes of
multiple taxa in this order. Rabah et al. (2019) compared
plastomes of 15 species of the genus Passiflora (Passifloraceae)
and found that this genus has experienced widespread genomic
changes, including inversions, gene and intron losses along with
multiple independent IR expansions and contractions. Lopes et al.
(2018) revealed the contraction and expansion of the IRs altering
the size, gene content, and gene order of SC and IRs in the plastome
of Linum usitatissimum (Linaceae). Tangphatsornruang et al.
(2011) reported a 30-kb inversion between trnE-UUC—trnS-
GCU and trnT-GGU—trnR-UCU in Hevea brasiliensis
(Euphorbiaceae). Two recent studies detected an inversion in the
LSC, significant variation in length reduction of the IRs, gene loss
and pseudogenization events in plastomes of Podostemaceae
(Bedoya et al., 2019; Jin et al., 2020). An inversion over 50 kb
spanning from trnK-UUU to rbcL in the LSC is shared by
Cratoxylum cochinchinense (Hypericaceae), Tristicha trifaria, and
Marathrum foeniculaceum (Podostemaceae) (Jin et al., 2020).
Previous studies suggested that multiple lineages of Malpighiales
have experienced plastome structural variations, but knowledge of
plastomes evolution in this large order is still limited.

The putranjivoid clade in Malpighiales consists of two
families: Lophopyxidaceae and Putranjivaceae (Wurdack and
Davis, 2009). Lophopyxidaceae have a single genus, whereas
Putranjivaceae contain three genera and ca. 216 species.
Containing 209 species, Drypetes is the largest genus in
Putranjivaceae. The species in this clade are perennial trees or
shrubs, growing primarily in tropical and subtropical areas
(Kubitzki, 2014).

As it is unknown to date how plastid genomes evolve in the
putranjivoid clade, we here assembled the complete plastome
sequences for eight species, as well as two species from the closely
related family Balanopaceae, representing one genus each from
each family. Our analyses focused on exploring the structural
variation of plastomes and revealed that all plastomes of the
putranjivoid calde have lost the IRB entirely and experienced
extensive additional structural rearrangements. In contrast, the
Frontiers in Plant Science | www.frontiersin.org 2
plastomes of the two Balanopaceae species retain a relatively
conserved plastome structure, indicating an evolutionary shift
after the split of both lineages.
MATERIALS AND METHODS

Taxon Sampling, DNA Extraction
and Sequencing
We sampled seven species from the largest genus Drypetes of
Putranjivaceae, one species from Lophopyxidaceae, and two
species from Balanopaceae as outgroups. Total genomic DNA
of all samples was isolated from herbarium specimens or silica
gel-dried leaves using the DNeasy Plant Mini Kit (Tiangen
Biotech Co., LTD., Beijing, China) or a standardized CTAB-
protocol (Doyle and Doyle, 1987). Following quantity checks and
library preparations, paired-end sequencing was carried out on
Illumina HiSeq 2000 or HiSeq X TEN at the Plant Germplasm
and Genomics Center (Kunming Institute of Botany, Chinese
Academy of Sciences). A genome skimming sequencing
approach was employed. Table S1 provides original collection
location, herbarium voucher information, GenBank accession
numbers, as well as the read characteristics for all taxa discussed
in this study.

Plastome Assembly and Annotation
Plastomes were assembled using GetOrganelle v1.6.1a with
default settings, which filtered plastid-like reads, conducted the
de novo assembly, purified the assembly graph, and generated the
complete plastomes (Camacho et al., 2009; Bankevich et al., 2012;
Langmead and Salzberg, 2012; Jin et al., 2019). K-mer gradients
were set according to the sequenced read lengths as “-k
21,31,41,51,65,85,91,95,99,101,111,121,127” for 150 bp reads;
“-k 21,31,41,51,61,71,81,85,87” were used for 90 bp reads. Final
assembly graphs were visualized in Bandage (Wick et al., 2015) to
confirm the automatically generated plastomes. Two
configurations of each plastome caused by the flip-flop
recombination mediated by the IR or the ~1.2 kb sIR (short
Inverted Repeat regions) were obtained, and one of them was
arbitrarily selected for downstream analysis (Walker et al., 2015).
All plastomes were initially annotated using PGA (Qu et al., 2019)
and GeSeq (Tillich et al., 2017), with the annotated plastome of
Amborella trichopoda (NC_005086) (Goremykin et al., 2003)
selected as the reference. For confirmation, all annotations were
compared with the previously published plastome of Byrsonima
coccolobifolia (NC_037191; Malpighiaceae; Menezes et al., 2018)
and manually examined in Geneious Prime (https://www.
geneious.com). All newly sequenced plastomes were deposited
in GenBank under accession numbers MN504788–MN504797.

Phylogenetic Analysis
Phylogenetic analysis was performed using 71 protein-coding
genes, which were shared by all study species (Table S2). Gene
sequences were extracted using get_annotated_regions_from_gb.py
(https://github.com/Kinggerm/PersonalUtilities, accessed on July
June 2020 | Volume 11 | Article 942
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30, 2019; Zhang et al., 2020), aligned individually using prank
v.140603 (Loytynoja and Goldman, 2008), then concatenated into a
single aligned dataset using concatenate_fasta.py (https://github.
com/Kinggerm/PersonalUtilities, accessed on July 30, 2019; Zhang
et al., 2020). To reconstruct the phylogenetic relationships
among our taxa, we employed RAxML v.8.2.11 (Stamatakis,
2014) with “-m GTRGAMMA”, which performs tree searches
and optimization under the maximum likelihood paradigm. For
statistical support, we ran 1,000 bootstrap replicates, and visualized
the results in FigTree v.1.4.4 (http://tree.bio.ed.ac.uk). We mapped
the events manually, facilitated by the small size of the data set,
assuming that pseudogenization, gene loss, and IR loss are
irreversible events.

Plastome Structural Rearrangements
To build whole plastome alignments for the putranjivoid clade,
and the two Balanops species, we used the progressiveMauve
algorithm in Mauve v2.3.1 (Darling et al., 2010) with default
settings. The IRB was removed from plastid genomes with two
copies of the large inverted repeats to allow for an optimal
homology assessment (Wicke et al., 2013). Based on the strand
orientation of the Locally Collinear Blocks (LCBs) identified by
the progressiveMauve alignment, strand orientation determines
the sign (+/-). Compared with the references, each LCB was
numbered. Subsequently, we used GRIMM (Tesler, 2002) to
calculate genome rearrangement distances.

Number of Repeats
Dispersed repeats (including forward, reverse, complement,
and palindromic repeats) were identified by REPuter (Kurtz
et al., 2001) based on the following criteria: minimum repeat
size ≥ 30 bp; sequence identities ≥ 90%; Hamming distance = 3.
Again, the IRB was removed, where present. REPuter overestimates
the number of repetitive elements in a given sequence by
recognizing nested or overlapping repeats within a given region
containing multiple repeats (Wang et al., 2018). The FindRepeats
plugin of Geneious Prime was also used to identify repeated regions
using a minimum repeat length of 30 bp and zero mismatches.

Confirmation of 271 bp
sIR-Induced Isomers
sIR range from 11 bp to several kbs in plastomes and are
capable of inducing plastomic inversions and isomer (Martin
et al., 2014; Wang et al., 2018). As sIR can potentially induce
isomers, we used the library information of paired-end reads to
confirm the existence of each potential isomers in Lophopyxis
maingayi. We mapped the paired-end reads to the plastome
sequence of each isomer, visually inspected the mapped read
pairs in Geneious, and verified the existence of properly-
mapped read pairs spanning the entire sIR. An isomer with
read pairs spanning the entire sIR was supported to exist.
Specifically, we firstly conducted read mapping using the
evaluate_assembly_using_mapping.py script from the
GetOrganelle toolkit, which calls Bowtie2 (Langmead and
Salzberg, 2012). Because of the relatively short average insert
size (Table S1), most read pairs are too short in insert size for
providing confirmation and hampered visual inspection. For
Frontiers in Plant Science | www.frontiersin.org 3
better visualization, we filtered the alignment using SAMtools
(Li et al., 2009) by keeping records with an insert size between
330 and 600. Finally, we imported the filtered alignment file
(*.sam) into Geneious Prime, turn on the “Layout-Link paired
reads”mode and checked whether there are read pairs spanning
the entire sIR.
RESULTS AND DISCUSSION

Due to the differences in plant materials, the average base coverages
of plastomes varied from 72 x to 640 x (Table S1). However, all ten
newly assembled plastomes were complete. Plastomes from the
putranjivoid clade are relatively small compared to their sister
family Balanopaceae (Figure 1; Table 1). Variation in plastome
size of the sampled putranjivoid sepcecies was small: Drypetes
hainanensis has the smallest plastome with a length of 119,105
bp, while Drypetes lateriflora has the largest plastome with a length
of 120,800 bp.

Across autotrophic flowering plants, the content of IRs nearly
universally includes all 4 rRNA genes, 7 tRNA genes, and a small
number of protein genes (Mower and Vickrey, 2018). Plastomes
of all studied putranjivoid species have lost a copy of the inverted
repeat, namely IRB (Figure 1, Figure 2; Table 1), which led to the
observed significant reduction of their overall plastome size. All
sampled putranjivoid species have lost the same segment of IRB

including 4 rRNA genes, 7 tRNA genes, and several protein
coding genes (rps12, rps7, ndhB, ycf2, rpl23, and rpl2). Their
plastome sizes were slightly varied due to the differences in
intergenic regions. However, not all inversions are shared by L.
maingayi and Drypetes species (Figure 1, Table 2).

To our knowledge, the IR loss event in the putranjivoid clade
represents the fifth reported IR loss of autotrophic flowering
plants. Among the five IR losses, the putranjivoid clade and
Tahina spectabilis have lost IRB (Barrett et al., 2016), while the
IR-lacking legumes (Palmer and Thompson, 1981; Palmer and
Thompson, 1982), C. gigantea (Sanderson et al., 2015), and some
Erodium species (Guisinger et al., 2011; Ruhlman et al., 2017) all
have lost their IRA. Which copy of IR has been lost seems to be a
stochastic phenomenon. The two identical copies of the IR
contain the same genes. None of the IR-lacking lineages,
including all putranjivoid species, exhibits an impaired
phenotype or habits (Blazier et al., 2016). Therefore, we may
conclude that for those lineages one copy per IR-gene seems to be
sufficient to support the overall function of the plastid.

The plastomes of Balanopaceae, one of the closest relatives
of the putranjivoid clade, possess a canonical IR structure and
a relatively conserved gene content and organization, which
resembles those of the supposed ancestral angiosperm
plastome (Ruhlman and Jansen, 2014). However, the plastomes
of the putranjivoid clade have experienced significant gene
content changes (Table 1; Figure 2). All examined plastomes
from the putranjivoid clade lack intact accD, rps7, rps16, and ycf1
genes (Figure 2), and all examined Putranjivaceae plastomes
have one copy of the ycf2 gene lost or became a pseudogene. The
rpl20 gene was inferred to be a pseudogene due to the presence of
June 2020 | Volume 11 | Article 942
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FIGURE 1 | Plastid genomes of three species of Malpighiales representing three genera involved in this study. GC content graphs are shown as dark gray bars toward the
center of each diagram. Each Locally Collinear Block (LCB) was indicated in the circular map, as well as the ~12kb short Inverted Repeat (sIR) and 271bp sIR.
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internal stop codons in the plastomes of D. similis and D. indica
(Figure S1). Drypetes diopa, D. chevalieri, and D. longifolia
lost the rpl32 gene independently, and the rpl32 gene of D.
hainanensis was a pseudogene due to internal stop codons
(Figure S2). The loss of rps16 is common in angiosperm
plastomes (Jansen et al., 2007). A study in Medicago truncatula
(Leguminosae) and Populus alba (Salicaceae) showed that the
Frontiers in Plant Science | www.frontiersin.org 5
rps16 gene was lost in both species. However, the function of the
plastid rps16 was compensated by a nuclear-encoded rps16 in
both species (Ueda et al., 2008). The loss of accD in Trifolium
species has been achieved by relocation to the nucleus (Magee
et al., 2010). Two previous studies (Bedoya et al., 2019; Jin et al.,
2020) suggested the uncommon loss or pseudogenization of ycf1
and ycf2 in Podostemaceae. Our results also suggested the loss or
pseudogenization of ycf1 in the putranjivoid clade, and the loss
or pseudogenization of ycf2 in Putranjivaceae. Moreover, all
putranjivoid species lack both clpP introns, and L. maingayi
lacks the typical introns in atpF and rps12 (Figure 2). Previous
studies indicated the loss of rps12 and clpP introns in various
TABLE 1 | Plastome features of 10 Malpighiales species.

Species Plastome
size (bp)

IR
size
(bp)

Number
of

unique
genes*

sIR
(bp)

Estimated
rearrangement

distance†

Drypetes chevalieri 119,720 n.a. 106 1,398 7
Drypetes diopa 119,299 n.a. 106 1,357 7
Drypetes hainanensis 119,105 n.a. 106 1,191 7
Drypetes indica 120,596 n.a. 106 1,047 7
Drypetes lateriflora 120,800 n.a. 107 1,484 7
Drypetes longifolia 119,268 n.a. 106 1,260 7
Drypetes similis 119,507 n.a. 106 1,221 7
Lophopyxis maingayi 119,741 n.a. 109 271 3
Balanops balansae 160,930 26,748 112 np –

Balanops pedicellata 160,765 26,738 112 np –
*Number of unique genes refers to unique gene number within the whole plastome.
†Gene order changes were calculated relative to references (Balanops).
bp, basepair; IR, inverted repeat; n.a., not applicable due to no IR pair; sIR, short inverted
repeat that might have induced isomers; np, not present.
FIGURE 2 | Gene losses or pseudogenes in the plastomes of the putranjivoid clade. Based on the phylogenetic tree, we mapped the events of gene and intron
losses, as well as the event of the inverted repeat (IR) loss. Branch lengths correspond to substitutions per site.
TABLE 2 | Permutations and Locally Collinear Blocks (LCB).

Species Gene order

Balanops balansae 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
Balanops pedicellata 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
Lophopyxis maingayi 1, 2, 3, 4, -6, -5, 7, 8, 9, 10, -13, 11, 12
Drypetes chevalieri 1, 13, -10, 9, -8, 6, 7, -5, -4, 3, -2, 11, -12
Drypetes diopa 1, 13, -10, 9, -8, 6, 7, -5, -4, 3, -2, 11, -12
Drypetes hainanensis 1, 13, -10, 9, -8, 6, 7, -5, -4, 3, -2, 11, -12
Drypetes indica 1, 13, -10, 9, -8, 6, 7, -5, -4, 3, -2, 11, -12
Drypetes lateriflora 1, 13, -10, 9, -8, 6, 7, -5, -4, 3, -2, 11, -12
Drypetes longifolia 1, 13, -10, 9, -8, 6, 7, -5, -4, 3, -2, 11, -12
Drypetes similis 1, 13, -10, 9, -8, 6, 7, -5, -4, 3, -2, 11, -12
Negative numbers indicate a change of strand orientation.
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legume lineages (Jansen et al., 2008; Wang et al., 2018). Recent
studies on Podostemaceae also found the loss of both introns of
clpP in riverweeds (Bedoya et al., 2019; Jin et al., 2020). The loss
of the atpF intron was found not only in Lophopyxis maingayi,
but also in members of Euphorbiaceae, Phyllanthaceae,
Elatinaceae, and Passifloraceae of Malpighiales (Daniell et al.,
2008). However, the mechanisms responsible for the intron
losses remain elusive.

Plastomes of the putranjivoid clade have experienced notable
structural reorganizations. Our progressiveMauve plastomes
alignment of the putranjivoid clade with Balanops as references
identified 13 syntenic regions (Figures 1 and 3, Figures S3 and S4;
Table 2). Genes or intergenic regions located in each LCB were
identified (Table 3). Plastomic rearrangement distances were
estimated based on the LCB orientations. The plastome of L.
maingayi showed fewer rearrangements than those of
Putranjivaceae species (Figure 3), as reflected in a lower genome
rearrangement distance of 3 for L. maingayi but a higher genome
Frontiers in Plant Science | www.frontiersin.org 6
rearrangement distance of 7 for the Drypetes species (Table 1). In
L. maingayi, an inversion altered the syntenic blocks (4) (5) (6) (7)
into (4) (-6) (-5) (7). LCB (5) and (6) corresponded to a 7.5-kb
region between atpB and trnL-UAA. The order of the LCBs (10)
(-13), (-13) (11), and the disruption of the adjacency of blocks (12)
(13) were also the results of a translocation of LCB (13). LCB (13)
corresponds to a 2-kb region spanning from the rpl23 to the rpl2
gene. Alternatively, a reasonable explanation for the changes
around LCB (13) is that the rpl23 and rpl2 genes located in IRA

were lost, while the identical though inverted copies of these two
genes from IRB remained intact. Plastomes of all Drypetes species
shared all inversions (Figure 3, Figure S3, and Figure S4). One
optimal reversal (means rearrangement event such as inversion)
scenario included 7 inversion events, which means the minimum
number of inversions required for transforming in gene order from
a Drypetes plastome to a Balanops plastome is 7.

IRs are thought to play a role in stabilizing the plastome
(Maréchal and Brisson, 2010). This hypothesis is based on the
FIGURE 3 | Plastid genome variation in the putranjivoid clade. Whole-plastome alignments divide the plastid genome of our study taxa into 13 Locally Collinear
Blocks (LCB), which are shown as color-coded representations of syntenic regions. The IRB was removed from plastid genomes with two copies of the large
inverted repeats to allow for an optimal homology assessment. Blocks below the horizontal central line represent inversions relative to the references, shown as the
upper two taxa. The height of the colored region within a block reflects the average sequence identity relative to the reference. Species names are color-coded to
indicate their family: Balanopaceae (black), Lophopyxidaceae (blue), and Putranjivaceae (purple). The pink blocks in both Balanops species indicate the IR regions.
Red blocks represent rrn5, rrn4.5, rrn23, and rrn16 genes, green blocks represent trnA-UGC and trnI-GAU genes.
June 2020 | Volume 11 | Article 942
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fact that legume and conifer plastomes, which have no IRs, also
show more rearrangements than plastomes containing canonical
IRs (Palmer and Thompson, 1982; Hirao et al., 2008; Mower and
Vickrey, 2018). The putranjivoid clade is another solid example
that increased structural variations coincide with the loss of the
IRs. However, species in a lineage of Erodium, which also have no
IRs, still exhibit a conserved overall plastome structure,
resembling those of IR-containing species (Blazier et al., 2016).
In contrast, many species of Geranium and Pelargonium
(Chumley et al., 2006; Guisinger et al., 2011; Röschenbleck
et al., 2016; Weng et al., 2016) and Campanulaceae (Haberle
et al., 2008), some of which have canonical though expanded IRs,
possess highly rearranged plastomes. These cases suggest that
further comparative study is needed to elucidate the function of
IRs in stabilizing plastome structure.

An emerging consensus is that the presence of smaller
repeats, rather than the loss of the IRs, is a major driver of
plastome rearrangements (Mower and Vickrey, 2018). In the
putranjivoid clade, we observed an obvious tendency that
plastomes with more genomic rearrangements were also richer
in repeats of 30 bp or more (Table 4). The number of short
repeats are the largest in the Drypetes plastomes. While the
Balanops plastomes, which are the most conserved ones have the
fewest number of repeats. Furthermore, more rearrangement
events also coincide with the presence of longer repeats (Table
4). Being the most rearranged, all Drypetes plastomes do possess
a pair of sIRs with the length of more than 1,000 bp. As the only
case that sIR induced gene duplication found in our study, all
Drypetes species have two copy of two genes, psbK and trnQ-
UUG, due to the ~1.2kb sIR. Typical IRs in plastomes trigger
intra-plastomic homologous recombination, which generates
Frontiers in Plant Science | www.frontiersin.org 7
two isomeric plastomes in equimolar abundance (Palmer,
1983; Martin et al., 2014). Multiple studies have detected
isomeric plastome structures caused by sIR in several conifers
and legumes (Tsumura et al., 2000; Wu et al., 2011; Yi et al., 2013;
Qu et al., 2017; Wang et al., 2018). We also confirmed the
existence of isomers induced by a pair of 271 bp sIRs in L.
maingayi (Figure S5). Based on our findings, we conclude that
smaller repeats indeed have played a role in enhancing plastome
structural variation in the putranjivoid clade.
DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in the
GenBank Database, MN504788–MN504797.
AUTHOR CONTRIBUTIONS

T-SY, J-JJ, and D-MJ designed the study. T-SY, J-BY, and D-MJ
contributed to tissue sample collections, experiments, and
sequences. D-MJ, J-JJ, and LG assembled the plastomes. D-MJ
and J-JJ conducted the analysis. D-MJ, T-SY, SW, and J-JJ wrote
and edited the manuscript; all authors commented on
the manuscript.
FUNDING

This project was funded by grants from the Strategic Priority
Research Program of the Chinese Academy of Sciences
(XDB31010000); the Large-scale Scientific Facilities of the
Chinese Academy of Sciences (No. 2017-LSF-GBOWS-02); the
National Natural Science Foundation of China [key international
(regional) cooperative research project No. 31720103903]; and
the open research project of “Cross-Cooperative Team” of the
Germplasm Bank of Wild Species, Kunming Institute of Botany,
Chinese Academy of Sciences.
TABLE 3 | Genes in Locally Collinear Blocks (LCB) identified using
ProgressiveMauve alignment for plastomes of the putranjivoid clade.

LCB Genes

1 trnH-GUG, psbA, trnK-UUU, matK
2 psbI, psbK, trnQ-UUG
3 trnS-GCU, trnG-UCC, trnR-UCU, atpA, atpF, atpH, atpI, rps2, rpoC2,

rpoC1, rpoB, trnC-GCA, petN, psbM, trnD-GUC, trnY-GUA, trnE-UUC,
trnT-GGU, psbD, psbC, trnS-UGA, psbZ, trnG-UCC, trnM-CAU, rps14,
psaB, psaA, ycf3, trnS-GGA

4 trnT-UGU, rps4
5 ndhC, ndhK, ndhJ, trnF-GAA, trnL-UAA
6 trnV-UAC, trnM-CAU, atpE, atpB
7 Intergenic region
8 petL, psbE, psbF, psbL, psbJ, petA, cemA, ycf4, psaI, accD, rbcL
9 petG, trnW-CCA, trnP-UGG, psaJ, rpl33, rps18, rpl20, rps12_5’exon, clpP
10 rps19_fragment, rpl22, rps3, rpl16, rpl14, rps8, rpl36, rps11, rpoA, petD,

petB, psbH, psbN, psbT, psbB
11 ndhF, rpl32, trnL-UAG, ccsA, ndhD, psaC, ndhE, ndhG, ndhI, ndhA,

ndhH, rps15, trnN-GUU, trnR-ACG, rrn5, rrn4.5, rrn23, trnA-UGC, trnI-
GAU, rrn16, trnV-GAC, rps12_3’exon, ndhB, trnL-CAA, ycf2

12 trnI-CAU
13 rpl23, rpl2, rps19_fragment
infA, rps7, rps16and ycf1were not included in the LCBs as they were not present in all of
the plastomes of the putranjivoid clade.
TABLE 4 | Number of repeats.

Number of
Repeats

Species Repeat Length/Numbers

30-60bp 60-100bp 100-500bp >1000bp
8 Balanops balansae 6 2 0 0
4 Balanops pedicellata 4 0 0 0
18 Lophopyxis maingayi 13 3 2 0
25 Drypetes chevalieri 19 3 2 1
23 Drypetes diopa 18 3 1 1
25 Drypetes hainanensis 18 3 3 1
37 Drypetes indica 20 10 6 1
26 Drypetes lateriflora 19 4 2 1
18 Drypetes longifolia 14 0 3 1
18 Drypetes similis 11 3 3 1
Ju
ne 2020 | V
olume 11 | A
rticle 942

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Jin et al. Putranjivoid Clade Plastome Evolution
ACKNOWLEDGMENTS

We thank the Missouri Botanical Garden for providing specimens
and theMolecular Biology Experiment Center, Germplasm Bank of
Wild Species in Southwest China for skillful laboratory assistance.
Frontiers in Plant Science | www.frontiersin.org 8
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpls.2020.00942/
full#supplementary-material
REFERENCES

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S.,
et al. (2012). SPAdes: a new genome assembly algorithm and its applications to
single-cell sequencing. J. Comput. Biol. 19 (5), 455–477. doi: 10.1089/
cmb.2012.0021

Barrett, C. F., Baker, W. J., Comer, J. R., Conran, J. G., Lahmeyer, S. C., Leebens-
Mack, J. H., et al. (2016). Plastid genomes reveal support for deep phylogenetic
relationships and extensive rate variation among palms and other commelinid
monocots. New Phytol. 209 (2), 855–870. doi: 10.1111/nph.13617

Bedoya, A. M., Ruhfel, B. R., Philbrick, C. T., Madriñán, S., Bove, C. P.,
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