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Across all facets of biology, the rapid progress in high-throughput data generation has
enabled us to perform multi-omics systems biology research. Transcriptomics,
proteomics, and metabolomics data can answer targeted biological questions
regarding the expression of transcripts, proteins, and metabolites, independently, but a
systematic multi-omics integration (MOI) can comprehensively assimilate, annotate, and
model these large data sets. Previous MOI studies and reviews have detailed its usage
and practicality on various organisms including human, animals, microbes, and plants.
Plants are especially challenging due to large poorly annotated genomes, multi-organelles,
and diverse secondary metabolites. Hence, constructive and methodological guidelines
on how to perform MOI for plants are needed, particularly for researchers newly
embarking on this topic. In this review, we thoroughly classify multi-omics studies on
plants and verify workflows to ensure successful omics integration with accurate data
representation. We also propose three levels of MOI, namely element-based (level 1),
pathway-based (level 2), and mathematical-based integration (level 3). These MOI levels
are described in relation to recent publications and tools, to highlight their practicality and
function. The drawbacks and limitations of these MOI are also discussed for future
improvement toward more amenable strategies in plant systems biology.

Keywords: bioinformatics, co-expression analysis, correlation, k-means clustering, machine learning, multivariate
analysis, pathway mapping, modeling
INTRODUCTION

The acquisition of multi-omics data sets has become an integral component of modern molecular
biology and biotechnology. This is due to technological advancements, such as the next-generation
sequencing technology (Illumina, PacBio, and Nanopore) and mass spectrometry coupled with gas-
and liquid chromatography, which offer high-throughput data generation (Fondi and Liò, 2015).
The core data sets of systems biology are transcriptomics, proteomics, and metabolomics, providing
the expression levels of transcripts, proteins, and metabolites, respectively (Aizat et al., 2018a). The
data generated from these platforms can be massive, often without clear connections between them.
For instance, it is nearly impossible to manually associate hundred thousands of transcripts to their
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respective proteins or metabolic pathways. In fact, the bottleneck
of omics research is considered as the biological/machine/human
resource allocation for data processing and integration (Palsson
and Zengler, 2010). What we need is a well-defined
methodological scheme for multi-omics integration (MOI) to
extract, combine, and critically associate different data sets to
allow researchers to decipher the seemingly complex biological
results at hand (Fondi and Liò, 2015; Hughes, 2015; Wang
et al., 2018).

MOI approach has been extensively studied and reviewed in
studies on human (Chen and Chen, 2019; Cho et al., 2019; Shetty
et al., 2019), animals (Garcıá-Sevillano et al., 2014), microbes
(Denman et al., 2018; Gutleben et al., 2018; Wang et al., 2019), and
their combinations (Wanichthanarak et al., 2015; Cavill et al.,
2016; Pinu et al., 2019). In comparison, MOI in plants has been
more difficult due to their metabolic diversity, poorly annotated
large genomes (particularly for non-model species), and the
presence of numerous symbionts with complex interaction
networks. Several comprehensive reviews are available
specifically on plant MOI (Fukushima et al., 2009; Fukushima
et al., 2014; Rajasundaram and Selbig, 2016; Rai et al., 2017; Rai
et al., 2019) and its practical usage in green systems biology,
precision plant breeding, and other biotechnological applications
(Weckwerth, 2011; Weckwerth, 2019; Weckwerth et al., 2020).
However, the advancement of high-throughput technologies and
large omics data sets leading to big data biology can be
overwhelming, and perhaps an “Achilles' heel” for inexperience
researchers. Omics data from poorly characterized species are
often feed into software without proper manual curation and
oblivious of the limitation of each technology, which could result
in incorrect interpretations. Further, there are also a large
Frontiers in Plant Science | www.frontiersin.org 2
collection of software platforms, statistical rigor, and modeling
(Weckwerth, 2011; Pinu et al., 2019) which must be selected
appropriately by users, yet these can be viewed as extraneous to
untrained researchers. Hence, suitable methodological workflow
for MOI must be identified to ensure accurate large-scale data
analysis and representation. Previously, the different levels of MOI
have been summarized as “conceptual,” “statistical,” and “model-
based” integration (Cavill et al., 2016; Rai et al., 2017); instances of
such integration have been detailed elsewhere (de Oliveira
Dal'Molin and Nielsen, 2013; de Oliveira Dal'Molin and Nielsen,
2018; Seaver et al., 2018). Let us start from a critical review on the
previous three-level classification.

The “conceptual” integration refers to multiple omics data sets
being analyzed separately and are matched without further
statistical analysis. Even though this approach can produce
valuable insights, it may miss reproducible associations when
multiple omics data sets are analyzed together (Cavill et al., 2016;
Rai et al., 2017). We therefore argue that the conceptual integration
is an arbitrary connection without proper analysis and should not
be considered a part of MOI approach. Instead, we re-classify the
“statistical” integration where statistical associations are sought
between elements from different data sets (Cavill et al., 2016; Rai
et al., 2017). The effective use of prior knowledge is separated as the
pathway-based integration from unbiased, element-based
integration. Finally, “model-based” integration is also re-classified
so that qualitative reconstruction of biological pathways or
systematic regulatory pathways is separated from their
quantitative, mathematical evaluation to generate working models
for hypothesis testing (Thiele and Palsson, 2010; Rai et al., 2017).

Thus, we re-define the MOI workflow into three main
integration levels (levels 1 to 3) with increasing complexity
FIGURE 1 | Current approaches in multi-omics integration (MOI) of plant systems biology. This MOI strategy is classified into three main levels with increasing
degrees of complexity.
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(Figure 1). Level 1 is the unbiased, “element-based” integration
with three subclasses: correlation, clustering, and multivariate
analyses. Level 2 is the knowledge-based “pathway” integration,
which includes co-expression and mapping-based approaches.
Finally, level 3 is the “mathematical” integration with two
subclasses, namely, differential and genome-scale analyses. The
three levels are discussed in relation to recent omics reports from
the year 2014 to 2020 (Table 1) gathered from comprehensive
literature searches, including Web of Science, Scopus, and
Google Scholar databases providing an updated comprehensive
overview of MOI applications in various plant systems.
Furthermore, this review focuses on expression-based omics
from transcriptomics, proteomics, and metabolomics to further
clarify strategies taken to integrate such large-scale expression
data (transcript, protein, and metabolite).
LEVEL 1 MOI: ELEMENT-BASED
APPROACH

Correlation Analysis
The first level of MOI is an element-based integration approach
specifically using correlation analysis (Figure 1). The advantage of
this integration is its simplicity and intuitiveness. The standard
approach is correlative association between two or more different
omics data sets (i.e., transcriptomics, proteomics, and
metabolomics data sets). Such analysis is performed using
Pearson's (Benesty et al., 2009) and Spearman's correlation
coefficients (Myers and Sirois, 2004), which assess linear and
ranked relationships, respectively. Other studies also analyzed
their omics data sets using Fisher's transformation to transform
skewed data sets to normally distributed data for calculating
corresponding correlation coefficients (Mata et al., 2018). In
general, significant positive or negative coefficient suggests strong
direct or inverse relationship between data sets, respectively.

Correlation-based MOI has been performed between
transcripts and their cognate proteins. Such analysis is
straightforward, assuming that differential expression of
transcripts will also be observed at their translational (protein)
level. However, this is often not the case, most studies reported
weak correlations (different patterns) between transcript-protein
levels. For instance, salt treatment on salt-tolerant Earlistaple 7
and salt-sensitive Nan Dan Ba Di Da Hua cotton revealed scarce
correlation (r=0.03) between transcript and corresponding protein
patterns, regardless of genotypic background (Peng et al., 2018).
Another example includes methyl jasmonate (MeJA) stress
hormone treatment on Persicaria minor Huds. herbal plants,
with poor overall proteome-transcriptome correlation (r=0.341)
(Aizat et al., 2018b). Similarly, transcripts and proteins related to
ethylene pathway (ethylene receptors [ETRs] and downstream
signaling proteins, constitutive triple response-like proteins
[CTRs], and ethylene insensitive 2 [EIN2]) were not well
correlated during the ripening process of tomato (Solanum
lycopersicum) (Mata et al., 2018). This suggests the existence of
post-transcriptional and post-translational regulation (such as
proteasomal degradation) for the majority components of stress
Frontiers in Plant Science | www.frontiersin.org 3
and ripening pathways. Despite transcriptome can be weakly
correlated to proteome, it serves as an excellent database for
protein identification in proteomics informed by transcriptomics
approach for non-model plants (Aizat et al., 2018b; Wan Zakaria
et al., 2019) as well as studying allele-specific expression (van
Wesemael et al., 2018).

On the other hand, an interesting emerging pattern arises
when transcript-protein is compared between specific protein
groups. For example, significantly upregulated proteins were
positively correlated with their cognate transcripts in the stress
response of various plants (Ye et al., 2017; Aizat et al., 2018b).
Specifically, proteins related to defense such as proteases and
peroxidases in MeJA-treated P. minor (Aizat et al., 2018b) and
secondary metabolite biosynthesis such as flavonoid in
phytoplasma-infected Ziziphus jujuba Mill. leaf (Ye et al.,
2017) were upregulated coherently with their transcripts. This
may suggest the concerted molecular upregulation of defense-
related proteins to overcome stress signals and infection.
Meanwhile, proteins related to growth such as photosynthetic
and structural proteins were significantly suppressed in these
studies, perhaps as a response toward the stress signal to
conserve energy and recycling molecular resources (Ye et al.,
2017; Aizat et al., 2018b). Interestingly, such downregulation was
mainly observed at the protein level, but not the transcript level
(Aizat et al., 2018b), perhaps as a mechanism to quickly resume
protein synthesis, when the stress is relieved. However, we could
not rule out the possibility that changes at both transcript and
protein levels are not simultaneous. Even when sampling of both
is done at the same time, the translational and post-translational
degradation and modification rates may differ among proteins.
However, this is often unpredictable from the genome sequences
alone (Weckwerth, 2019; Weckwerth et al., 2020), convoluting
meaningful and direct interpretation between expression data.

While comparisons between transcripts and corresponding
proteins are generally performed in multi-omics studies,
correlation of these two with metabolites are relatively fewer.
Perhaps, one such recent example is the transcriptomics and
metabolomics investigation of Ginkgo biloba during leaf
maturity process (Guo et al., 2020). Correlation analysis was
performed in this study between all differentially expressed
transcript (DET) and metabolites (DEM), however with no
regard for their biochemical pathway relationships. While this
study may be interested only in the pattern consistency between
DET andDEM, the corresponding biochemical pathway should be
considered before such correlation is performed. Importantly,
metabolites should be classified as either being substrates or
products of certain enzymatic pathways to be accurately
correlated with their corresponding transcripts/proteins. This
has been performed by Silva et al. (2017) for transcripts and
associated metabolites to elucidate primary metabolism in
Arabidopsis seed germination and growth.

Clustering Analysis
Clustering analysis allows grouping of omics data sets with similar
attribute such as expression levels to deduce underlying
associations and patterns. There are two main approaches in
clustering, either hierarchical such as HCA (hierarchical cluster
June 2020 | Volume 11 | Article 944
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TABLE 1 | Summary of recent publications and their tools and methods used in the three different levels of multi-omics integration (MOI).

Integration type Organisms Common
name

Study purpose Transcriptomics Proteomics Metabolomics Method/
Software

Reference

Level 1 (Element-based approach)

Correlation Arabidopsis thaliana Thale cress Seed
germination and
seedling growth

Yes N/A Yes Pearson Silva et al., 2017

Gossypium
hirsutum

Upland
cotton

Salt tolerance Yes Yes N/A Pearson Peng et al., 2018

Persicaria minor Kesum MeJA treatment Yes Yes N/A Pearson Aizat et al., 2018b
Solanum
lycopersicum

Tomato Fruit ripening Yes Yes N/A Fisher
transformation

Mata et al., 2018

Zizipus jujuba Jujube red
dates (leaf)

Bacterial
(phytoplasm)
infection

Yes Yes N/A Spearman Ye et al., 2017

Ginkgo biloba Ginkgo Age (young and
mature leaf)

Yes N/A Yes Pearson Guo et al., 2020

Clustering Solanum
lycopersicum

Tomato Pollen
development

Yes Yes N/A k-means
(MEV)

Keller and Simm, 2018

Solanum
tuberosum

Potato Network
construction for
traits prediction

Yes Yes Yes Random
Forest
regression

Acharjee et al., 2016

Theobroma cacao Cacao Seed
development

N/A Yes Yes k-means Wang et al., 2016

Vitis vinifera Grapevine Fruit
development
and ripening

N/A Yes Yes k-means Wang et al., 2017

Multivariate Persea americana Hass
avocado

Heat shock
treatment

N/A Yes Yes DIABLO
(mixOmics in
R)

Uarrota et al., 2019

Populus sp. Aspen Wood formation Yes Yes Yes OnPLS Obudulu et al., 2018
Zea mays Maize Herbicide

tolerance
N/A Yes Yes MCIA in R Mesnage et al., 2016

Zea mays Maize Lipid
biosynthesis

Yes N/A Yes GFLASSO De Abreu E Lima et al.,
2018

Level 2 (Pathway-based approach)

Pathway mapping Arabidopsis thaliana Thale cress Plastidial
retrograde
signaling

Yes Yes Yes PathVisio Bjornson et al., 2017

Glycine max Soybean Fungal infection Yes N/A Yes KEGG Zhu et al., 2018
Glycine max Soybean Nematode

infection
Yes N/A Yes KEGG Kang et al., 2018

Quercus ilex Holm Oak Pathway
reconstruction
using multi-
tissues

Yes Yes Yes MapMan López-Hidalgo et al.,
2018

Persicaria minor Kesum MeJA response Yes N/A Yes KEGG Rahnamaie-Tajadod
et al., 2017; Rahnamaie-
Tajadod et al., 2019

Santalum album Sandalwood Santalol
(sesquiterpene)
biosynthesis

Yes Yes N/A KEGG Mahesh et al., 2018

Co-expression Citrus sinensis Sweet
orange

Fungal
tolerance

Yes N/A Yes Cytoscape He et al., 2018

Vitis vinifera White
grapes

Water deficit
treatment

Yes N/A Yes WGCNA,
Cytoscape

Savoi et al., 2016; Savoi
et al., 2017

Zea mays Maize Maize
development

Yes Yes N/A WGCNA Walley et al., 2016

Zea mays Maize Maize
development

Yes Yes N/A Weighted
interaction
network

Jiang et al., 2019

(Continued)
Frontiers in Plant Sc
ience | www.frontiers
in.org
 4
 June 2020 |
 Volume 11 | Article 944

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Jamil et al. Systematic Multi-Omics Integration in Plants
analysis) or non-hierarchical methods. However, the latter
approach (non-hierarchical) is more applicable in the
integration of multiple omics especially using machine learning
algorithms, such as the k-means clustering and random forest (Ma
et al., 2014; Silva et al., 2019). k-means clustering groups available
data points (in this case from the omics expression data) such that
clear, distinctive groupings emerge to differentiate expression
patterns. Meanwhile, random forest classifies a group of genes/
proteins/metabolites based on prior training data sets (from omics
experiments) to associate them to a particular characteristic/trait
of interest (Ma et al., 2014). These techniques have been used
widely in plant multi-omics research.

For instance, Keller and Simm (2018) reported two modes of
protein translation when comparing transcriptome and proteome
of tomato pollen development under either control or heat stress
condition. The study employed the k-means clustering approach
(Table 1), which clustered expressed transcripts and proteins to
different clusters according to developmental stages. This has
revealed the underlying mechanism for protein translation; one
that significantly correlated between transcript-protein pair at one
particular stage (direct translation) or if certain proteins were only
differentially expressed in the next stage after their corresponding
DET at one stage (delayed translation). The latter phenomenon
may explain the weak correlation between transcript-protein pairs
at certain stages of pollen development, primarily those proteins
related to carbohydrate and energy metabolism. Furthermore,
Frontiers in Plant Science | www.frontiersin.org 5
upon heat stress, heat-shock proteins were regulated mostly at
the translational level (synthesis and degradation) rather than
transcription, suggesting immediate plant response toward
stresses (Keller and Simm, 2018).

In addition, k-means clustering approach has also been used
to integrate proteomics and metabolomics (Table 1) from
developing cacao seeds (Wang et al., 2016) and grape fruits
(Wang et al., 2017). Such integration successfully identified
stage-specific clusters, whereby secondary metabolites such as
flavonoids were found concomitantly increased with the
upregulation of corresponding biosynthetic enzymes (Wang
et al., 2016; Wang et al., 2017). Interestingly, Granger causality
network analysis performed by Wang et al. (2017) on co-
regulated clusters further revealed significant time-shift
correlation between protein and metabolite pairs in grapes.
This suggests that protein abundance may be directly
responsible for metabolic modulation during fruit development
and ripening (Wang et al., 2017) highlighting the importance of
systematic MOI in elucidating key regulatory elements in plants.

In another study by Acharjee et al. (2016), a random forest
approach was utilized to cluster and correlate transcriptomics,
metabolomics, and proteomics data sets against certain potato
tuber phenotypic traits (flesh color, shape, starch gelatinization,
and discoloration after peeling). Interestingly, this study revealed
that the different omics was associated strongly with the different
tuber traits (Acharjee et al., 2016). For example, traits related to
TABLE 1 | Continued

Integration type Organisms Common
name

Study purpose Transcriptomics Proteomics Metabolomics Method/
Software

Reference

Level 3 (Mathematical-based approach)

Differential Arabidopsis thaliana Thale cress Cold stress Yes N/A Yes (in silico
predicted)

Metabolite-
Centric
Reporter
Pathway
Analysis
(RPAm)

Koç et al., 2018

Solanum
lycopersicum

Tomato Modeling
protein changes
during ripening

Yes Yes N/A ODE Belouah et al., 2019

Populus trichocarpa Poplar Lignin
biosynthesis

Yes Yes Yes ODE Wang et al., 2018a

Vitis vinifera Grape Anthocyanin
biosynthesis

N/A Yes
(enzymatic
assays)

Yes FBA Soubeyrand et al., 2018

Genome-scale Arabidopsis thaliana Thale cress Growth
hormone flux
via root

Yes Yes N/A PlantSEED Scheunemann et al.,
2018

Brassica napus Rapeseed Seed
development

Yes N/A Yes bna572+
database and
FVA

Hay et al., 2014

Glycine max Soybean Development of
mature seed

Yes N/A Yes PMR and
MetNetDB

Li et al., 2015

Setaria italica Foxtail millet C4 plant
metabolism

Yes Yes Yes C4GEM de Oliveira Dal'Molin
et al., 2016

Zea mays Maize Leaf
development

Yes N/A Yes CornCyc 4.0,
MetaFlux

Bogart and Myers, 2016
June 2020 |
MeJA, methyl jasmonate; N/A, not applicable/available; DIABLO, Data Integration Analysis for Biomarker discovery using a Latent component method for Omics studies; FBA, flux balance
analysis; FVA, flux variability analysis; GFLASSO, graph-guided fused least absolute shrinkage and selection operator; KEGG, Kyoto Encyclopedia of Genes and Genomes; MCIA, multiple
co-inertia analysis; MEV, Multiple Experiment Viewer; OnPLS, orthogonal projections to latent structures; ODE, ordinary differential equation; PMR, Plant/Eukaryotic and Microbial
Metabolomics Systems Resource; WGCNA, Weighted Gene Co-expression Network Analysis.
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color were more likely to be correlated to metabolite data (such
as carotenoids) whereas tuber shape was influenced strongly by
transcripts related to size. This implies that certain omics are
more suited to reveal the underlying mechanism of a certain
phenotypic or experimental condition. Hence, it is important to
choose the most suitable omics platform for any investigation,
especially those related to phenotypic changes for relatable and
descriptive results.

Multivariate Analysis
Multivariate analysis can handle more complex omics data sets,
while allowing greater flexibility in experimental design and
metadata analysis (Rai et al., 2017). This approach enables the
user to predict different aspects or trends of data sets, including the
discovery of variance or covariance associations (Meng et al., 2014)
as well as investigating the dynamic relationships and topological
networks between transcript/protein/metabolite elements
(Weckwerth, 2019). Among the most common multivariate
techniques are principal component analysis (PCA), partial least
squares (PLS) and orthogonal projection to latent structures
discriminant analysis (OPLS-DA) (Mamat et al., 2018; Mazlan
et al., 2018; Reinke et al., 2018). Selecting different multivariate
techniques, optimal parameters, and model validation can be
overwhelming for new users, and hence several reading materials
on this topic provide excellent learning resources (Tabachnick
et al., 2007; Meng et al., 2014; Saccenti and Timmerman, 2016).

Recently, Obudulu et al. (2018) performed OnPLS (multiple-
block orthogonal projections to latent structures), an extension of
the OPLS technique, to integrate transcriptomics, proteomics, and
metabolomics of poplar transgenic plants lacking PttSCAMP3
(Populus tremula x tremuloides Secretory Carrier-Associated
Membrane Protein3) gene, potentially important for wood
development. Evidently, several biomarkers related to the wood
formation and secondary cell wall components have been
successfully documented using this approach. Other forms of
multivariate analyses, such as MCIA (multiple co-inertia analysis)
and GFLASSO (graph-guided fused least absolute shrinkage and
selection operator) have also been applied in multi-omics plant
studies. For instance, MCIA was used to integrate metabolome and
proteome of a near-isogenic maize line (control) and its transgenic
counterpart (glyphosate-tolerant maize, NK603) (Mesnage et al.,
2016). The study successfully identified metabolic differences
between the two, in particular, sugar metabolism and polyamine
biosynthesis (Mesnage et al., 2016). Another study in maize further
illustrates the use of multivariate analysis such as GFLASSO to
integrate transcriptome and metabolome in deciphering its lipid
biosynthesis (De Abreu E Lima et al., 2018).

Furthermore, the integration of proteomics and metabolomics
data of early and middle season Hass avocado using multivariate
dimension reduction discriminant analysis method, DIABLO
(Data Integration Analysis for Biomarker discovery using a
Latent component method for Omics studies) led to the
identification of correlated discriminatory variables that linked
the effect of heat treatment to ripening homogeneity (Uarrota
et al., 2019). Both of the omics data sets revealed noticeable
differences between early and middle season avocados after 1-
day heat treatment. Positive correlation was observed between
Frontiers in Plant Science | www.frontiersin.org 6
proteins and metabolites for treated middle season fruit
particularly those involved in nitrogen recycling and protein
degradation. This is perhaps due to carbon starvation induced
by the lower rate of glycolysis upon such treatment. This possibly
stimulated protein degradation to supply amino acids as substrates
for the TCA cycle. Furthermore, the heat treatment induced the
accumulation of sucrose, galactinol, and stress-related enzymes
which may contribute to the coherent ripening process in avocado
(Uarrota et al., 2019). These studies suggest that MOI using
multivariate analysis is an efficient strategy to classify and
associate various omics to reveal important findings and trends.

While this level 1 MOI proves to be useful in plant omics data
integration, these omics data sets are often analyzed numerically,
without emphasis on interacting partners or co-expressed
molecules as well as underlying biological pathways (or at least
this must be done manually at users' discretion). This may
impede further understanding of interrelated molecular
regulation between different omics and their biological
significance in plants upon certain treatments or conditions.
Hence, level 2 MOI, which is a pathway-based integration, will be
required for the next degree of omics data integration.
LEVEL 2 MOI: PATHWAY-BASED
APPROACH

Pathway Mapping
Pathway mapping is aimed to map omics data sets, either
transcriptome, proteome or metabolome to existing metabolic
pathway database. One prominent database used for plant
metabolic pathway reference is Kyoto Encyclopedia of Genes
and Genomes (KEGG; https://www.genome.jp/kegg/), but other
more organism-specific databases such as AraCyc for
Arabidopsis (https://www.arabidopsis.org/biocyc/), CitrusCyc
for citrus (https://www.citrusgenomedb.org/node/1136703),
and SolCyc for Solanaceae species (https://solgenomics.net/
tools/solcyc/index.pl) (Foerster et al., 2018) do exist. These
databases hold key information for pathway annotation and
the basis of a number of software available for MOI at the
pathway level (Table 2).

Some of these software tools include MapMan and PathVisio,
which have been used to study and integrate multi-omics data sets
from plants (Tables 1 and 2). For example, the integration of
transcriptome, proteome, and metabolome using MapMan
software allows the Holm oak (Quercus ilex) metabolic pathways
to be visualized and reconstructed (López-Hidalgo et al., 2018).
Evidently, these omics data sets were successfully mapped into 123
out of 127 available KEGG pathways, and pathways such as citrate
cycle were shown to be highly enriched in this study (López-
Hidalgo et al., 2018). Besides that, an integration between
transcriptomics, proteomics, and metabolomics was also
performed using PathVisio in the study of Arabidopsis signaling
mutant plants (Bjornson et al., 2017). This study revealed that the
mutant with a high level of methylerythritol cyclodiphosphate
compound perturbed numerous stress-response signaling
pathways, including biosynthesis of jasmonate and salicylate
June 2020 | Volume 11 | Article 944
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TABLE 2 | Summary of software tools and web applications for MOI in plant system (modified from Pinu et al., 2019).

Website Reference

/biocyc.org
/metacyc.org

Caspi et al., 2015

/modelseed.org/ de Oliveira Dal'Molin
et al., 2010

/opencobra.github.io/cobratoolbox Orth et al., 2010

www.univie.ac.at/mosys/software.html Sun and Weckwerth,
2012

/github.com/brianjamesschmidt/gim3e Schmidt et al., 2013

impala.molgen.mpg.de Kamburov et al., 2011

kpv.kazusa.or.jp/kpv4/ Sakurai et al., 2010

/kbcommons.org Zeng et al., 2019

/mapman.gabipd.org Schwacke et al., 2019

www.mixOmics.org Rohart et al., 2017

bioconductor.org/packages/release/bioc/
micade4.html

Meng et al., 2014
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Software Supported omics
platform

License type
(Vendor)

Functionality Supported
MOI level

BioCyc/MetaCyc • Genomics
• Transcriptomics
• Proteomics
• Metabolomics

Open source
(SRI International)

• Metabolic pathway prediction in
sequenced genome

2, 3 https:
https:

C4GEM • Transcriptomics
• Proteomics
• Metabolomics

Open source
(within ModelSEED)

• Metabolic modeling 3 https:

COBRA
(Constraint-based reconstruction
and analysis)

• Transcriptomics
• Proteomics
• Metabolomics
• Fluxomics

Open source
(within MATLAB)

• Genome-scale modeling 3 https:

COVAIN
(Covariance inverse)

• Transcriptomics
• Proteomics
• Metabolomics

Open source
(within MATLAB)

• Multivariate statistics
• Granger time-series analysis
• Network topology
• Pathway mapping

1, 2, 3 http://

GIM3E • Transcriptomics
• Metabolomics

Open source
(within COBRApy)

• Flux metabolites prediction 3 https:

IMPaLA
(Integrated molecular pathway
level analysis)

• Transcriptomics
• Proteomics
• Metabolomics

Open source • Enrichment analysis
• Pathway analysis

2 http://

KaPPA-View4 • Transcriptomics
• Metabolomics

Open source
(Kazusa DNA

Research Institute)

• Pathway mapping
• Data visualization

2 http://

KBCommons
(Knowledge Base Commons)

• Phenomics
• Epigenomics
• Genomics
• Transcriptomics
• Proteomics
• Metabolomics

Open source
(KBCommons)

• Universal framework for data
management and retrieval

2 https:

MapMan4 • Transcriptomics
• Proteomics
• Metabolomics

Open source • Enrichment analysis
• Visualization of data expression

2 https:

mixOmics • Metagenomics
• Transcriptomics
• Proteomics
• Metabolomics

Open source
(within R)

• Data integration
• Similarity relationship

1 http://

Omicade4 • Transcriptomics
• Proteomics
• Metabolomics

Open source
(within R)

• Analyze co-relationship between data
sets

1 http://
html/o
/
/

/

/

/

/

/

https://biocyc.org
https://metacyc.org
https://modelseed.org/
https://opencobra.github.io/cobratoolbox
http://www.univie.ac.at/mosys/software.html
https://github.com/brianjamesschmidt/gim3e
http://impala.molgen.mpg.de
http://kpv.kazusa.or.jp/kpv4/
https://kbcommons.org
https://mapman.gabipd.org
http://www.mixOmics.org
http://bioconductor.org/packages/release/bioc/html/omicade4.html
http://bioconductor.org/packages/release/bioc/html/omicade4.html
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TABLE 2 | Continued

Supported
MOI level

Website Reference

1, 2 https://apps.cytoscape.org/apps/
omicsanalyzer

Xia et al., 2010

on 1 https://github.com/hakyimlab/OmicKriging Wheeler et al., 2014

atistical 1 https://github.com/selbouhaddani/OmicsPLS Bouhaddani et al.,
2018

on
on

2 http://www.paintomics.org Hernández-de-Diego
et al., 2018

on 2 https://pathview.uncc.edu/ Luo et al., 2017

lization 2 https://pathvisio.github.io/ Kutmon et al., 2015

3 https://modelseed.org/ Seaver et al., 2018

ata 2 http://bioinfo.sibs.ac.cn/plant-regulomics/ Ran et al., 2020

2 https://www.cls.uni-konstanz.de/software/
vanted/

Hartmann and
Jozefowicz, 2018
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Software Supported omics
platform

License type
(Vendor)

Functionality

OmicsAnalyzer • Transcriptomics
• Proteomics
• Metabolomics
• Fluxomics

Open source
(within Cytoscape)

• Network mapping

Omickriging • Transcriptomics
• Proteomics
• Metabolomics
• Fluxomics

Open source
(within R)

• Data integration and visualizati

OmicsPLS • Metagenomics
• Transcriptomics
• Proteomics
• Metabolomics

Open source
(within R)

• Data integration and st
analysis

Paintomics3 • ranscriptomics
• Proteomics
• Metabolomics

Open source • Data integration and visualizati
• Pathway analysis and interacti

PathView • Transcriptomic
• Metabolomics

Open source • Data integration and visualizati

PathVisio 3 • Transcriptomics
• Proteomics
• Metabolomics

Open source • Pathway editor and data visua
• Pathway analysis

PlantSEED • Genomics
• Transcriptomic
• Metabolomics
• Fluxomics

Open source
(within ModelSEED)

• Metabolic reconstruction

Regulomics • Epigenomics
• Transcriptomics

Open source • Functional characterization of d
• Retrieve upstream regulators
• Data mining

VANTED
(Visualization and Analysis of
Network)

• Metagenomics
• Transcriptomics
• Proteomics
• Metabolomics

Open source (Java) • Metabolic mappings
• Correlation networks analysis

https://apps.cytoscape.org/apps/omicsanalyzer
https://apps.cytoscape.org/apps/omicsanalyzer
https://github.com/hakyimlab/OmicKriging
https://github.com/selbouhaddani/OmicsPLS
http://www.paintomics.org
https://pathview.uncc.edu/
https://pathvisio.github.io/
https://modelseed.org/
http://bioinfo.sibs.ac.cn/plant-regulomics/
https://www.cls.uni-konstanz.de/software/vanted/
https://www.cls.uni-konstanz.de/software/vanted/
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(Bjornson et al., 2017). This shows the practicality of these
software tools for elucidating and revealing the inherent
modulation of certain biochemical pathways in plant multi-
omics studies.

Other software such as IMPaLA (integrated molecular
pathway level analysis) (Kamburov et al., 2011), Paintomics
(Garcı ́a-Alcalde et al., 2010), and InCroMAP (integrated
analysis of cross-platform microarray and pathway data)
(Eichner et al., 2014) are also available (Table 2) but their
applications in plant MOI are limited. The principles of
integrating multi-omics vary between the tools used. For
example, PathVisio, Paintomics, and InCroMAP produce a
joint-pathway P-value by totalling the number of differentially
expressed components in each omics prior to combining them
with the total number of measured data sets (Cavill et al., 2016).
Other tools such as IMPaLA uses Fisher's method when
combining P-values from multiple tests of the same hypothesis
(Kamburov et al., 2011; Cavill et al., 2016). In the future, more
software and databases for specific plant species are expected to
be developed as metabolic pathways in different plants can be
unique and diverse.

On the other hand, it is also possible to reconstruct integrated
biochemical pathways manually without assistance from any of
these software tools. Canonical pathways from the available
databases such as KEGG can be reconstructed specifically for
any organism of interest, based on its annotated enzymes and/or
metabolites. Although this method is labor intensive, it proves to
be useful in elucidating targeted pathways. For instance, the
transcriptomics and metabolomics studies of soybean infected
with Phytophthora sojae fungus (Zhu et al., 2018) or cyst
nematode (Kang et al., 2018) revealed transcriptional and
metabolic modulation toward isoflavonoid and phenylpropanoid
biosynthetic pathways, respectively based on KEGG database.
These studies highlight the complex interplay and response
between plants and interacting rhizosphere. Another study using
KEGG pathway as a reference was reported for Persicaria minor
elicited with MeJA phytohormone (Rahnamaie-Tajadod et al.,
2017; Rahnamaie-Tajadod et al., 2019). These reports integrated
transcriptome and metabolome data sets into manually
reconstructed terpenoid and sesquiterpenoid biosynthetic
pathways specifically for this non-model plant (Rahnamaie-
Tajadod et al., 2017; Rahnamaie-Tajadod et al., 2019).
Additionally, santalol (sesquiterpene) biosynthesis from
sandalwood (Santalum album) was also successfully
reconstructed using multi-omics annotation to available KEGG
database (Mahesh et al., 2018). These studies suggest that manual
pathway reconstruction using available pathway databases is
possible for pathway-based MOI, albeit time-consuming.

However, it is to be noted that performing annotation for
pathway mapping across different species are often tricky. It is a
common practice to BLAST sequences from non-model plants
against model plants (e.g., Arabidopsis) and accepting the best hit
from the BLAST results. Inexperience researchers tend to accept
this annotation without considering if the conserved domains or
functions are significantly recognized. The lack of confidence in
cross-species annotation may restrict the reliability of generated
Frontiers in Plant Science | www.frontiersin.org 9
biochemical pathway relationships (Weißenborn and Walther,
2017) and other downstream analyses such as protein-protein
interaction analysis (Mika and Rost, 2006). Hence, users must
critically examine and curate the annotation and pathway
mapping results with further experimental validations through
targeted functional analysis to avoid misrepresentation or
erroneous conclusion.

Co-expression Analysis
Co-expression analysis heavily relies on statistical correlations
between different omics data sets, as discussed earlier in the first
level of MOI, to assess the strength of relationships between
expressed molecules (Voigt and Almaas, 2019). Such
relationships are then transformed into a weighted network and
can be visualized using a few tools including Weighted Gene Co-
expression Network Analysis (WGCNA) in R program or
Cytoscape tool. This strategy has revealed important clusters,
modules, and hubs for biological insights pertaining to specific
pathways or regulatory molecules in various plant studies.

For instance, WGCNA approach followed by Cytoscape
visualization was used to elucidate the transcriptome and
metabolome relationship in white grapes (Vitis vinifera L.)
during prolonged drought (Savoi et al., 2016; Savoi et al., 2017).
Eleven modules with different co-expression patterns were
reported in this study, which emphasized on the regulatory
network of transcription factors and secondary metabolic
pathways. Among others, auxin and abscisic acid (ABA)
signaling have been shown to be key regulatory components
during the water deficit stress of which these were well
connected to the modulation of secondary metabolites such as
phenylpropanoids and flavonoids (Savoi et al., 2017). Another
study in maize development also utilized WGCNA for
transcriptomics, proteomics, and phosphoproteomics integration
(Walley et al., 2016). They have developed an expression atlas that
encompassed 23 different maize tissues from vegetative to
reproductive stages and further analyzed their relationship
through the weighted networks. Interestingly, highly connected
network hubs were different for co-expressed transcripts and
proteins generated from the transcriptome and proteome data
sets, respectively. This could be due to a smaller percentage of
proteins (46%) were detected from the full transcriptome list, and
hence may affect the co-expression and network analysis within
that data sets. Further analysis of these data sets was performed by
Jiang et al. (2019). By integrating the different weighted networks
from respective omics into a fused network, a consensus network
supported by the evidence from all the different omics studies was
successfully generated. This exercise further illuminates the
integral roles of various transcription factors in the molecular
regulation of maize development (Jiang et al., 2019).

Another form of co-expression analysis is through the
integration with pathway databases. This was reported for an
integrated transcriptomics and metabolomics study in orange,
Citrus sinensis (He et al., 2018). This study compared “Newhall”
navel orange, a spontaneous mutant variety that is highly resistant
to a broad range of fungi infection with its wildtype. A species-
specific database (CitrusCyc2.0) was employed to identify pathways
June 2020 | Volume 11 | Article 944
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with the highest correlation between transcriptional and the
metabolic data. Networks for upregulated and downregulated
elements (transcripts and metabolites) were generated using
Cytoscape to contrast the mutant and wildtype which suggest the
former variety was tolerant to fungi attack through fatty acid
compositional changes and subsequently the induction of JA-
mediated response for defense (He et al., 2018). Another study in
maize development utilized MapMan functional annotation to
decipher enriched pathways for their highly connected co-
expressed hubs (Walley et al., 2016). Thus, these different studies
show that the co-expression network analysis integrated with
pathway databases is a powerful tool to obtain insights into the
plant development and stress response, allowing omics data sets to
be arranged in highly connected modules and hubs for
further investigation.

MOI using software tools, either for pathway mapping or co-
expression analyses, undeniably simplify the integration task,
especially to find relationships between omics data sets,
metabolic pathways, and their regulation. However, such
pathway templates are often static, unamenable toward changes
in experimental parameters and perturbation, as well as may not
be organism-specific. Therefore, there is a need to accurately
predict metabolic changes (perturbation) upon certain pre-set
conditions or treatments in specific species of interest, which
will be detailed in level 3 MOI, mathematical-based integration.
LEVEL 3 MOI: MATHEMATICAL-BASED
APPROACH

Differential Analysis
The mathematical-based MOI poses as the most complex
integration of all, and this approach requires extensive omics
data coverage and well-characterized plants. One of the most
basic aim in the mathematical-based approach is to develop a
well-defined differential equation and modeling for a systems-
level understanding. Such analysis consists of four main steps:
identification of systems components, determination of systems
regulation and topology, the development of appropriate
mathematical equations, and lastly, parameter selection and
optimization (Voit, 2017).

Differential analysis has been applied to various plant and
fruit studies (Koç et al., 2018; Wang et al., 2018; Belouah et al.,
2019) and can be divided into either non-targeted or targeted
pathway studies. One recent example of the former (non-
targeted pathway) approach is the development of differential
equation for protein density during tomato ripening (Belouah
et al., 2019). This is performed by integrating transcriptomics
and proteomics data sets of nine tomato developmental stages
using ordinary differential equations (ODE) to obtain rate
constants for translation (kt) and degradation (kd). The result
suggests that the equation reliably predicts the expression of
nearly 50% of 2,400 transcript-protein pairs from the study and
that the protein level was regulated strongly by the translation
rate rather than degradation (Belouah et al., 2019).

For a targeted pathway approach, differential analysis can be
used to model a specific pathway for its metabolic flux and
Frontiers in Plant Science | www.frontiersin.org 10
dynamics. For instance, lignin biosynthesis in poplar (Populus
trichocarpa) was successfully modelled using the ODE approach
(Wang et al., 2018). This study first generated RNAi mutant plants
for 21 target genes of the monolignol pathway before
transcriptomics and targeted proteomics were performed on
these transgenics. Transcript-protein equation was developed to
model the effect of the gene silencing and ODE was used to
generate mass-balance kinetics to predict metabolite levels and
fluxes. Such a model consistently predicts the effect of gene
perturbation in improving lignin content and wood properties
and hence will be of interest to the breeding program of this
valuable tree species. Additionally, another mathematical analysis
study in targeted pathways was performed on Arabidopsis
acclimatized to cold stress (Koç et al., 2018). Microarray
(transcriptomics) data sets were obtained for four periods of
cold conditions before the expression data was mapped to
available metabolic pathways from AraCyc and KEGG. Using
Reporter Metabolic Centric Algorithm in Matlab, DEGs were
linked to corresponding metabolites before metabolite and
pathway scores (called reporter metabolite and reporter
pathway, respectively) were calculated. Tripartite network model
encompassing gene, metabolite and pathways were built which
revealed stress modulated pathways related to carbon, redox, and
signal metabolisms upon the cold treatment (Koç et al., 2018).
Furthermore, constraint-based modeling such as flux balance
analysis (FBA), usually performed using COBRA (constraint-
based reconstruction and analysis) toolbox in Matlab application
(Orth et al., 2010) has also been used in this mathematical
modeling (Table 2). For example, anthocyanin biosynthesis in
grapes, Vitis vinifera has been successfully modelled using FBA
through data generated from metabolomics, proteomics
(enzymatic activity), and growth experiment (Soubeyrand et al.,
2018). The result further suggests that anthocyanin metabolic flux
is strongly induced upon nitrogen deprivation, as a mean of excess
energy utilization (Soubeyrand et al., 2018).

These studies show that differential analysis can be useful for
MOI in plants either with or without specific target pathways
(Voit, 2017). Integration at this level, particularly for targeted
pathway may depend upon a complete, well-annotated single
metabolic pathway and hence may be applied to both model and
non-model organisms alike, provided that sufficient molecular
information is available. Various other resources for this
mathematical and flux analyses are also available, for instance,
E-flux (https://omictools.com/e-flux-tool) and Metabolic
Adjustment by Differential Expression (https://omictools.com/
made-tool) which have been reviewed comprehensively by
Fukushima et al. (2014). Nonetheless, differential analysis also
serves as a crucial component for further omics integration in
genome-scale analysis (Cavill et al., 2016).

Genome-Scale Analysis
Previously in differential analysis, the stoichiometric equation is
only developed for a specific purpose, such as measuring
translation rate or metabolic flux in one isolated system or
pathway. Furthermore, this top-down approach relies upon
experimental results to construct a functional mathematical
model (Fukushima et al., 2014; Voit, 2017). In contrast, a
June 2020 | Volume 11 | Article 944
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genome-scale modeling (GSM) aims to build the (genome-scale)
model first from extensive curation before experimental
validation, and hence denoted as a bottom-up approach (Thiele
and Palsson, 2010; Voit, 2017; Goh, 2018). This approach aims to
complete metabolic pathways at the organism- and cellular-wide
levels such that each and every single reaction is considered for a
holistic mathematical evaluation (de Oliveira Dal'Molin and
Nielsen, 2018). The process of developing genome-scale
metabolic reconstructions has been extensively reviewed
previously (de Oliveira Dal'Molin and Nielsen, 2018; Seaver
et al., 2018) and mainly consists of four large steps: draft
reconstruction using annotated genome, pathway refinement
using experimental results, network modeling in mathematical
format, and lastly, validation and iteration for model accuracy
(Thiele and Palsson, 2010).

GSMs for plants and other eukaryotes are significantly
more complicated than those for prokaryotes due to their
extensive compartmentalization, size, polyploidy as well as
numerous and variegated secondary metabolic pathways (Rai
et al., 2017; Rai et al., 2019). For plant metabolic reconstruction, a
streamline GSM database called PlantSEED (Table 2) provides a
metabolism-centric resource for annotating metabolic reactions
in new plants based on 10 well-annotated plant genomes (Seaver
et al., 2018). In general, this database is useful for genome-scale
reconstructions particularly for primary metabolism, but manual
curation is still required for specific plant secondary metabolism,
which is both rich and highly species-dependent (de Oliveira
Dal'Molin and Nielsen, 2018).

GSM tool such as PlantSEED facilitates multi-scale analysis
allowing researchers to explore complex metabolic processes
varying from single cells to multiple tissues at a whole plant
level (de Oliveira Dal'Molin et al., 2016). For instance, PlantSEED
was used to model the multi-cell root system in Arabidopsis, by
supplementing transcriptomics and metabolomics information
(Scheunemann et al., 2018). The study managed to predict the
metabolic flux of indole-3-acetic acid, a key growth regulator in
Arabidopsis roots across tissues (Scheunemann et al., 2018).
However, PlantSEED genome-wide metabolic reactions are
mostly based on C3 plants such as Arabidopsis, but not C4

model plants such as maize and foxtail millet, Setaria italic (de
Oliveira Dal'Molin and Nielsen, 2018). Hence, a C4 genome-scale
model (C4GEM) was developed for such purpose before
transcriptomics, proteomics, and metabolomics data sets were
mapped to the reconstructed network for functional analysis (de
Oliveira Dal'Molin et al., 2016).

Additionally, GSM has also been reported in beans (Glycine
max) using tools such as Plant/Eukaryotic and Microbial
Metabolomics Systems Resource (PMR, http://metnetweb.gdcb.
iastate.edu/PMR/) and MetNetDB (https://omictools.com/
metnetdb-tool) (Li et al., 2015). This study successfully
integrated transcriptomics and metabolomics data sets to
functionalize seed filling metabolic model including starch
utilization and fatty acid build-up of this legume. Other plants
utilized for its seeds, rapeseed (Brassica napus) has also been
metabolically reconstructed through its Bna572+ database
annotation update and a model was developed using Flux
Frontiers in Plant Science | www.frontiersin.org 11
Variability Analysis (FVA), one of the methods in FBA (Hay
et al., 2014). Transcriptomics and 13C metabolic flux experiments
were used to build and validate the model of which higher flux
for fatty acid biosynthesis was observed in high oil plant
genotype (Hay et al., 2014). Similarly, GSM in maize has also
been updated and validated through transcriptomics and
biochemical assays for its leaf development model (Bogart and
Myers, 2016).

Nonetheless, out of all MOI strategies, only mathematical-based
integration can accurately predict changes or perturbation in
specific organisms due to the application of extensive database
annotation as well as validated models using experimental
evidence. This includes metabolic flux analysis using isotopic
labelling techniques to quantitatively measure cellular flux state
(Allen, 2016). However, this effort can be challenging for plants due
to diverse cellular/tissue types and organelle compartmentalization
(Allen, 2016). Hence, plant flux studies have often been restricted
to homogenous cellular/tissue samples and those with extended
metabolic steady states such as seeds (Allen, 2016). Such challenges
for validating models from this mathematical-based integration
approach or other MOI approaches in plant systems must to be
considered before attempting any integrated omics experiments.
CURRENT CHALLENGES AND OUTLOOK

The integrative multi-omics approach can often be hindered by
differences in data output, variability in data structure, and even
noise between technological platforms (Fabres et al., 2017; Pinu
et al., 2019). As different omics uses different platforms, one often
overlook the bias outputs resulted from the disproportionate
amount of identified molecules (transcripts, proteins, and
metabolites). Furthermore, MOI can be problematic for data sets
that are irreproducible, only qualitative in nature, containing false
positives/negatives, and lacking metadata to explain phenotypic
changes (Pinu et al., 2019). These general challenges related to
MOI and possible rectifications are detailed in Pinu et al. (2019)
and references therein. Available software for different MOI
strategies are also listed in Table 2 to aid researchers in
choosing suitable approaches. In this review, we highlight the
drawbacks related to specific MOI levels to shed light on their
future improvement (Table 3).

Level 1 element-basedMOI, such as correlation, clustering, and
multivariate, are relatively direct and intuitive analyses, and hence
will continue to be among the initial choices for integrating
transcriptomics, proteomics, and metabolomics. However, each
of these approaches may have individual weaknesses that must be
considered by potential users. For example, correlation analysis
can be limited in scope and insights into biological knowledge
(Cavill et al., 2016), and certain correlation methods, such as
Pearson's may be biased to outliers (Usadel et al., 2009). Therefore,
future improvements may focus on completing gene and
metabolite annotations for various specific organisms to link
these elements to phenotypes for a more insightful match.
Additionally, alternative correlation methods such as the bi-
weight mid-correlation can be used to reduce outliers' impact on
June 2020 | Volume 11 | Article 944
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the correlated results (Langfelder and Horvath, 2012). The other
two approaches (clustering andmultivariate) may not be so simple
for most beginners. For instance, clustering requires skills in
conducting machine learning whereas multivariate analysis
needs thorough understanding in selecting appropriate models
and parameters so that the result is comprehensible and accurate.
On the other hand, these approaches are flexible in terms of data
input and size, and hence well suited for visualization of a wide
range of data structures and content (Rai et al., 2017). Hence,
future tools should be user-friendly especially for beginners to
operate and conduct their multi-omics integration.

The next level of MOI (level 2), pathway-based integration
which comprises pathway mapping and co-expression analyses
also come with their own perks and benefits. For instance, this
type of integration is highly intuitive to biologists with many
annotation tools and databases available online (Cavill et al.,
2016). Potential molecular interactions can also be suggested in
Frontiers in Plant Science | www.frontiersin.org 12
the co-expression analysis (Ma et al., 2014), revealing intricate
regulation or potential feedback loop between molecules.
However, some of the disadvantages for this MOI include the
need for moderate to expert level of programming, especially for
tools without user-friendly interfaces such as PathQuant
(Therrien-Laperrière et al., 2017). Meanwhile, pathway mapping
may suffer from the lack of complete annotated pathways
especially for non-model organisms, hindering novel association
between gene-metabolite (Wanichthanarak et al., 2015).
Furthermore, this integration may have varied identifiers
between databases, for instance metabolite nomenclature, further
complicates integration process, especially in plants which possess
high variability of secondary metabolites (Cavill et al., 2016). As
sequencingmay no longer be an issue due to affordable sequencing
technologies with better throughput, such as SMRT (Single
Molecule, Real-Time) Pacific Bioscience and Oxford Nanopore
(Weckwerth, 2011; Weckwerth et al., 2020) specific databases for
TABLE 3 | The advantages, disadvantages, and future outlook for each level of multi-omics integration (MOI) in plant systems biology.

MOI description Advantages Disadvantages Future outlook

Level 1 (Element-based approach)

Correlation • Simple, direct, and
intuitive

• Limited scope and insights into the biological significance
• Certain correlation methods such as Pearson can be

biased to outliers

• Completing gene and metabolite annotation
for specific plant species

• Alternative correlation methods such as bi-
weight mid correlation to reduce the impact
of outliers

Clustering • Flexibility in data input
and sample size

• Requires knowledge in machine learning algorithm/tool • More intuitive tools for non-experts

Multivariate • Flexibility in data input
and sample size

• Different model selections, parameters, and result
interpretation can be complicated

• More intuitive tools for non-experts

Level 2 (Pathway-based approach)

Pathway-mapping • Intuitive for biologists
• Many pathway

annotation and
enrichment tools are
available

• Moderate to expert level of programming is required
• De novo gene-metabolite association is not possible, just

rely on available annotated pathways
• Varied annotation to different identifiers from multiple

databases, especially metabolites

• Species-specific database for gene and
metabolite annotation in molecular pathways

Co-expression • Intuitive for biologists
• Potential molecular

interaction can be
suggested

• Moderate to expert level of programming is required
• Inconsistent data formatting for downstream tools
• Mostly for known interactions between genes, proteins,

and metabolites

• Streamlining various data formats
• More experiments in enzymatic reactions and

protein interactions conducted

Level 3 (Mathematical-based approach)

Differential • Metabolic flux can be
simulated and perturbed

• Expert level of programming and mathematics is required
• Optimal model selection and parameter settings can be

subjective and complicated
• Too many molecular components, sometimes redundant,

in biological systems that prevent a complete model
representation

• New data sets and algorithms for model
improvement and validation

• Develop more effective algorithms within
intuitive and user-friendly tools

Genome-scale • A curated and accurate
model is generated

• Metabolic flux can be
simulated and perturbed

• Expert level of programming and mathematics is required
• Laborious and time-consuming especially for manual

curation
• Extensive resources such as genetics, physiology, and

biochemical reactions are needed
• Lack of evidence for compartmentalized reactions within

organelles or intracellular transporters for plants
• Secondary metabolic pathway modeling still requires

extensive manual curation
• Protein regulation and post-translational modifications as

well as environmental impact on metabolic and
phenotypic dynamism are not predictable through
genome-scale metabolic reconstruction

• New data sets for model validation with
organellar-specific information

• More comprehensive large-scale investigation
is integrated within the model including
epigenomics, post-translational modification
proteomics, and phenomics

• Effective machine learning algorithms for
model optimization
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various non-model species can be generated to enrich and
supplement the gene annotation. Hence this may provide
thorough metabolic pathways for various organisms to allow
MOI in pathway mapping to be performed holistically. For co-
expression analysis, some of the problems include inconsistent
data formatting, e.g., KGML (KEGG Markup Language), BioPax
(Biological Pathway Exchange), and SBML (Systems Biology
Markup Language) for downstream analysis (Fukushima et al.,
2014) and the approach is only suited for known established
interaction between genes, proteins, and metabolites
(Wanichthanarak et al., 2015). Hence, there must be a
significant effort streamlining various data formats for the co-
expression analysis (Fukushima et al., 2014) while studies
characterizing enzymatic reactions and protein interactions must
be further supported to aid the integration at this level.

In level 3 MOI, differential and genome-scale analyses are
performed. This allows metabolic flux to be simulated, and its
perturbation can be predicted in silico (Voit, 2017). However, the
models built with these approaches require an expert level of
programming and mathematics (Table 3). In addition, MOI using
differential analysis can have several other drawbacks. For
instance, model selection and parameter settings can be very
subjective and hence highly variable between users depending
on their skills and preference (Voit, 2017). Furthermore, a
biological system may contain redundant molecular
components, hindering a complete model representation (Voit,
2017). Integration using flux balance analysis (FBA) is limited to
certain applications such as the ability determining fluxes at steady
state, and is unable to predict metabolite concentrations as it does
not use kinetic parameter (Orth et al., 2010; Rakwal et al., 2017;
Pinu et al., 2019). As construction of FBA does not account for
regulatory effects such as enzyme activation, the prediction by this
model may lack accuracy except in its modified forms (Orth et al.,
2010). Therefore, future efforts may develop a more effective
algorithm, yet user-friendly for most biologists (Fukushima
et al., 2014). On the other hand, GSM requires a great deal of
time and effort to manually curate a complete and thorough
model. As such, molecular resources at the genetic level,
physiology, and biochemical reactions are paramount for a
working GSM (Thiele and Palsson, 2010; Cavill et al., 2016; Rai
et al., 2017). Constructing GSM in plants are also still fairly limited
due to the complexity of their metabolic pathways and their
interactions, complex regulation, and compartmentalization of
metabolic processes (Rai et al., 2017). Furthermore, the
modeling of secondary metabolite pathways still requires
extensive manual curation, compared to primary metabolism
(de Oliveira Dal'Molin and Nielsen, 2013; de Oliveira Dal'Molin
and Nielsen, 2018). Hence, new, comprehensive data sets with
organellar specific information are necessary for GSM
improvement and validation in plants (Fukushima et al., 2014).

Protein regulation and post-translational modifications, such as
phosphorylation are also known to impact the coordination of
various cellular and biochemical processes (Nukarinen et al., 2016).
Yet, they are unpredictable from any metabolic reconstruction
(Weckwerth et al., 2020), complicating comprehensive and
functional GSM. Metabolic and phenotypic dynamism are also
Frontiers in Plant Science | www.frontiersin.org 13
affected by environmental factors, which thus far are not
deductively informed by the genomes alone (Weckwerth et al.,
2020). Hence, a “PANOMICS” platform integrating not just the
expression omics (transcriptomics, proteomics, and metabolomics)
as described in this review, but also other large-scale studies
including epigenomics, post-translational modification
proteomics, and phenomics (Weckwerth et al., 2020) could
reveal the underlying intricate molecular regulation in plants.
The use of machine learning will certainly aid in integrating
these highly diverse omics platforms. Evidently, machine learning
has recently been used to distinguish genes responsible for
specialized metabolism important for plant-environment
interaction (Moore et al., 2019) as well as precision breeding for
certain traits of interest (Weckwerth et al., 2020). The development
of effective machine learning algorithms (Table 3), especially deep
learning approaches such as artificial neural networks to iteratively
correct constructed genome-scale models will undeniably become
an immediate future direction in plant MOI research (Rai et al.,
2019; Silva et al., 2019; Weckwerth et al., 2020).

While multi-omics efforts can be highly applicable and useful
in plant research, analyzing large-scale data sets can be a major
bottleneck and it is hoped that updated reviews such as this can
set as exemplary and methodological guidelines. Furthermore,
multi-omics experimentation and integration in plants often
require the right composition of research teams, even multi-
nationally (Zivy et al., 2015), due to the organism complexity as
discussed earlier. One such effort in promoting strong
collaborative work is the COST Action FA1306 initiative,
which aims to develop an effective workflow for diverse omics
experimentation in various applications, including breeding and
agriculture management (Zivy et al., 2015). More coordinated
omics research works such as this could facilitate a
comprehensive characterization from many more valuable
plant species in various parts of the world.
CONCLUSION

Advancement in omics technologies have generated a massive
amount of data, thus an effective, methodological approach in
data integration is needed to make sense and relate the data back
to the objective of the research. This review suggests three levels of
MOI approaches (levels 1, 2, and 3) ranging from simple element-
based integration (correlation, clustering, and multivariate) and
pathway-based approaches (pathway mapping and co-expression)
to the more complex integration using mathematical approach
(differential and genome-scale). These approaches were explained
in view of current literature to highlight their applications and
practicality in plant MOI. However, the limitation of each approach
needs to be considered before embarking on any MOI studies
particularly for less characterized non-model plants. Future work in
improving MOI strategies can be dedicated to complete gene and
metabolite annotation for specific plant species, as well as
developing user-friendly tools utilizing machine learning
algorithms to allow accurate metabolic model reconstruction.
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concise review on multi-omics data integration for terroir analysis in Vitis
vinifera. Front. Plant Sci. 8, 1065. doi: 10.3389/fpls.2017.01065

Foerster, H., Bombarely, A., Battey, J. N., Sierro, N., Ivanov, N. V., andMueller, L. A.
(2018). SolCyc: a database hub at the Sol Genomics Network (SGN) for the
manual curation of metabolic networks in Solanum and Nicotiana specific
databases. Database 2018 (1), 13. doi: 10.1093/database/bay035

Fondi, M., and Liò, P. (2015). Multi-omics and metabolic modelling pipelines:
challenges and tools for systems microbiology. Microbiol. Res. 171, 52–64.
doi: 10.1016/j.micres.2015.01.003

Fukushima, A., Kusano, M., Redestig, H., Arita, M., and Saito, K. (2009).
Integrated omics approaches in plant systems biology. Curr. Opin. Chem.
Biol. 13 (5), 532–538. doi: 10.1016/j.cbpa.2009.09.022

Fukushima, A., Kanaya, S., and Nishida, K. (2014). Integrated network analysis
and effective tools in plant systems biology. Front. Plant Sci. 5, 598.
doi: 10.3389/fpls.2014.00598
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