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Private and public breeding programs, as well as companies and universities, have
developed different genomics technologies that have resulted in the generation of
unprecedented amounts of sequence data, which bring new challenges in terms of
data management, query, and analysis. The magnitude and complexity of these datasets
bring new challenges but also an opportunity to use the data available as a whole. Detailed
phenotype data, combined with increasing amounts of genomic data, have an enormous
potential to accelerate the identification of key traits to improve our understanding of
guantitative genetics. Data harmonization enables cross-national and international
comparative research, facilitating the extraction of new scientific knowledge. In this
paper, we address the complex issue of combining high dimensional and unbalanced
omics data. More specifically, we propose a covariance-based method for combining
partial datasets in the genotype to phenotype spectrum. This method can be used to
combine partially overlapping relationship/covariance matrices. Here, we show with
applications that our approach might be advantageous to feature imputation based
approaches; we demonstrate how this method can be used in genomic prediction using
heterogeneous marker data and also how to combine the data from multiple phenotypic
experiments to make inferences about previously unobserved trait relationships. Our
results demonstrate that it is possible to harmonize datasets to improve available
information across gene-banks, data repositories, or other data resources.

Keywords: multi-omics, phenomics, genomic selection, multiple kernel learning, mixed models, covariance
estimation, expectation-maximization

INTRODUCTION

The rapid scientific progress in these genomic approaches is due to the decrease in genotyping costs
by the development of next-generation sequencing platforms since 2007 (Mardis, 2008a; Mardis,
2008b). High-throughput instruments are routinely used in laboratories in basic science
applications, which has led to the democratization of genome-scale technologies, such as
genomic predictions and genome-wide associating mapping studies. Genomic prediction, i.e.
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predicting an organism’s phenotype using genetic information
(Meuwissen et al., 2001), is currently used by many breeding
companies because it improves three out of the four factors
affecting the breeder equation (Hill and Mackay, 2004). It
reduces generation number, improves accuracy of selection,
and increases selection intensity for a fixed budget when
comparing with marker-assisted selection or phenotypic
selection (Heffner et al., 2010; Heffner et al., 2011; de los
Campos et al, 2013; Desta and Ortiz, 2014; Juliana et al.,
2018). Genomic prediction and selection (GS) are a
continuously progressing tool that promises to help meet the
human food challenges in the next decades (Crossa et al., 2017).
Genome-wide associating mapping studies, which originated
in human genetics (Bodmer, 1986; Risch and Merikangas,
1996; Visscher et al., 2017), have also become a routine in
plant breeding (Gondro et al., 2013).

The biological data generated in the last few years from this
genomic progress have grown exponentially which have led to a
high dimensional and unbalanced nature of the “omics” data. Data
normally comes in various forms of marker and sequence data:
expression, metabolomics, microbiome, classical phenotype,
image-based phenotype (Bersanelli et al., 2016). Private and
public breeding programs, as well as companies and universities,
have developed different genomics technologies that have resulted
in the generation of unprecedented levels of sequence data, which
bring new challenges in terms of data management, query,
and analysis.

It is clear that detailed phenotype data, combined with
increasing amounts of genomic data, have an enormous
potential to accelerate the identification of key traits to improve
our understanding of quantitative genetics (Crossa et al., 2017).
Nevertheless, one of the challenges that still need to be addressed
is the incompleteness inherent in these data, i.e., several types of
genomic/phenotypic information covering only a few of the
genotypes under study (Berger et al., 2013). Data harmonization
enables cross-national and international comparative research, as
well as allows the investigation of whether or not datasets have
similarities. In this paper, we address the complex issue of utilizing
the high dimensional and unbalanced omics data by combining
the relationship information from multiple data sources, and how
we can facilitate data integration from interdisciplinary research.
The increase of sample size and the improvement of
generalizability and validity of research results constitute the
most significant benefits of the harmonization process. The
ability to effectively harmonize data from different studies
and experiments facilitates the rapid extraction of new
scientific knowledge.

One way to approach the incompleteness and the disconnection
among datasets is to combine the relationship information learned
from these datasets. The statistical problem addressed in this paper
is the calculation of a combined covariance matrix from
incomplete and partially overlapping pieces of covariance
matrices that were obtained from independent experiments.
We assume that the data is a random sample of partial
covariance matrices from a Wishart distribution (Anderson,
2003), then we derive the expectation-maximization algorithm

for estimating the parameters of this distribution. According to
our best knowledge no such statistical methodology exists,
although the proposed method has been inspired by similar
methods such as (conditional) iterative proportional fitting for
the Gaussian distribution (Cramer, 1998; Cramer, 2000) and a
method for combining a pedigree relationship matrix and a
genotypic matrix relationship matrix which includes a subset of
genotypes from the pedigree-based matrix (Legarra et al., 2009;
Christensen et al., 2012) (namely, the H-matrix approach or the
related single-step genomic prediction). The applications in this
paper are chosen in the area genomic prediction in the case where
there is partial genomic and phenotypic information about several
populations. However, the statistical method is applicable much
beyond the described applications in this article.

The integration of heterogeneous and large omics data
constitutes a challenge and an increasing number of scientific
studies address this issue. A brief review and classification of
some promising statistical approaches are described in Bersanelli
etal. (2016). According to this article, our covariance-based method
falls in the network-based data integration category (as opposed to
non-network based methods such as feature imputation) which
include popular methods such as similarity network fusion Wang
et al. (2014), weighted multiplex networks Menichetti et al. (2014)
both of which can be used to combine several complete networks by
suitable weighting. The main breakthrough here is that the
proposed method in this article can be used to combine several
incomplete but partially overlapping networks and that the
proposed approach is supported theoretically by the maximum
likelihood formalization.

METHODS AND MATERIALS

Statistical Methods for Combining
Incomplete Data

Imputation

The standard method of dealing with heterogeneous data
involves the imputation of features (Shrive et al., 2006). If the
datasets to be combined overlap over a substantial number of
features then the unobserved features in these datasets can be
accurately imputed based on some imputation method
(Bertsimas et al., 2017).

Imputation step can be done using many different methods:
Several popular approaches include Beagle (Browning and
Browning, 2016), random forest (Breiman, 2001) imputation,
expectation-maximization based imputation (Endelman, 2011),
low-rank matrix factorization methods that are implemented in
the R package (Hastie and Mazumder, 2015). In addition,
parental information can be used to improve imputation
accuracies (Browning and Browning, 2009; Nicolazzi et al,
2013; VanRaden et al.,, 2015; Gonen et al., 2018). In this study,
we used the low-rank matrix factorization method in all of the
applications which included an imputation step. The selection of
this method was due to the computational burden of the
other alternatives.
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Combining Genomic Relationship Matrices
In this section, we describe the Wishart EM-Algorithm for
combining partial genetic relationship matrices'.

Wishart EM-Algorithm for Estimation of a Combined
Relationship Matrix From Partial Samples
Let A = {ay, a,...,a,,} be the set of partially overlapping subsets of
genotypes covering a set of K (i.e, K =U, a;) with total n
genotypes. Let G, ,G,,,...,G, be the relationship matrices for
genotypes in sets aj, as,...,d,, We want to estimate the overall
relationship matrix X for the n genotypes using G, , G,,; ..., G,
Moreover, if we focus on one single relationship matrix G, we
drop the subscript and write G,,,

Starting from an initial estimate of the genetic relationship
matrix 2 = WP, the Wishart EM-Algorithm repeats updating
the estimate of the genetic relationship matrix until convergence:

(1)
G G,(B,/ )
,!_,(t+1) _ 1 4 a b\“)

vm &4 | R ) , p® (®)
A Bb‘aGa v'f’b‘a + Bb|aG“(Bb|u)/

t -1 gt t t “1 gt .
where B(b‘zl = PO, lPlf|2 =P - PO Pyt g s
the set of genotypes in the given partial genomic relationship
matrix, b is the set difference of K and a. We assume partitioning

of ¥ as

v v
)

where ¥{" is the part of matrix that correspond to the genotypes
a, ‘}’ét) is the part of matrix that correspond to the genotypes b,
and ‘P:) =W}, (t) is the part that correspond to the relationship
of genotypes in a and b. The matrices P, are permutation
matrices that put each relationship matrix in the summation in
the same order. The superscripts in parenthesis “(f)” denote the
iteration number. The estimate ¥* at the last iteration converts
to the estimated genomic relationship with =7 = v 5@ jg
the initial estimate of the relationship of the n genotypes that
reflects the a priori knowledge about the combined relationship.

A weighted version of this algorithm can be obtained
replacing G, in Equation 1 with G3"” = w,G, + (1 — w,) V¥
for a vector of weights (w;, w, . w,,)"

Derivation of the Wishart-EM algorithm and its asymptotic
errors are given in Supplementary. We note here that the choice
of the degrees of freedom parameter v does not affect the estimate
of the combined relationship matrix but it has an effect on the
asymptotic standard errors. While it is possible to estimate this
parameter by maximizing the likelihood function, in practice
since we are assuming large samples (many features) go into the
calculation of the partial matrices, a large value for v (in the order

"In what follows, we will refer to genetic relationship matrices that measure how
genotypes are related (See Supplementary Section 5.3 for a description of how to
calculate a genetic relationship matrix from genome-wide markers [genomic
relationship matrix]). However, a theme in this article is that a genetic
relationship matrix is a special kind of covariance matrix. Therefore, the same
arguments below apply to covariance matrices that measure the relationship
between traits or features.

of the average number of features used in the calculation of the
partial matrices) will give reasonable results.

Also, we note that when combining a relationship matrix say
A with a relationship matrix nested in say G it the algorithm can
be implemented with £ = A and the single G to update it. In
this case, the algorithm converges in one iteration and the
resulting relationship matrix will be the same as the one that
would be obtained by the H-Mat and the related to single-step
genomic prediction (Legarra et al, 2009; Christensen et al.,
2012) approaches; in other words, our algorithm generalizes
their approach to two or more relationship matrices not
necessarily nested.

Materials: Datasets and Experiments
In this section, we describe the datasets and the experiments we
have designed to explore and exploit the Wishart EM-Algorithm.
Note that the applications in the main text involve real
datasets and validation with such data can only be as good as
the ground truth known about the underlying system. We also
included several simulation studies in the Supplementary
(Supplementary Applications 1 and 2) using simulated data
to show that the algorithm performs as expected (maximizes the
likelihood and provides a “good” estimate of the parameter
values) when the ground truth is known.

Application 1: Potato Dataset; When Imputation Is
Not an Option. Anchoring Independent Pedigree-
Based Relationship Matrices Using a Genotypic
Relation Matrix

In this application, we demonstrate that genomic relationship
matrices can be used to connect several pedigree-based
relationship matrices by the Wishart-EM-Algorithm.

The dataset is cited in (Endelman et al., 2018) and is available
in the R Package AGHmatrix (Rampazo Amadeu et al,, 2016). It
consists of the pedigree of 1,138 potato samples, 571 of these
genotypes also have data for 3,895 tetraploid markers. The
pedigree-based relationship matrix A was calculated with R
package AGHmatrix (Rampazo Amadeu et al., 2016) using
pedigree records, there were 185 founders (clones with
no parent).

The application experiment was structured as follows:

1. A random sample (Nped) of two non-overlapping pedigree-
based relationship matrix Nped € {100, 150, 250} were
selected. This means, there is no information in common
between pedigree.

2. A random sample (Ngeno) from half of the genotypes from
each pedigree was selected to create a genotypic relationship
matrix. This means that in each Ngeno €{20,40,80} half of the
genotypes come from one pedigree and the other half from
the other. This allows us to have partially overlapping data to
create a combined relationship matrix.

3. These genetic relationship matrices were combined to get a
combined genetic relationship matrix (See Figure 1).

This combined relationship matrix was compared to the
pedigree-based relationship matrix of the corresponding
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FIGURE 1 | At each replication of the experiment, two non-overlapping
pedigree-based relationship matrices (in pink) are selected at random (20
individuals each) from the 571 genotypes. A genomic relationship matrix
obtained from a random sample of genotypes (in green), half from the
genotypes in the first pedigree (10) and half from the genotypes from the
second pedigree (10). These three relationship matrices were combined to get a
combined relationship matrix (in blue).

genotypes using mean squared errors and Pearson’s
correlations. These correlations and the mean squared errors
were calculated only using the unobserved (validation) part of
the combined relationship matrix. This experiment was
repeated 30 times for each Ngeno, Nped pair.

Application 2: Rice Dataset. Combining Independent
Low-Density Marker Datasets

Rice dataset was downloaded from www.ricediversity.org. After
curation, the marker dataset consisted of 1,127 genotypes observed
for 387,161 markers. We treat the totality of information as the
ground truth, i.e., we assume that the true genomic relationship for
the 1,127 genotypes is characterized by the 387,161 markers. The
purpose of this application is to demonstrate that we can make
inferences about the assumed true genomic relationship matrix by
observing several smaller heterogeneous subsets of the available.
This involves inferring a common estimate for the relationships
that are already observed and producing estimates for relationships
that haven’t been observed. Supplementary Figure S5
demonstrate this experiment pictorially.

In each instance of the experiment, Ny, € {3, 5, 10, 20, 40,
80} marker datasets with 200 genotypes and 2,000 markers were
created by randomly sampling the genotypes and markers in
each genotype file. These datasets were combined using the
Wishart EM-Algorithm and also by imputation to give two
genomic relationship matrices. For the totality of genotypes in
these combined datasets, we also randomly sampled 2,000, 5,000,

or 10,000 markers, and calculated the genomic relationships
based on these marker subsets. All of these genomic relationship
matrices were compared with the corresponding elements of the
relationship matrix based on the entire genomic data by
calculating the mean squared error and correlation between
the upper diagonal elements including the diagonals. This
experiment was replicated 20 times. Application results are
showed in Figure 8.

Application 3: Wheat Data at Triticeae Toolbox.
Combining Genomic Datasets to Use in Genomic
Prediction

This application involves estimating breeding values for seven
economically important traits for 9,102 wheat lines obtained by
combining 16 publicly available genotypic datasets. The
genotypic and phenotypic data were downloaded from the
Triticeae toolbox database. Each of the marker datasets
was pre-processed to produce the corresponding genomic
relationship matrices. Table 1 and Supplementary Figure S7
describes the phenotypic records and number of distinct
genotypes for each trait.

Using the combined relationship matrix we can build genomic
prediction models. To test the performance of predictions based on
the combined relationship matrix, we formulated two cross-
validation scenarios. The common genotypes among the 16
genotypic experiments are shown in Figure 2 and the common
markers among genotypic experiments in Figure 3. The availability
of the phenotypic data for all the datasets are showed in Figure 4.

* Cross-validation scenario 1
The first scenario involved a 10 fold cross-validation based
on a random split of the data. For each trait, the available
genotypes were split into 10 random folds. The GEBV's for each
fold was estimated from a mixed model (see Supplementary
Section 5.4 for a description of this model) that was trained on
the phenotypes available for the remaining genotypes. The

TABLE 1 | Marker datasets from Triticeae Toolbox: Labels and names for the
datasets, number of genotypes and markers in each of the selected 16
genotypic datasets.

Label Data # Genotypes # Markers
dt 2012_SRWW_ElitePanel 276 90,782
d2 2014_HAPMAP 53 180,198
d3 2014_SRWW_YNVP 307 109,073
d4 2014_TCAPABBSRWMID 365 100,340
ds CornellMaster_2013 1,128 18,846
de Dart_NebDuplicates_2010 278 1,970
dr HWWAMP_2013 288 32,288
ds HWWAMP_2014 311 265,551
do NSGC9k_spring 2,196 5,303
d10 NSGC9k_winter 1,674 5,010
dti TCAP90k_HWWAMP_SPRN 20 16,842
di2 TCAP90k_LeafRust 339 24,610
di3 TCAP90k_NAMparents 60 25,851
di4 TCAP90k_SpringAm 248 24,343
dibs TCAP9Ok_SWW 317 24,978
die WWDP9k 2,258 6,232
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accuracy of the predictions was evaluated by calculating the
correlations between the GEBVs and the observed trait values.
Cross-validation scenario 2

Here, we performed a leave one dataset out cross-validation.
i.e. we leave out the phenotypic values for the traits of the
associated genotypes in one of the 16 genomic datasets and
then estimate the trait values of those genotypes based on a
mixed trained model. The training population was built on the
remaining genotypes and phenotypic information after leaving
the phenotypic records out. This scenario was used for each
trait, and the accuracies were evaluated by calculating the
correlations between the estimated and the observed trait
values within each dataset.

Application 4: Maize Data— Genomics and
Transcriptomics for Genomic Prediction

In this application, we look into the effects of marker density and
data size overlapping on genome-wide relationship matrix and
genomic prediction accuracies using a multi-omics data that
includes 332,177 genotypic markers and 31,237 feature
transcriptomics. The phenotypes used in this application are
yield, height, and flowering time from 388 maize lines. More

272
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FIGURE 2 | Intersection of genotypes among 16 genotypic experiments. The number of common genotypes among the 16 genotypic datasets are given on the lower
diagonal, no intersection is marked by “X.” Upper diagonal of the figure gives a graphical representation of the same, larger circles represent higher number of intersections.

information about the dataset and how it was curated can be
found in Azodi et al. (2020).

The aim of this application was i) to study the effect of the
number of genotypes common across different populations on
the genomic prediction accuracies and ii) to evaluate the effect of
the number of genotypes common across difterent populations
and the marker density on the accuracy of predicting unobserved
genomic relationships.

To accomplish the first objective we perform the following
steps in a cross-validation experiment which was repeated
50 times.

1. First the genotypes in the dataset were randomly partitioned
into three groups with 128, 130, and 130 individuals in them.
These groups do not have common genotypes. We named the
relationship matrices for these different sets of genotypes as
K1, K2, and K3. After this, a percentage (20, 40, 50%) of
genotypes from K1 and the same percentage of genotypes
from K2 were randomly selected and the relationship matrix
for these genotypes is denoted by K12. Similarly, the same
percentage of genotypes as above from K2 and the same
percentage of genotypes from K3 were randomly selected and
the relationship matrix for these genotypes is denoted by K23.
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Additionally, a random subset of genotypes in K1 that are not
in K12 are identified as the Test (validation) genotypes (see
Figure 5 for the split of genotypes into these sets).

. Two different combined genomic relationship matrices are
calculated using two different scenarios. In scenario 1, we
assume K1, K2, and K3 are relationship matrices obtained
from different partitions of the whole markers dataset divided
into three groups. On the other hand, K12 and K23 are obtained
from different partitions of the transcriptions divided randomly
into two. Since the majority of the individuals have markers we
denote this scenario as “Geno.” In scenario 2, the method is the
same but we replace the role of genotypic markers and
transcriptomics. In this case, K1, K2, and K3 are relationship
matrices from transcriptomics and K12 and K23 are obtained
from genomic markers.

. We used three different training population (TRS) methods.
The first training population only uses individuals in K2 as
training (Trainl, TRS1), the second training population only
uses the genotypes in K3 as training (Train2, TRS2). Finally,
the union of these individuals makes up what we call Train3
or TRS3 (Figure 5).

. CK-BLUP models were trained using the phenotypes from
three different training sets and using the two combined
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FIGURE 3 | Intersection of markers among 16 genotypic experiments. The number of common markers among the 16 genotypic datasets are given on the lower
diagonal, no intersection is marked by “X.” Upper diagonal of the figure gives a graphical representation of the same thing.

relationship matrices. Also, a G-BLUP model using the full
genetic information (388 genotypes and 332,177 markers), a
G-BLUP model using full transcriptomic information (388
genotypes and 31,237 transcriptomes), and a multiple-kernel
mixed-effects model which combined these two matrices
were build using the same three training sets.

. Each model is used to predict the individuals in the test sets

and the predictions were compared to the available phenotypic
values using correlation as the agreement measure.

To accomplish the second objective, we devised a similar

cross-validation experiment as the first objective with the
following changes.

We used only the genomic marker data (no transcriptomics),
ie, K1, K2, K3, K12, K23 are all marker-based genomic
relationship matrices.

The number of markers for estimating the partial relationship
matrices K1, K2, K3, K12, K23 were changed between 1,000
and 40,000 with no common markers across datasets.

The number of overlap between K12 and K1 (also K12 and
K2), similarly the overlap between K23 and K2 (also K23 and
K3) is changed between 10 and 60.
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+ The accuracy (Coefficient of determination R*) of
estimating the unobserved genomic relationships were
calculated after estimating the combined relationship
matrix and comparing it to the corresponding elements
of the marker-based relationship matrix that was obtained
using all 388 genotypes and all of the 332,177 markers

(Figure 12).

Application 5: Wheat Data at Triticeae Toolbox.
Combining Phenotypic Experiments

The Wishart EM-Algorithm can also be used to combine
correlation matrices® obtained from independent phenotypic

*We used correlations instead of covariances because the phenotypic experiments
were very heterogeneous in terms of the variances of the different traits.
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CV-scenarios:
Different training sets

No common genomic features among
K1,K2, K3, K12 and K23.

CK: Combined

experiments. One hundred forty-four phenotypic experiments
involving 95 traits in total were selected from 2,084 trials and 216
traits available at the Triticeae Toolbox. In this filtered set of trials,
each trial and trait combination had at least 100 observations and
two traits. Furthermore, the percentage of missingness in these
datasets was at most 70%. The mean and the median of the number
of traits in these trials were 5.9 and 4 correspondingly (See Figure 6
and Supplementary Figure S6).

The correlation matrix for the traits in each trial was calculated
and then combined using the Wishart EM-Algorithm. The resulting
covariance matrix was used in learning a directed acyclic graph
(DAG) using the qgraph R Package (Epskamp et al,, 2012).

Another application that involved combining the phenotypic
correlation matrices from oat (78 correlation matrices), barley
(143 correlation matrices), and wheat (144 correlation matrices)
datasets downloaded and selected in a similar way as above were
combined to obtain the DAG involving 196 traits in the
Supplementary (Supplementary Application 6.1).

RESULTS

Application 1: When Imputation Is Not an
Option: Anchoring Independent Pedigree-
Based Relationship Matrices Using a
Genotypic Relation Matrix—Potato Data
Figure 7 shows the correlation and mean squared error (MSE)
results as either of the sizes of the pedigree matrices and the
number of genotypes in the genomic relationship matrices

with phenotypes Relationship
+ (K1,K2,K3,K12,K23) K1
Yivaint (K2) Yivaina (K2+K3) Genfm!ic
TRS1 TRS3 K12 Prediction
Mixed Model U
< K2 mPp  withck mp : =) GS
(CK-BLUP) :
Y(vainz (K3) K23
TRS2
K3

FIGURE 5 | Application 5: Design of the experiment for Maize Data—Genomics and Transcriptomics for Genomic Prediction. In this figure, we represent the study of
the effect of the number of genotypes common across different populations on the genomic prediction accuracies (First objective of Application 4. The second
objective is similar but with minor changes). Here, genotypes were randomly partitioned into three groups without common genotypes. The relationship matrices for
these groups are K1, K2, and K3 and are genomic relationship matrices by marker or transcriptomics data. K12, K23 are genomic relationship matrices by marker or
transcriptomics data that connect K1, K2, and K3. The combined relationship is denoted by CK. In the objective 1, there are two different cross-validation scenarios,
i) When K1, K2, K3 are marker and K12, K23 are transcriptomics relationship matrices, and i) when K12, K23 are marker and K1, K2, and K3 are transcriptomics
relationship matrices. In all scenarios, K12 or K23 cover 20, 40, and 50% of genotypes in K1, K2, and K3. We performed different training population scenarios
(TRS1, TRS2, and TRS3; each TRS color matches the relationship matrices colors in K2, K3) with different relationship matrices to predict the Test population. A
random subset of genotypes in K1 that are not in K12 are identified as the Test set population.

increases. The MSE results for these experiments ranged from
0.004 to 0.017 with a mean of 0.009, and the correlation values
ranged from 0.52 to 0.94 with a mean of 0.78.

Application 2: Rice Dataset. Combining
Independent Low-Density Marker
Datasets

The MSE and correlation results for this experiment are given in
Figure 8. In general, as the number of independent datasets
increases the accuracy of all of the methods/scenarios increases
(decreasing MSEs and increasing correlations). In general, the
accuracy of the Wishart EM-algorithm in terms of MSEs ranged
from 0.0003 to 0.028 with a mean value of 0.0007. The accuracies
measured in correlation ranged from 0.989 to 0.998 with a mean
value of 0.995. For the imputation based method MSEs ranged
from 0.014 to 0.028 (mean 0.019) and the correlations ranged
from 0.805 to 0.970 (mean 0.920).

Figure 9 displays the scatter plot of full genomic relationship
matrix (obtained using all 387,161 markers) against the one
obtained by combining a sample of partial relationship matrices
(200 randomly selected genotypes and 2,000 randomly selected
markers each) over varying numbers of samples (3, 5, 10, 20, 40,
and 80 partial relationship matrices). Observed parts (observed-
diagonal and observed non-diagonal) of the genomic relationship
matrix can be predicted with high accuracy and no bias. As the
sample size increase, the estimates get closer to the one obtained
using all of the data. We observe that the estimates of the
unobserved parts of the relationship are biased towards zero but
his bias quickly decreases as the sample size increases.
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Application 3: Wheat Data at Triticeae
Toolbox. Combining Genomic Datasets to
Use in Genomic Prediction

The results summarized by Figure 10 indicate that when a
random sample of genotypes are selected for the test population,
the accuracy of the genomic predictions using the combined
genomic relationship matrix can be high (Cross-validation
scenario 1). Average accuracy for estimating plant height was
about 0.68, and for yield 0.58. The lowest accuracy values were for
test weight with a mean value of 0.48. The performance decreases
significantly across population predictions (Cross-validation
scenario 2). Some populations showed low prediction accuracies
such as d5, d6, and d7, but other as d12 and d16 showed high
predictability. Average accuracy for estimating plant height was
about 0.30, for yield 0.28.

FIGURE 6 | Application 5: Availability of data in 144 phenotypic trials and 95 traits at Triticeae Toolbox for wheat. Yellow shows available data, blue shows
unavailable data. The traits and trials are sorted based on availability. Plant height was the most commonly observed trait followed by grain yield.

N N %,\

Application 4: Maize Data—Genomics and
Transcriptomics for Genomic Prediction
Figures 11 and 12 show comparisons of full data accuracies vs.
partial relationship data. As expected, as the number of common
genotypes increases there is a decrease on the differences to the full
data. Our results show that up to 80% of the genomic prediction
accuracy can be recovered using 50% overlap partial relationship
data (Figure 11). The results in Figure 11 point to the feasibility of
the application of the CK-BLUP approach when only partial data is
available. With the CK approach, we can stitch several genetic
relationship matrices together to extend genomic predictions
although no genomic features are common between the training
and test sets. Besides, as the amount of connection between the
different genotypic relationship matrices increases the accuracy also
improves. For example, as we increase the number of genotypes in
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FIGURE 7 | Application 1: For this application, the pedigree was split into two pieces although there is only one pedigree. The number on top of the figure is the
number of genotypes in each pedigree. Here, we do not know the relationship between one of the pedigrees to the other. To learn the relationship between the two,
we take 10, 20, 30, and 40 individuals from each group and genotype them by next-generation sequencing. The mean square errors (A) and correlation values (B)
are the comparison between the two non-overlapping pedigree-based relationship matrices from each sample size, i.e. 100 individuals from 50 pedigree-based one,
and the combined relationship matrix that had 10, 20, 30, and 40 genotypes in each of the pedigrees.

K12, and K23, the accuracy of predictions of the unobserved
relationships improve as seen in Figure 12. The number of
markers seems to have a secondary effect that is more pronounced
when the number of genotypes in K12 and K23 becomes larger.

Application 5: Wheat Data at Triticeae
Toolbox—Combining Phenotypic
Experiments

In this application, we combined correlation matrices obtained
from independent phenotypic experiments. Figures 13 and S3
displayed the correlation matrix for the traits in a directed acyclic
graph (DAG) and a heatmap, respectively. In Figure 13 each

node represents a trait and each edge represents a correlation
between two traits. One of the strengths of this representation is
that you can elucidate the correlation between traits that you did
not measure in your experiment. For example, among all the
traits, grain width (GW) and above-ground biomass
(Above_bm) are positively correlated (blue arrows) with grain
yield. In turn, GW is highly positively correlated with biomass at
maturity (Biomass M) but negatively correlated with harvest
index (HI). Negative correlations (red) can also be observed
among traits. Traditional inverse correlations such as protein
(WGP) and GW can be also observed.

Combining datasets by correlation matrices also help to group
traits. Figure S3 shows two groups of positively correlated traits.
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marker data sets is large.

The traits in these two groups are positively correlated within the
group but negatively correlated with traits in other groups. For
instance, we see that yield-related traits such as grain yield, grain
weight, or harvest index, are positively correlated. On the other
hand, these traits are negatively correlated with disease-related traits
such as bacterial leaf streak, stripe rust traits, and also with quality
traits such as protein and nutrient content.

DISCUSSION AND CONCLUSIONS

Genomic data are now relatively inexpensive to collect and
phenotypes remain to be the primary way to define organisms
(Lehner, 2013). Many genotyping technologies exist and these
technologies evolve which leads to heterogeneity of genomic data
across independent experiments (Masseroli et al., 2016;
Townend, 2018; Liith et al., 2018). Similarly, phenotypic
experiments, due to the high relative cost of phenotyping,
usually can focus only on a set of key traits of interest.
Therefore, when looking over several phenotypic datasets, the
usual case is that these datasets are extremely heterogeneous and
incomplete, and the data from these experiments accumulate in
databases (Maiella et al., 2018; Alaux et al., 2018).

This presents a challenge but also an opportunity to make the
most of genomic/phenotypic data in the future. In the long term,
such databases of genotypic and phenotypic information will be
invaluable to scientists as they seek to understand complex
biological organisms. Issues and opportunities are beginning to
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FIGURE 8 | Application 2: Here, we compare marker imputation with our combining relationships matrices approach. Mean square errors (A) and correlations
values (B) between the estimated and full genomic relationship matrices are displayed in the boxplots above. The combined relationship matrix (CK) predicts
the structure of the population more accurately than the relationship matrix obtained by imputing the genomic features. Besides, when we compare the
combined relationship matrix obtained from partially overlapping marker data sets to the relationship matrices obtained from data with a fixed number of
markers (2,000, 5,000, 10,000) observed on all individuals we see that combined kernel can be more accurate when the number of partially overlapping

emerge, like the promise of gathering phenotypical knowledge
from totally independent datasets for meta-analyses.

To address the challenges of genomic and phenotypic data
integration (Suravajhala et al., 2016; Stark et al, 2019), we
developed a simple and efficient approach for integrating data
from multiple sources. This method can be used to combine
information from multiple experiments across all levels of the
biological hierarchy such as microarray, gene expression,
microfluidics, and proteomics will help scientists to discover
new information and to develop new approaches.

For example, Figure 8 shows that we can estimate the full
genomic relationship matrix more precisely from 10 independent
partially overlapping datasets of 200 genotypes and 2,000 markers
each than estimating from a dataset (for the combined set of
genotypes) that has 2,000 fixed markers. Twenty independent
genomic datasets of 200 genotypes and 2,000 markers are as
good as one genomic dataset with 5,000 markers. When we
compare it to the rest of the entries, imputation is the least
effective for estimating the unobserved parts of the genomic
relationship matrix. This suggests that accounting for incomplete
genetic relationships would be a more promising approach than
estimating the genomic features by imputation and then
calculating the genomic relationship matrix.

Figure 7 shows we can accurately estimate the unobserved
relationships among the genotypes in two independent
pedigree-based relationship matrices by genotyping a small
proportion of the genotypes in these datasets. For instance, the
mean correlation for the worst-case setting (50 genotypes in
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each pedigree and 10 from each of the pedigree genotyped)
was 0.72. This value increased up to 0.94 for the best case
(250 genotypes in each pedigree and 40 from each of the
pedigree genotyped).

Linear mixed modes with marker-based additive relationship
matrix are the standard approach to estimate GEBVs. If the
phenotypic information corresponding to the genotypes in one
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FIGURE 9 | Application 2: Scatter plot of the lower triangular elements of the combined kernel [from 3 (A) to 80 (F) kernels] against the kernel calculated from all
available markers (Observed). As the number of incomplete datasets increases, both observed and unobserved parts of the relationship can be estimated more
precisely. Yellow dots: Genotype relationships that are inferred (not observed in any of the partial relationship matrices that are being combined). Red dots: Diagonal
elements of the genotypic relationship matrix. Green dots: Genotype relationships that were observed in one or more of the partial relationship matrices.

or more of the component matrices is missing then the genotypic
value estimates can be obtained using the available phenotypic
information. In this sense, the combined genomic information
links all the genotypes and the experiments.

Imputation has been the preferred method when dealing
with incomplete and datasets (Browning, 2008; Browning and
Browning, 2009; Howie et al., 2011; Druet et al., 2014; Erbe
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FIGURE 10 | Application 3: Cross-validation scenario 1 is showed in a. For each trait, the available genotypes were split into 10 random folds. The GEBVs for each
fold was estimated from a mixed model (See Supplementary Section 5.4 for a description of this model) that was trained on the phenotypes available for the
remaining genotypes. Cross-validation scenario 2 is shown in b. Genotypes in each genotypic data are the test and the remaining genotypes are training. In this
case, each data that was predicted was also marked on the boxplots. For instance, for plant height, we can predict the phenotypes for the genotypes in d16 with
high accuracy when we use the phenotypes of the remaining genotypes as training dataset; on the other hand, we have about zero accuracies when we try to
estimate the phenotypes for the genotypes in d10. The accuracy of the predictions under both scenarios was evaluated by calculating the correlations between the
GEBVs and the observed trait values. For each of the traits in this analysis, the accuracies in (A) are higher on average than the accuracies in (B) pointing to the
difficulty of genomic prediction over heterogeneous populations.
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FIGURE 11 | Application 4, Scenario 1: Accuracies (measured in terms of the correlation between the predicted and observed values in the test set shown on the
vertical axis) of several models (horizontal axis) using full data and combined relationship matrices from partial observations for estimating yield. The different colors
represent the availability of data: yellow bar plots correspond to full data models, the color of the other bar plots represents the percentage of overlap between K1
and K12 (and similarly K2 and K12, K2, and K23, K3, and K23). On the horizontal axis, the combined relationship models are labeled as Geno (or Trans) if K1, K2,
K8 are marker (transcriptomics) based, and K12, K23 are transcriptomics (marker) based relationship matrices. In addition, for these models, the training population
that the model was trained on is represented as K2, K3, and K2+K3. The training populations were labeled as TRS1, TRS2, TRS3 (Figure 5). In these models, the
label Geno (or Trans) refers to a G-BLUP model that uses only the marker (transcriptomics) based relationship matrix, Geno+Trans refers to a multi-kernel mixed
model that incorporates both of these relationship matrices.
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relationship matrix obtained all of the available genotypes and markers.

etal., 2016). However, imputation can be inaccurate if the data
is very heterogeneous (Van Buuren, 2011). In these cases, as
seen in applications above, the proposed approach which uses
the relationships instead of the actual features seems to
outperform imputation for inferring genomic relationships.
Besides, the methods introduced in this article are useful even
when imputation is not feasible. For example, two partially
overlapping relationship matrices, one pedigree-based and the
other can be combined to make inferences about the
genetic similarities of genotypes in both of these datasets
(Figure 7).

There are also limitations to our approach. In particular when
we combine data using relationship matrices original features
(markers) are not imputed. Our method may not be the best
option when inferences about genomic features are needed, such as
in GWAS. We can address this issue by imputing the missing
features using the combined relationship matrix, for instance, using
a k-nearest neighbor imputation (Hastie et al., 2001) or by kernel
smoothing. Moreover, if the marker data in the independent
genomic studies can be mapped to local genomic regions, then
the combined relationship matrices can be obtained for these
genomic regions separately. Then a kernel-based model such as
the ones in Yang et al. (2008); Akdemir and Jannink (2015) can be
used for association testing. The nature of missingness in data will
also affect our algorithm’s performance. Inference based on

40

Number of genotypes in intersection

FIGURE 12 | Application 4, Scenario 2: Accuracy of estimating the for changing the number of genotypes in K12, K23 (different colored lines), and also for changing
numbers of markers used in calculating each of the relationship matrices K1, K2, K3, K12, and K23 (horizontal axis). The vertical axis shows the R? values obtained
by taking the square of the accuracies measured by the correlation between the validation part of completed relationship matrices and corresponding elements in the

approaches that ignore the missing data mechanisms is valid for
missing completely at random, missing at random but probably not
for not missing at random (Rubin, 1976; Little and Rubin, 2002).
The results of our algorithm depend on the prior information that is
expressed in the initial estimate of the combined relationship
matrix. This dependence, on the other hand, will decreases as the
number of partial relationship matrices increases since these
incomplete relationship matrices take the role of independent
samples to update our prior information. When the sample size
(ie., the number of relationship matrices that are combined) is
small this matrix should be carefully selected.

As it can be seen in Figure 10B, the genomic prediction
accuracies can be low when predicting over heterogeneous
populations. Nevertheless, using correlated traits in a multi-trait
genomic prediction model can lead to improved prediction
accuracies by borrowing information among the traits. In
particular, if some unbalanced phenotypic data are available for
the target set and a training set of genotypes, these can be used as
additional anchors to improve accuracy. Similarly, incomplete
environmental data about the different experiments in the target
and training sets can be combined using the methods discussed here
to possibly improve genomic prediction accuracies. The difficulty in
predicting over heterogeneous populations could also be due to
genetic variants are specific to particular populations. In this case,
the populations could be clustered into groups and genomic
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name label name label name label name label
aboveground biomass Above B fertile spikelets per head FS heading date Heading date  single kernel weight SKW

As s flag leaf angle FLA K K spike length Slength
bacterial leaf streak BLS flag leaf angle T1 FLATI leaf chlorophyll content LCcC spike number SN

basal aborted spikelets per head BAS flag leaf chlorophyll content  FLCC leaf rust reaction type LRRT spikelets per head N_Spikeletes
biomass at maturity Biomass M flag leaf chlorophyll content TI  FLCCT1 leaf rust response LRR stem rust coefficient of infection  SRCI

Ca Ca flag leaf chlorophyll content T2 FLCCT2 leaf rust severity LRS stem rust infection response SRIR
canopy senescence score T1 CSTI flag leaf length FLlength  Li Li stem rust severity SRV

canopy senescence score T2 CST2 flag leaf stay-green period Stay green  lodging degree Ld stem solidness Stem solidness
canopy senescence score T3 CST3 flag leaf width FLwidth  lodging incidence Lodging I sterile spikelets per head sS

canopy senescence score T4 CST4 flowering date FD maturity date (physiological) Maturity stripe rust reaction type SRRT
canopy senescence score TS CSTS forage protein FP Mg Mg stripe rust reaction type T1 SRRTI1
canopy senescence score T6 CST6 forage yield FY Mn Mn stripe rust reaction type T2 SRRT2
canopy senescence score T7 CST7 freeze injury FI Mo Mo stripe rust reaction type T3 SRRT3
canopy temperature (grain fill) T glume pubescence GP Ni Ni stripe rust severity SRS

canopy temperature depression (flowering) CTDF grain fill duration GFD Normalized Difference Vegetation Index NDVI stripe rust severity T1 SRST1
canopy temperature depression (grain fill) CTDGF  grain number GN Normalized water index 3 NWI3 stripe rust severity T3 SRST3

cd cd grain number per spikelet NGSpikelet P P test weight TW

Co Co grain weight GW peduncle length PL thousand kernel weight TKW

Cu Cu grain weight per head GWH plant height P.Height waxiness Waxiness
days to flag leaf senescence DTFLS  grain width GW plot shattering PS whole grain protein WGP

days to heading DTH grain yield G.Yield powdery mildew reaction type PM WSBMV reaction type WSBMV _RT
days to heading (fall planting) DTH2 grain yield (main tillers) GYMT S S Zn n

Fe Fe harvest index HI seeds per head SPH

FIGURE 13 | Application 5: Combining the phenotypic correlation matrices from 144 wheat datasets covering 95 traits and illustrating the relationships between

traits using the directed acyclic graph as a tool to explore the underlying relationships. Each node represents a trait and each edge represents a correlation between
two traits. Blue edges indicate positive correlations, red edges indicate negative correlations, and the width and color of the edges correspond to the absolute value
of the correlations: the higher the correlation, the thicker and more saturated is the edge.

prediction can be applied within each group. An alternative way to
select a sub-population for training for a specific target set lies in
selecting an optimized training population from a large set of
candidates for that target set (Isidro et al., 2015).

Software and Data Availability

The software was written using C++ and R and an R (R Core
Team (2019) package CovCombR (Akdemir et al., 2020) is made

available publicly. The code and data for replicating some of the
analysis can be requested from the corresponding authors.
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