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Plants dedicate a high amount of energy and resources to the production of ribosomes.
Historically, these multi-protein ribosome complexes have been considered static protein
synthesis machines that are not subject to extensive regulation but only read mRNA and
produce polypeptides accordingly. New and increasing evidence across various model
organisms demonstrated the heterogeneous nature of ribosomes. This heterogeneity can
constitute specialized ribosomes that regulate mRNA translation and control protein
synthesis. A prominent example of ribosome heterogeneity is seen in the model plant,
Arabidopsis thaliana, which, due to genome duplications, has multiple paralogs of each
ribosomal protein (RP) gene. We support the notion of plant evolution directing high RP
paralog divergence toward functional heterogeneity, underpinned in part by a vast
resource of ribosome mutants that suggest specialization extends beyond the
pleiotropic effects of single structural RPs or RP paralogs. Thus, Arabidopsis is a highly
suitable model to study this phenomenon. Arabidopsis enables reverse genetics
approaches that could provide evidence of ribosome specialization. In this review, we
critically assess evidence of plant ribosome specialization and highlight steps along
ribosome biogenesis in which heterogeneity may arise, filling the knowledge gaps in
plant science by providing advanced insights from the human or yeast fields. We propose
a data analysis pipeline that infers the heterogeneity of ribosome complexes and
deviations from canonical structural compositions linked to stress events. This analysis
pipeline can be extrapolated and enhanced by combination with other high-throughput
methodologies, such as proteomics. Technologies, such as kinetic mass spectrometry
and ribosome profiling, will be necessary to resolve the temporal and spatial aspects of
translational regulation while the functional features of ribosomal subpopulations will
become clear with the combination of reverse genetics and systems biology approaches.
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INTRODUCTION

Historically, ribosomes have been considered passive mediators of
the central dogma of molecular biology. Nonetheless, the first
concept of the role of ribosomes in molecular information flow
proposed in 1958 (Crick, 1958; Crick, 1970), was based on the
“one gene one ribosome one protein” hypothesis. This notion
implied an extreme degree of ribosome specialization. Later, in
1961, the discovery of mRNA as a carrier of open reading frames
(ORFs) that code for protein synthesis marginalized the ribosome
as a passive bystander of translation (Brenner et al., 1961). The role
of ribosomes started to be reconsidered between 1985 and 1995,
when independent studies supported the view that the
heterogeneity of ribosome composition is likely an additional
layer of translational regulation. In 1987, two divergent 18S
rRNA sequences were found to be dominant during distinct
stages of the rodent malaria life cycle (Gunderson et al., 1987).
In 1990, ribosomal protein (RP) expression and posttranslational
modification (PTM) were found to change in Dictyostelium
discoideum upon transition from a unicellular to a multicellular
lifestyle (Ramagopal, 1990). In 1995, the model plant Arabidopsis
thaliana revealed tissue-specific expression of the many RP
paralogs that exist in plants (Williams and Sussex, 1995).
Nowadays, among many examples, well-studied global
translational regulators in plants couple external stimuli to
translation, arguing for deeper investigation of translational
control (Urquidi Camacho et al., 2020) upon environmental cues.

The altered composition of the translation machinery at any
level is a phenomenon called ribosome heterogeneity (Horiguchi
et al., 2012; Shi et al., 2017; Gerst, 2018). Ribosome heterogeneity
includes sequence variation of rRNAs, absence of specific RPs from
the canonical ribosome structure, which causes substoichiometric
ribosomes, exchange of RP paralogs, posttranscriptional or
posttranslational modifications of rRNA or RPs and possibly
additional variations of the ribosome-associated proteome. The
difference between heterogeneity and specialization resides in the
functional role assigned to sub-ribosomal populations. Thus,
specialized ribosomes are defined as a subset of heterogeneous
ribosomes that constrain translation to specific mRNAs or may
have other specific functions. Functional subpopulations of
ribosomes would appear for example after an environmental cue
to shape the acclimated proteome. These definitions have previously
been proposed (Emmott et al., 2018; Genuth and Barna, 2018) and
reflect controversial opinions in the field as yet.

Currently, there is a dualism of hypotheses. The first hypothesis
states that heterogeneous ribosomes translate mRNA subsets using
mechanisms linked to the diverse aspects of structural ribosome
heterogeneity. The second suggests that preference of translation
toward transcript subsets is a consequence of insufficient amounts
of functional ribosomes. The insufficiency hypothesis considers
ribosomes as static machines and assigns selective properties of
Abbreviations: RP, Ribosomal Protein; ORF, Open Reading Frame; PTM,
Posttranslational Modifications; GLM, Generalized Linear Model; FDR, False
Discovery Rate; LSU, Large Subunit; SSU, Small Subunit; RAP, Ribosome
Associated Proteins; RBF, Ribosome Biogenesis Factors; CRP, Cytosolic
Ribosomal Proteome; PSRP, Plastid-Specific Ribosomal Proteins; Cryo-EM,
cryogenic electron microscopy.
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preferred translation to transcripts. Highly translated mRNAs are
thought to out-compete less readily translated but required
transcripts when availability of functional ribosomes limits
translation. A similar dualism of hypotheses prevails among
explanations of phenotypes linked to rp-paralogs where the term
of ribosome insufficiency was coined for plants (Horiguchi et al.,
2012). In this context, paralog mutant abnormalities are attributed
to insufficient functional ribosomes and not to specialized functions
of heterogeneous ribosomes. The lack of information on the highly
resolved spatiotemporal ribosome composition and the ribo-
interactome limits our ability to distinguish between these
alternative hypotheses. To fully understand what constitutes
functional ribosome heterogeneity, technical obstacles must
be surpassed.

RP substoichiometry is likely to assist specialization (Slavov et al.,
2015). In yeast, the central role of RPs during translational regulation
supports the existence of a ribosomal code (Komili et al., 2007), i.e.,
the concept of an additional level of complexity attributed to
ribosomes that regulate protein translation, and is paralleled by the
concept of a histone code that contributes to the regulation of the
transcriptional status of a gene. Specialization may entail the
remodeling of existing ribosomes where the core structure of the
ribosome will be reused and the surface and solvent-exposed proteins
are exchanged by de novo synthesized paralogs. Alternatively, new
ribosomal populations may be de novo synthesized. These processes
may give rise to substoichiometric ribosome populations in the cell.
In plants, where each RP family contains several paralogs, we suggest
extending and generalizing the term substoichiometric ribosome
population to include ribosomes with exchanged RP paralogs.
Currently, analytical methods capable of monitoring specialization
are scarce. Therefore, claims of new findings in the field are
technology dependent and must be interpreted carefully.

In this review, we distinguish and discuss ribosome
heterogeneity according to structural components starting with
interacting factors during ribosome biogenesis. Ribosome
synthesis represents a compendium of steps by which
specialized ribosomes may become assembled. Additionally, we
review the methods used for generating insights into ribosome
specialization. Our biological focus is on the adaptive benefit of
potential functional heterogeneity of cytosolic ribosomes
modulating stress responses of sessile organisms, such as plants.
Our technical focus defines suitable methodological strategies that
will approximate or even allow the acceptance or rejection of
ribosome specialization. In all these aspects, we use plants as
potentially important but neglected models of ribosome function.
ASSEMBLY OF HETEROGENEOUS
RIBOSOMES

Cytosolic ribosomes in eukaryotes consist of a 60S large subunit
(LSU) and a 40S small subunit (SSU). The latter decodes mRNA,
and the former catalyzes the peptidyl transferase reaction that leads
to the peptide bond formation of the newly synthesized proteins.
The subunits are composed of rRNA and accessory ribosomal
proteins (RPs). The large subunit is composed of 5S, 5.8S, and
June 2020 | Volume 11 | Article 948
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25S rRNA, which ranges between 25S and 26S in plants but is 28S in
mammals (Chang et al., 2005). In contrast, the small subunit
contains only a single 18S rRNA. At the protein level, the plant
60S and 40S subunits contain at least 47 and 33 RPs, respectively
(Wilson and Cate, 2012), with each RP encoded by two to seven
paralogs (Barakat et al., 2001; Browning and Bailey-Serres, 2015)
(Supplemental Table S1). Thus, the 80 RP families may comprise
1034 different potential ribosome structural conformations that,
considering paralog number, could theoretically serve as a source
of heterogeneity (Hummel et al., 2012) and may be the basis of
functional specialization or functional divergence within RP
families. Given this, specialized ribosomes seem more likely than
ribosome heterogeneity seen as a purely stochastic non-functional
phenomenon. Important unresolved questions need to be answered:
If heterogeneity is basis of a functional mechanism in plant cells,
how is it controlled and when is it triggered? A first indication of
heterogeneity as a non-stochastic process may be considered from
the observation that core ribosomal proteins are assembled by a
controlled and highly sequential biogenesis process. Hence, if the
assembly line is better understood, then we could improve our
current knowledge of ribosome specialization.

Ribosome biogenesis has previously been reviewed both for
plants (Weis et al., 2015a; Sáez-Vásquez and Delseny, 2019) and
yeast (Woolford and Baserga, 2013). This review provides
detailed insights into known and currently unknown plant
ribosome biogenesis aspects and is focused on highlighting the
processing steps and structures, which may contribute to the
assembly of heterogeneous ribosomal populations. Cytosolic
ribosome biogenesis starts in the nucleolus and finalizes in the
cytoplasm where the last maturation steps take place (Figure 1).
The main steps at which ribosome heterogeneity may be
introduced and specialized functions may be controlled are: 1)
45S and 5S rDNA transcription, 2) pre-ribosomal RNA (pre-
rRNA) processing, 3) transcription of RPs and ribosome-
associated proteins (RAPs) such as plant ribosome biogenesis
factors (RBFs) (Weis et al., 2015a; Palm et al., 2019) or
translation factors (Browning and Bailey-Serres, 2015), 4) RP
and RAP translation and reallocation to the nucleus, and finally,
5) successive RP and RAP assembly during ribosomal subunit
maturation. These key processing steps throughout biogenesis
may serve as points of control for the generation of specific
ribosome populations (Figure 1).

Variation of Ribosomal RNA
Cytosolic ribosomes comprise four mature rRNAs, i.e., 5S, 5.8S,
25S, and 18S. The process to obtain the mature RNAs starts with:

RNA polymerase III mediated synthesis of 5S rRNA (Figure 1
Step 1A). In Arabidopsis, 5S genes are encoded by over 2000 copies
distributed over three locations on chromosomes 3, 4, and 5
(Murata et al., 1997). Loci in different chromosomes encode
rRNAs of varying lengths (Murata et al., 1997; Poczai et al.,
2014), and are differentially enriched by epigenetic marks
promoting specific chromatin states. The balance between
euchromatin and heterochromatin impacts which 5S rRNAs get
transcribed (Vaillant et al., 2007). A locus on chromosome 5 gives
rise to an atypically long 5S splicing variant due to aberrant
transcription termination, which is also expressed in several
Frontiers in Plant Science | www.frontiersin.org 3
mutants deficient in chromatin remodeling processes (Vaillant
et al., 2006; Blevins et al., 2009). 5S rRNA genes from this locus
translocated in Arabidopsis ecotype Ler, impacting chromatin status
and ultimately the selected 5S loci that get transcribed (Simon et al.,
2018). Similarly, if 5S rDNA chromatin gets remodeled following
stress cues (Asensi-Fabado et al., 2017), a transition could be
initiated to modulate ribosome subpopulations. Moreover, the
translocation events have increased the exchange frequency
among 5S rDNA loci (Simon et al., 2018), increasing the
possibilities of coupling the right locus with the right
environmental stimulus, ultimately converging at a functionally
advantageous ribosome.

In parallel, RNA polymerase I mediated synthesis of a
polycistronic rRNA transcript, the precursor of 18S, 5.8S and
25S rRNA (Figure 1 Step 1B), from highly duplicated 45S rDNA
genomic repeats (Sáez-Vásquez and Echeverrıá, 2007). The
tandem-repeated units are arranged into nucleolar organizer
regions (NORs) on the short arms of chromosomes 2 and 4 of
Arabidopsis thaliana (Copenhaver and Pikaard, 1996; Poczai
et al., 2014; Browning and Bailey-Serres, 2015). Both NORs
contain 45S rDNA variants, with those on chromosome two
being tightly regulated during plant development (Chen and
Pikaard, 1997; Fransz et al., 2002; Mohannath et al., 2016; Sáez-
Vásquez and Delseny, 2019). The short arms of human 21 and 22
NOR-containing chromosomes are physically embedded in the
nucleolus (Dunham, 2005).

Remodeling of pre-existing ribosomes by exchanging rRNA
seems unlikely, since this process would require fundamental
ribosome disassembly and reassembly. Hence, specialized rRNAs
may be introduced by de novo ribosome synthesis upon an
environmental challenge. For example, a controlled mechanism of
Vibrio vulnificus Gram-negative bacteria upon temperature or
nutrient shifts, synthesizes divergent rRNAs that ultimately direct
translation of specific mRNAs (Song et al., 2019). Similarly,
variation of the rRNA nucleotide sequence modulates the stress
responses of Escherichia coli in the newly synthesized active
translating fractions of ribosomes (Kurylo et al., 2018). An
alternative non-plant example from Escherichia coli and human
studies, are posttranscriptional modifications of rRNA (Popova and
Williamson, 2014; Natchiar et al., 2017), which are concomitant to
RP substoichiometry (Popova and Williamson, 2014). These
modifications can confer selectivity to ribosomes. In plants, these
mechanisms remain to be found. However, examples of rRNA
heterogeneity harboring functional potential exist both at rDNA
level, as outlined in the two previous paragraphs, and during rRNA
pre-processing, as detailed in the following section.

Alternative Pre-Ribosome Processing
The 5S rRNA transcript is processed in the nucleoplasm (Figure
1 Step 2). In contrast, the initial steps of polycistronic rRNA
processing take place in the nucleolus. After 45S rDNA
transcription, the resulting transcript, designated as 35S
pre-rRNA in yeast, associates with a larger ribonucleoprotein
complex forming the 90S pre-ribosome and commences
processing steps in the nucleolus (Figure 1 Step 2). The 90S
pre-ribosome complex contains similar components as the
SSU processome (Grandi et al., 2002). This initial ribosome
June 2020 | Volume 11 | Article 948
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maturation complex was purified from other eukaryotes and
provided structural insights into the initial pre-rRNA processing
steps (Kressler et al., 2017). While it remains to be structurally
characterized in plants, most protein orthologs within the
complex are encoded in the plant genome (Sáez-Vásquez and
Delseny, 2019). The 90S/SSU-processome, also designated as U3
snoRNP (Sáez-Vasquez et al., 2004), likely exchanges RBFs and
assembles RPs, since 22 homologues of Arabidopsis thaliana SSU
RPs co-purified with the BoU3 complex of Brassica oleracea as
was determined by mass spectrometry of 1D SDS-PAGE purified
bands (Samaha et al., 2010). Hence, specialized RPs or paralogs
may already be assembled at an early stage of ribosome
Frontiers in Plant Science | www.frontiersin.org 4
biogenesis. In plants, the complex is thought to cleave the
internal transcribed spacer (ITS), ITS1, facilitated by previous
trimming and cleavage at the P site (Zakrzewska-Placzek et al.,
2010), that is, the primary endonucleolytic cleavage site located
in the 5’ external transcribed spacer (ETS). ITS1 cleavage splices
the polycistronic transcript into 27S rRNA, containing the
immature 25S and 5.8S rRNAs, and 18S rRNA, thereby
splitting the processing into a pre-60S and pre-40S branch.
Most unprocessed Arabidopsis 35S-type transcripts contain a
non-conserved insertion of 1,083-bp that is absent from other
cruciferous species (Sáez-Vasquez et al., 2004). This feature
supports the notion of unique features of Arabidopsis
FIGURE 1 | Simplified scheme of plant cytosolic ribosome biogenesis highlighting the potential steps at which structural heterogeneity may occur and can be
controlled. Biogenesis is complex and involves at least three cell compartments, the nucleolus, the nucleoplasm, and the cytoplasm. (Step 1A) 5S rRNA is
transcribed by RNA polymerase III (POL III) in the nucleus. (Step 1B) The 45S rDNA, localized in the nucleolus, is transcribed into a polycistronic transcript containing
18S, 5.8S and 25S rRNAs by RNA polymerase I (POL I). Heterogeneity may rise from rDNA loci coding for different rRNA species. (Step 2) The large pre-rRNA
transcript forms the 90S pre-ribosome/SSU processome, a large ribonucleoprotein complex, which is processed into pre-40S and pre-60S subunits after the
splicing event on ITS1. Biogenesis factors are temporarily recruited and ribosomal proteins (RPs) are permanently assembled while rRNA is successively processed.
Heterogeneity may result from the recruitment of different rRNAs and ribosome-associated proteins (RAPs), including RPs and RP paralogs. (Step 3) The RAPs are
transcribed by RNA polymerase II (POL II). Heterogeneity can result from the changed availability of transcripts for subsequent translation or the presence of different
splicing variants. (Step 4) RPs and other RAPs are translated in the cytoplasm and imported into the nucleus where they are assembled or assist the assembly
process. Heterogeneity may be caused by availability of divergent RAP and RP paralogs at the time and location of assembly within the nucleus. (Step 5) The nuclear
ribosomal pre-subunits are exported to the cytoplasm where they undergo the final maturation steps that render the subunits translationally competent (black
arrows). Heterogeneity may arise from the last steps of ribosome biogenesis mediated by RAPs. Posttranscriptional or posttranslational modifications of all
components may occur at any stage during or post ribosome biogenesis. Note that some processes and or structure-derived insights have yet to be described in
plants (light blue transparencies highlights), and these gaps have been filled with knowledge from other model eukaryotes. The figure was created with BioRender
(www.biorender.com) and exported under a paid subscription. 5’ or 3’ external transcribed spacer c(ETS), internal transcribed spacer (ITS), nucleolar organizer
regions (NORs).
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ribosome biogenesis as compared to other plant species. Such
unique aspects should be taken into account when interpreting
and generalizing studies of 35S-type transcript pre-processing
in Arabidopsis.

Pre-rRNA processing of the polycistronic transcript follows two
independent pathways in plants (Weis et al., 2015b). This process
has been regarded as a redundancy that may secure ribosome
abundance under varying conditions. The convergence point of the
alternative processing paths is the 27SBS/L rRNA, which is the 27S
pre-rRNA spliced from any 5’ or 3’ ETS or -c(ETS) as depicted in
Figure 1. At this convergence point, the pre-60S subunits are
released into the nucleoplasm (Gadal et al., 2002) for further
processing. The small subunit 18S rRNA processing may
converge at a barely detectable 20S pre-rRNA that is produced
after the excision of 5.8S by MTR4 (Lange et al., 2011) and a similar
ETS splicing as aforementioned for pre-60S. rRNA processing
involves plant-specific RBFs (Palm et al., 2019), suggesting that
specialized features of ribosome biogenesis are to be found in plants.
This supports the view that RBFs and RPs have specialized
functions in alternative pre-rRNA processing routes in plants.
Examples indicate that mutations in Arabidopsis AtBRX1-1 and
AtBRX1-2 orthologs of the yeast RBF, Brx-1, affect only one of the
alternative pre-rRNA processing routes (Weis et al., 2015b). In
yeast, Brx-1 associates with RBFs Tif6 and Ebp2 to form the Rpf2
complex (Talkish et al., 2012), which also contains structural
proteins uL18 (ScRPL5) and eL18 (ScRPL11). In Arabidopsis, tif6
and brx1-1 transcripts are differentially accumulated compared to
wild type (WT) in mutant lines of the RBF REIL that are likely
impaired in late cytosolic ribosome maturation and during cold
acclimation (Beine-Golovchuk et al., 2018). Similarly, heat stress
could decrease the abundance of pre-rRNAs belonging to one of the
alternative processing pathways (Weis et al., 2015a). More generally,
plant responses to abiotic stress include altered expression patterns
of pre-rRNA processing factors. Such expression changes occur
mainly during cold, heat and UV-B light stresses (Sáez-Vásquez and
Delseny, 2019). In summary, beyond securing ribosome abundance
by redundant factors, evidence points toward effective
subfunctionalization and specialized mechanisms that act during
stress and enable pre-rRNA processing.

Following nucleolar and nuclear processing, pre-60S LSU and
pre-40S SSU complexes are exported into the cytoplasm. Pre-
LSU is aided by RBFs to undergo final maturation steps (Figure 1
Step 5). The associated factors have been elucidated and reviewed
in yeast (Woolford and Baserga, 2013; Greber et al., 2016; Ma
et al., 2017). The cytosolic steps in plants are thought to be
mediated by cytosolic RBF homologs, amongst them REIL1 and
REIL2 (Beine-Golovchuk et al., 2018). REIL proteins are
Arabidopsis RBFs homologous of yeast Rei1. In yeast, Rei1 has
a structural proofreading function of the 60S LSU subunit
(Meyer et al., 2010; Greber et al., 2016). During cytosolic LSU
maturation in yeast, a RLP24 placeholder protein is replaced by
RP eL24, then RP uL16 is added and P-stalk assembly is initiated
in parallel to or after Rei1 action (Meyer et al., 2010). The P-Stalk
is a pentameric uL10-(P1-P2)2 complex in yeast (Wawiórka
et al., 2017), with additional P3 components in plants, that
Frontiers in Plant Science | www.frontiersin.org 5
assists translation associated GTPases. For P-stalk assembly,
Yvh1 mediates the release of Mrt4, a placeholder for uL10, and
enables substitution by functional uL10 (Zhou et al., 2019). In
rice blast fungusMagnaporthe oryzae,MoYvh1 is translocated to
the nucleus upon oxidative stress where it interacts with MoMrt4
in a process that ultimately subverts the production of proteins
needed for plant immunity (Liu et al., 2018), implying that these
maturation factors could guide biogenesis of specialized
ribosomes to filter immunity-related proteins. After final
quality control checks, ScTif6, the anti-SSU-LSU association
factor (Basu et al., 2001), is released, and the 60S subunit is
rendered translationally competent.

Variation of Ribosome Associated Proteins
During the whole biogenesis process, ribosome associated
proteins or RAPs are either transiently (i.e., proteins assisting
the process) or in the case of RPs, permanently (i.e., proteins
comprising structural constituents of translationally competent
complexes) bound to the pre-ribosomes. The RP and other RAP
coding genes are transcribed and spliced in the nucleus (Figure 1
Step 3), the mRNAs are exported and translated in the cytoplasm
and finally, most of the RAPs are imported into the nucleus and
nucleolus for ribosome assembly (Figure 1 Step 4).

All RPs have specific entry points during ribosome biogenesis.
Therefore, the main processing steps of ribosome biogenesis may
determine when RP-specialized ribosomes can be assembled
based on selection of specific RPs or paralogs instead of a non-
controlled stochastic choice. Controlled assembly would mean
that adjacently located RPs, if co-assembled, might be co-
dependent on each other or on specific biogenesis factors.
Consequently, defined ribosomal regions might be modulated
by specialization mechanisms that rely on a sequential assembly
line to construct functionally divergent complexes. In line with
the previous idea, systematic analyses of individual ribosomal
protein mutants (rp), compiled in a literature review of yeast
ribosome biogenesis (Woolford and Baserga, 2013), have shown
a correlation between localization of RPs (Figures 2A, B) relative
to rRNA domains (Figures 2C, D) and the impairment of pre-
rRNA maturation. For example, SSU proteins can be attached
near the 5´ or 3´ domains of 18S rRNA, which are located at the
body and head of the SSU, respectively. RPs near the 5´ end are
important during the early stages of pre-rRNA processing, while
those near the 3´ end are incorporated in later maturation steps.
Similarly, LSU RPs are docked to three rRNA regions. 1)
Domains I and II, approximately surrounding the equator of
the solvent-exposed face of the LSU, are near the 5´ ends of 25S
rRNA and 5.8S rRNA, respectively. The RPs binding near these
ribosomal regions are necessary for 27SA2 and 27SA3 pre-rRNA
processing. 2) Domains I and III are located near the polypeptide
exit tunnel and the RPs binding nearby are necessary for 27SB
pre-rRNA cleavage. 3) Finally, the third docking area is located
near the central protuberance on the interface side of the LSU.
The nearby bound RPs are necessary for 7S pre-rRNA processing
and nuclear export. Whether plant-RPs conserve these sequential
and spatial dependencies, remains to be tested.
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Transiently bound RAPs assist the translational machinery at
every step, from ribosomes biogenesis, through translation, to
ribosome recycling. All of these RAPs comprise the ribo-
interactome that is highly complex and includes multiple RAP
paralogs. Presence of RAP paralogs in plants implies that sub- or
neofunctionalized RAPs may mediate cell responses by selective
translation as was demonstrated for the mammalian ribo-
interactome (Simsek et al., 2017). RAPs, such as the subset of
RBFs, can have a wide range of functions during assembly and
processing. For example, the mammalian ribo-interactome contains
RAPs such as mRNA binding proteins, mRNA/tRNA modifiers,
RNA helicases, and potential regulators of metabolism and the cell
cycle (Simsek et al., 2017). In plants, numerous examples indicate
specific or specialized RAPs. The presence of plant-specific factors,
such as the additional eIFiso4F cap-binding complex (Browning
et al., 1992; Browning and Bailey-Serres, 2015), which has
functionally divergent isoforms (Gallie, 2016), may serve as the
first indicator. For example, mutations of the rice eIFiso4F homolog
confer resistance to yellowmottle virus (RYMV) (Albar et al., 2006),
suggesting that functional divergence of this factor is readily
adaptable to generate selective translation constrains. A second
Frontiers in Plant Science | www.frontiersin.org 6
indication is the absence of 25% of yeast RBF orthologs from
the plant genome (Weis et al., 2015a). The missing RBFs were
likely replaced during plant evolution. A third indication is the
duplication of conserved RBFs in plants, such as BRX1-1/1-2, Lsg-1/
2, NUC1/2, XRN2/XRN3, and REIL1/2 (Weis et al., 2015a) that are,
as was explained above, involved in multiple stress responses of pre-
ribosome processing. Clearly, the ribo-interactome of plants is more
complex than in other model eukaryotes. This complexity has
already resulted in subfunctionalization as may be exemplified by
the two REIL biogenesis factor paralogs that act in the cytosol. Only
REIL2 but not REIL1 is required for successful cold acclimation.
Absence of both paralogs, however, enhances the defect and halts
Arabidopsis development and growth at low temperature (Schmidt
et al., 2013; Beine-Golovchuk et al., 2018). REIL proteins affect
accumulation of non-translational ribosomal complexes (Cheong
et al., 2020), that is, free pools of 60S LSUs and single 80S
monosomes. and in the case of REIL2 are linked to the cold
induced C-repeat-binding factor (CBF) regulon (Yu et al., 2020),
which is a compendium of more than 100 genes with altered
expressions due to the action of CBF transcription factors and
enhances freezing tolerance. Whether REIL functions include
June 2020 | Volume 11 | Article 948
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FIGURE 2 | Localization of RPs (top) or rRNAs (bottom) within the translating wheat 80S ribosome (Armache et al., 2010a; Armache et al., 2010b; Ben-Shem et al.,
2011; Gamalinda et al., 2013) visualized by PyMOL (PyMOL, RRID : SCR_000305). RP localization was modeled at 5.5 Å resolution by combining structural data of
wheat and yeast according to (Ben-Shem et al., 2010). rRNA chains are omitted from top panels (A, B) and are shown separately in bottom panels (C, D) without
RP decorations except the P-Stalk that was added as a white surface outline for orientation. Each colored amino acid chain represents the position of a ribosomal
protein family within the 40S SSU (lower part of the 80S ribosome) or in the 60S LSU (upper part). (A) Ribosome solvent surface. The main topological
characteristics, P-stalk, L-stalk, head and body, and the 40S SSU to 60S LSU interface are indicated (yellow line). (B) Rotated ribosome. The interface and location
of the polypeptide exit tunnel (PET, arrow) are indicated. (C, D) Rotated ribosome solvent and interface positions featuring the rRNA chains distinguished by colors.
Positions of the four 5’ (grey) and four 3’ (black) ends of the 18S, 25S, 5.8S and 5S rRNAs are indicated by highlighting of the last ten nucleotide residues.
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contributions to ribosome specialization and cold-acclimated
ribosome biogenesis are hypotheses that remain to be validated.
PROTEIN COMPOSITION OF THE
CYTOSOLIC RIBOSOME

An early attempt to characterize an eukaryotic, cytosolic ribosomal
proteome (CRP) was conducted with rat liver ribosomes (Wool
et al., 1995). The 79 RP families that were characterized had
homologs in yeast and plants (Wilson and Cate, 2012). Each
yeast protein is encoded by two paralogs. Only 64 of the yeast
RPs are essential for growth (Steffen et al., 2012). There is an
additional 80th plant-specific RP family (Carroll, 2013), namely, the
acidic stalk protein P3 (Barakat et al., 2001; Chang et al., 2005;
Carroll, 2013). The other 79 plant families represent yeast homologs
with high fidelity. Despite the high similarity between the eukaryotic
CRPs, in plants, duplication led to structural divergence between RP
paralogs (Wool et al., 1995; Barakat et al., 2001). Attempts to verify
plant RP families that were predicted at the genome level through
proteomic approaches have produced a range of answers. For
example, a proteomic study found representatives of all 80 plant
RP families, with specific identifications of 87 family members
(Carroll et al., 2008). A more recently published data set mapped 70
RP families and 165 RP family members to the CRP (Hummel et al.,
2015). The striking difference in the detected paralogs per RP family
in both studies may be explained by technical variation of the
complex CRP preparation and proteomic analysis but may equally
likely originate from changes of ribosome heterogeneity between the
two investigated ribosome populations. The most recent study that
refined the compositions of the Arabidopsis cytosolic ribosome
mapped 76 RP families and 184 members using a label-assisted
proteomics approach (Salih et al., 2019).

Deviation From Canonical Compositions
If substoichiometric complexes arise from a non-random
specialized ribosome biogenesis, and RPs get affected as co-
assembled groups, we need to be able to map the changes of
RPs or RP paralogs onto an accurate plant ribosome structure in
order to understand the spatial boundaries of these modulatory
mechanisms. The currently best localization of RPs within a
cytosolic plant ribosome was generated through modelling of
known ribosomal protein structures (using archaeal and bacterial
templates) into a bread wheat Triticum aestivum cryogenic
electron microscopy (cryo-EM) map that was reported at 5.5 Å
resolution (Armache et al., 2010b). Simultaneously, the rRNA
backbone structures were elucidated at 5.5 Å resolution and
comprehensively modeled (Armache et al., 2010a), thus
completing the current structure model of the wheat 80S
ribosome. We coupled RP localization with a comprehensive
mapping of RP and RP paralogs (Supplemental Table S1) to
ribosome complexes (Figure 2), compiled based on model
organisms, such as yeast (Ben-Shem et al., 2011; Gamalinda
et al., 2013). Figure 2 summarizes the main structural domains
and location of RPs by rotated 2D projections of the 3D wheat
80S translating ribosome model. The Triticum aestivum
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structure contains 80 ribosomal proteins, 47 of the 60S subunit
and 33 of the 40S subunit, as well as 4 rRNA structures. Given
that a high resolution structure of the mature, translating
Arabidopsis cytosolic ribosome has yet to be made publically
available, the Triticum aestivum 80S ribosomal structure
published by Armache et al. (2011) was used as reference for
our visualizations (PDB ID 4v7e). Using protein BLAST
comparisons, we verified the RP identity of Arabidopsis RP
homologs of the protein entries linked to the macromolecular
Crystallographic Information Files (mmCIF) of the wheat 80S
structure model. We concluded that Arabidopsis RPs
(Supplemental Table S1) are adequately matched to the wheat
RPs mapped in the 80S structure model. To the best of our
knowledge, the wheat structure is the currently most complete
and adequate, high-resolution plant cytosolic ribosome structure
in the PDB database and represents the current canonical
structure model of plant 80S ribosomes.

Several lines of evidence indicate that deviations from the
canonical 80S structure of plant ribosomes exist, that is,
incomplete, substoichiometric ribosomes lacking RPs or
ribosomes with varied RP paralog composition (Table 1). RP-
dependent ribosome structural divergence was deduced by shifts
in mass or charge among 25% of the Arabidopsis RPs analyzed
(Chang et al., 2005). These observations can be caused by paralog
exchanges or by PTMs. Paralog exchanges are likely considering
independent reports showing that paired transcript translation and
protein degradation rates of cytosolic-RPs from tomato Solanum
lycopersicum are high (Belouah et al., 2019) and cytosolic RPs of
Arabidopsis have a high standard deviation of the protein
degradation rates (Li et al., 2017a). These studies suggest that a
potential mechanism of ribosome remodeling exists even though
RPs are in general stable and long-lived (Li et al., 2017a). Ribosomal
complexes of Arabidopsis have a mean-RP half-life of 3-4 days
(Salih et al., 2019). Considering the general stability of ribosomes, it
seems likely that the high variation among RPs results from induced
translation targeted to specific RPs or RP paralogs and remodeling
of pre-existing ribosome complexes by RP exchange.

Induced accumulation of RPs and RP paralogs exist in
Arabidopsis. Label-free proteomics generated evidence of
differential paralog use in response to changing physiological
conditions. Phosphorous and iron deficiencies trigger differential
accumulation of RPs in plant roots (Wang et al., 2013). UV-B
treatment modulates the uL16 paralogs by increasing AtRPL10C
and decreasing AtRPL10B (Ferreyra et al., 2010). This process is
modulated by CKB1, i.e., the regulatory subunit of plastid Casein
kinase2 (Zhang et al., 2020). Mutants of the cold-specific
Arabidopsis RBF, REIL, indicated that ribosome biogenesis can
alter RP paralog accumulation in non-translational ribosome
complexes (Cheong et al., 2020). The abundance of specific
paralogs, namely, eL28 (AtRPL28A) and eS7 (AtRPS7C), changed
upon sucrose feeding (Hummel et al., 2012), and importantly, this
effect of sucrose is concomitant to selective mRNA translation
(Gamm et al., 2014). The causal link between both observations
remains to be elucidated. When linking altered translation of RP
paralogs to RP substoichiometry, claims of dosage compensation
among plant paralogs within the respective RP family need to be
June 2020 | Volume 11 | Article 948
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TABLE 1 | Plant studies with supporting evidence for and major conclusions regarding cytosolic ribosome heterogeneity and specialization in chronological order.

Study Species Evidence Major Conclusions

(Chang et al., 2005) Arabidopsis thaliana—Cell
culture

Proteomics 25% of the cytosolic RPs vary in terms of mass or charge, affecting the overall
composition of the 80S monosome.

(Degenhardt and
Bonham-Smith, 2008a;
Degenhardt and
Bonham-Smith,
2008b)

Arabidopsis thaliana Reverse genetics, live
cell imaging, RNA

interference, transcript
profiling

RP paralog AtRPL23aA (uL23) is targeted to the nucleolus. Loss of the paralog causes
pleiotropic effects associated with an rp plant mutant. AtRPL23aB is targeted to the
nucleus but its absence does not cause developmental or growth abnormalities.
Dosage compensation does not apply to paralog loss in uL23.

(Guo and Chen, 2008) Arabidopsis thaliana Reverse genetics,
mutant

complementation

AtRACK1B and AtRACK1C loss of function mutants do not have the growth and
developmental abnormalities that AtRACK1A has. Multiple AtRACK1 mutants
exacerbate the abnormalities. The B and C paralogs complement loss of function of
paralog A.

(Whittle and Krochko,
2009)

Brassica napus—
Microspores, ovules,
pollen, microspore-

derived embryos, and in
vitro pollen

Transcriptome co-
expression networks

Brassica napus has a tissue-specific RP paralog composition, which is likely associated
with tissue differentiation and/or specialization.

(Falcone Ferreyra et al.,
2010)

Arabidopsis thaliana—
Shoots

Label-free proteomics UV-B stress differentially regulates paralogs from the uL16 family of Arabidopsis.
RPL10C is upregulated by UV-B in all studied organs, while AtRPL10B is
downregulated and RPL10A does not change upon a UV-B stimulus.

(Szick-Miranda et al.,
2010)

Arabidopsis thaliana Reverse genetics, RT-
qPCR, phenotyping

Type II uS8 RP paralogs are plant specific and evolutionarily divergent. RPS15aB and
RPS15aE are differentially expressed. RPS15aE mutant has larger leaves, roots, and
cells.

(Rosado et al., 2010) Arabidopsis thaliana Reporter gene
microscopy

Subpopulations of RPL4-containing heterogeneous ribosomes co-exist featuring
paralog A or D.

(Sormani et al., 2011b) Arabidopsis thaliana Transcriptomic data Subgroups of RPs corresponding to specific paralogs are transcriptionally regulated
during stress, leading to “ribosome diversity”. The authors propose a model that
controls heterogeneity during biogenesis.

(Hummel et al., 2012) Arabidopsis thaliana—
Shoots

Transcriptomic data and
label-free proteomics

Sucrose feeding induces abundance changes in specific paralogs, among them eL28
(AtRPL28A) and eS7 (AtRPS7C). Additionally, at transcript level, many RP genes
become upregulated.

(Falcone Ferreyra et al.,
2013)

Arabidopsis thaliana—
Shoots

Proteomics, subcellular
localization, yeast
complementation

Non-redundant functional roles of uL16 RPs are indicated. RPL10C expression is
restricted to pollen grains. RPL10B localization to the nuclei increases after UV-B stress.
The three isoforms complement a yeast uL16 mutant.

(Wang et al., 2013) Arabidopsis thaliana—
Roots

Transcriptomic & label
free proteomics

Specialized paralogs are associated with Pi-deficiency, uL11 (AtRPL12B) regulated at
protein level, eL33, eL39, uS9 (AtRPL35aC, AtRPL39B and AtRPS16B) regulated at
transcript level, or with Fe-deficiency, eL22 (AtRPL22B and AtRPL22C) regulated at
protein level.

(Gamm et al., 2014) Arabidopsis thaliana—
seedlings

Polysome profiling Sucrose feeding to Arabidopsis seedling induces selective mRNA translation events,
which include numerous RP transcripts.

(Simm et al., 2015) Solanum lycopersicum—

Young leaves and anthers
Next generation

sequencing, Quantitative
real-time PCR (qRT-

PCR)

Co-regulated clusters containing RBFs and RPs exert their functions preferentially in
different tissues of Solanum lycopersicum.

(Moin et al., 2016) Oryza sativa—Roots,
shoots, leaves, root-shoot
transition region, flowers,

grains and panicles

Quantitative real-time
PCR (qRT-PCR)

RP transcripts of the LSU are responsive to stress in Oryza sativa, suggesting that
proteins encoded by these transcripts could play a specialized role responding to
stress.

(Li et al., 2017a) Arabidopsis thaliana Labeled proteomics Structural proteins of the LSU and SSU are stable and long-lived compared to other
major protein complexes. Relative degradation rates of RPs had higher standard
deviation, suggesting active remodeling takes place.

(Merret et al., 2017) Arabidopsis thaliana—
Seedlings

Polysome profiling, 15N
elemental analysis mass

spectrometry

Transcripts of uS12 (AtRPS23B), uS14 (AtRPS29B) and eL37 (AtRPL37B) are
preferentially stored during heat shock and subsequently released and translated in an
HSP101-dependent manner during recovery.

(Saha et al., 2017) Oryza sativa—Plumules,
radicles, shoot, and leaf

Quantitative real-time
PCR (qRT-PCR)

RP transcripts of the SSU (RPS4, RPS13a, RPS18a and RPS4a) are upregulated during
several abiotic stresses in Oryza sativa. RPS4 is also responsive to biotic stress.

(Belouah et al., 2019) Solanum lycopersicum—

Fruits
Transcriptome—
proteome paired

modelling

RP transcript translation (kt) and protein degradation rates (kd) are amongst the highest
in all transcript-protein paired measurements of Solanum lycopersicum indicating flexible
remodeling of cytosolic ribosomes.

(Sáez-Vásquez and
Delseny, 2019)

Plants—review Transcriptome data
meta-analyses

Transcripts related to cytosolic ribosomes either of RAPs or of RPs are induced at
transcriptome level by three major stresses, namely, cold, heat, and UV-B stress.

(Salih et al., 2019) Arabidopsis thaliana Labeled proteomics Cytosolic ribosomal populations are replaced every 3-4 days according to the half-life of
constituent RPs. RPs featuring significantly shorter turnover were P0D (RPP0D), 0.5
days and RACK1B and C, 1.2 days.

(Continued)
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carefully considered and dissected from potential paralog-specific
functions. Examples indicate that subfunctionalization of RP
paralogs exists. Arabidopsis paralogs of RP families uL16 (Falcone
Ferreyra et al., 2013), uL23 (Degenhardt and Bonham-Smith, 2008a;
Degenhardt and Bonham-Smith, 2008b), RACK1 (Guo and Chen,
2008) and uS8 (Szick-Miranda et al., 2010) are non-redundant in
function, while other families, such as uL4, contain paralogs that can
be linked to co-existing, potentially divergent populations of
ribosomes (Rosado et al., 2010). Our compiled list of references
implies the existence of translation bias mechanisms. Specialized
ribosomes customized to environmental cues can contribute to such
mechanisms (Table 1).

The influence of environmental and developmental cues on
transcripts of plant cytosolic RP and RBF transcripts becomes
increasingly evident. For Arabidopsis, a regulatory model that
triggers ribosome heterogeneity was proposed based on
transcriptome in silico analyses (Sormani et al., 2011b). Such a
model assumes that plant ribosome heterogeneity plays a major role
for the modulation and reprogramming of the translatome. In
Solanum lycopersicum and Brassica napus clusters of RAPs
determine tissue identity (Whittle and Krochko, 2009; Simm
et al., 2015) and plant organ- or development-specific ribosomes
are a well-known plant feature (Horiguchi et al., 2012). In Oryza
sativa RP transcripts respond to abiotic stresses (Moin et al., 2016;
Saha et al., 2017). The differential expression of RAP and specifically
RP paralog genes implies that transcriptional reprogramming of the
translatome mediates responses of the protein composition of
ribosomes to environmental stimuli (Figure 1 Step 3) but the
contribution and interplay of transcription with additional layers of
control of the protein composition of ribosomes require
further research.

Post-Translational Modifications
PTMs of RPs generate heterogeneous ribosomes without requiring
de novo synthesis of complete ribosome complexes or synthesis of
RPs followed by ribosome remodeling. In short, PTMs can create
heterogeneity on a shorter time scale than possible by ribosome or
RP turnover. Arabidopsis RPs undergo a great variety of covalent
modifications, such as initiator methionine removal, N-terminal
acetylation, N-terminal methylation, lysine N-methylation,
phosphorylation and S-cyanylation (Carroll et al., 2008; Turkina
et al., 2011; Garcıá et al., 2019). Non-targeted analysis of the CRP
revealed more than one protein spot in a 2D gel proteomics analysis
for half of the identified RPs and suggested the presence of multiple
RP isoforms (Giavalisco et al., 2005). Presence of a variety of RP
PTMs is further supported by proteomic studies where
Frontiers in Plant Science | www.frontiersin.org 9
consideration of expected PTM mass shifts enhances peptide
matching per RP family and even RP paralogs (Carroll et al., 2008).

In other eukaryotes, PTMs are involved in translational control
(Simsek and Barna, 2017). The likely best investigated functional
PTM of a plant RP is the TOR-mediated phosphorylation of the eS6
protein (AtRPS6). TOR is a eukaryotic master regulator complex
that integrates energy and nutrient signaling at many system levels
ranging from protein synthesis to the control of cell growth and
proliferation (Xiong and Sheen, 2014; Chowdhury and Köhler,
2015). In plants, auxin is one of the main signals that affect TOR-
mediated translational control (Schepetilnikov and Ryabova, 2017).
Phosphorylation of the 40S ribosomal protein S6 kinase 1 (S6K1) is
modulated by auxin upstream of TOR (Schepetilnikov et al., 2013)
and in turn, leads to eS6 phosphorylation. Next to auxin, S6K1 is
modulated by stimuli like glucose and light signals (Li et al., 2017b).
The phosphorylation status of eS6 affects pre-18S rRNA synthesis at
the rDNA level (Kim et al., 2014). Dephosphorylated eS6 directly
binds to a plant-specific histone deacetylase that represses rDNA
transcription by altering the chromatin structure. Additionally,
translation reinitiation of specific ORFs relies on TOR/S6K1
activity (Schepetilnikov et al., 2011). In essence, eS6
phosphorylation and its upstream signaling cascade regulates
translation at multiple levels by a direct link to a cellular master
switch. Other plant examples include structural RPs that are
differentially phosphorylated during the day and night cycle and
modulate diurnal protein synthesis (Turkina et al., 2011), or P-stalk
proteins that are phosphorylated and are thought to regulate
translation initiation (Szick et al., 1998). Phosphorylation sites are
known, e.g. Ser-103 of P1/P2 paralogs, RPP1A, 1B, and 1C, and Ser-
305 of uL10 paralog, RPP0A (Reiland et al., 2009). Phosphorylation
events at these sites may regulate selective translation in plants, as it
appears to link an integrated stress response in mammalian models
through the interaction with General control nonderepressible2
(GCN2) global translational regulator (Inglis et al., 2019).

In summary, diverse evidence of structural ribosome
heterogeneity challenges the view of ribosomes as mere
executing bystanders of protein synthesis. Observations of
translational regulation by changes of translation initiation
factors (eIFs) need to consider the multiple modes of ribosome
heterogeneity. We think that there is reasonable doubt that
ribosome heterogeneity is a mere consequence of stochastic
ribosome assembly and that heterogeneity has the sole
function of engineering redundancy to ensure a secure supply
of the essential ribosome machinery. We support the view that
evolution molded the ample structural diversity of plant
ribosomes toward functionally specialized ribosomes, where
TABLE 1 | Continued

Study Species Evidence Major Conclusions

(Zhang et al., 2020) Arabidopsis thaliana Proteomics, Quantitative
real-time PCR (qRT-

PCR), reverse genetics

CKB1 functions in UV-B stress possibly by modulating the responses of the uL16 RP
family paralogs of Arabidopsis.

(Cheong et al., 2020) Arabidopsis thaliana Transcriptome data,
sucrose density

ribosome purification,
proteomics, reverse

genetics

REIL proteins affect paralog composition of cytosolic ribosomes of Arabidopsis. The
accumulation of non-translating and translating complexes, as well as their constituent
RP transcript or proteoforms differ in REIL mutants.
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PTM mechanisms act rapidly on slowly turned-over ribosome
populations and de novo synthesis of ribosome complexes or RPs
coupled to ribosome remodeling supports long-term acclimation
to environmental changes.
FUNCTIONAL HETEROGENEITY OF RP
PARALOGS

For heterogeneous ribosomes to be functional, the translated
proteome must be shaped by selective transcript recruiting
according to external stimuli. Means of selective translation by
structural changes to the ribosome at the RP level that became
apparent in other organisms (Ferretti et al., 2017; Shi et al., 2017)
remain to be proven in plants. One of the means that plants use to
select subsets of transcripts for translation are cis-regulatory
elements of mRNAs (Von Arnim et al., 2014; Van Der Horst
et al., 2020). Ribosomes decode cis-regulatory elements. For
instance, in Arabidopsis, RPL24B regulates uORF-mediated
translation reinitiation at the 5´UTR (Nishimura et al., 2005).
Through this mechanism, RPL24B modulates the auxin pathway
during development, directing translation of auxin response factors
(ARFs) (Rosado et al., 2012). Another example of how ribosomes
rely on RPs to target subsets of mRNA is the RACK1 protein family.
In yeast RACK1 affects translation in a length-dependent manner
and promotes translation of short mRNAs (Thompson et al., 2016).
The three Arabidopsis RACK1 paralogs proved to be functionally
unequal (Guo and Chen, 2008). Although complementation studies
and multi-paralog mutants indicate partial genetic redundancies,
due to differential expression of the three paralogs, RACK1 factors
have differential contributions to plant development and translation
(Table 2). Thus, if selective translation is conserved, the paralogs
might show distinct mRNA recruiting abilities. Remarkably, the
knowledge gathered on this RP family by plant ribosome structural
and functional research (Islas-Flores et al., 2015) contributed to the
discovery of how poxviruses can achieve trans-kingdommimicry by
inducing a plant-like status of human RACK1 to translate their own
RNA (Jha et al., 2017). These examples show that plant RP paralogs
can functionally diversify. In the following, we surveyed further
evidence of functional heterogeneity of plant RPs that may reach
beyond cytosolic ribosomes (Table 2).

Cytosolic Ribosomal Proteins
Many RP genes have been mutated to enable a deeper functional
understanding of their gene products. These studies focus on the
developmental role of single or few RP paralogs (Horiguchi et al.,
2011; Horiguchi et al., 2012). A summary of studies that target the
functions of single RPs tell a story of common themes and diversity
(Table 2). Diversity becomes apparent, for example, by observations
that distinct developmental stages need specific RP paralogs, e.g., the
uL23 (AtRPL23) paralogs, which are not equivalent for plant
development (Degenhardt and Bonham-Smith, 2008a). In
addition, the loss of single RP paralogs often causes phenotypes of
varying severity, questioning claims of full functional RP
paralog redundancy.
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On the other hand, common phenotypes are apparent (Table 2).
The rp mutants share typical features, for example, altered leaf
polarity establishment, cell proliferation and shape determination
(Byrne, 2009; Horiguchi et al., 2011; Roy and Arnim, 2013) and the
frequent occurrence of embryo-lethality. The latter observation is in
agreement with the essential function of ribosomes. Early embryo
development is achieved through the use of inherited ribosomes, but
the embryo cannot advance further because ribosome de novo
synthesis is necessary. Where the mutation is not embryo lethal, a
pointed leaf phenotype is frequently found. The shared rp
phenotypes can be explained by ribosome insufficiency, i.e., the
limited availability of translationally competent ribosomes, or
alternatively by the lack of developmentally specialized ribosome
subpopulations. In the plant field, however, the extra ribosomal, or
so-calledmoonlighting functions of RPs, such as detailed for human
pathogenesis mechanisms (Wang et al., 2015), are frequently
considered explanations for rp mutant phenotypes (Gerst, 2018).
These non-structural functions of RPs are just beginning to be
unveiled and may be independent of ribosome specialization (Segev
and Gerst, 2018). Systematic functional analyses of rp paralog
mutants need to account for such extra-ribosomal functions of
RPs. For instance, uL23 recruits a nascent protein to its future
localization in the chloroplast by coupling with its receptor (Kim
et al., 2015). Whether the differential uL23 paralog phenotypes are
influenced by both moonlighting and ribosomal functions remains
an open discussion.

In summary, the unambiguous experimental dissection of the
three basic functional explanations of RP deficiencies, namely,
ribosome specialization, ribosome insufficiency, or moonlighting
of single RPs with functions that are linked to ribosome
biogenesis or translation, is the grand challenge of the field of
plant ribosome physiology.

Plastid Ribosomal Proteins
The cyanobacterial origin of chloroplasts determines the nature
of their 70S bacterial-type ribosomes. Part of the chloroplast
proteome comprising ~3000 proteins, is nuclear encoded (Jensen
and Leister, 2014), while only 100 ORFs remain chloroplast
encoded (Jarvis and López-Juez, 2013). Consequently, final
protein abundances in the chloroplast are mostly determined
posttranscriptionally, translationally, and posttranslationally
(Sun and Zerges, 2015). Recent years have observed increasing
interest in the plastid translational apparatus. The first structure
of the spinach chloroplast ribosome was made available in 2016
using cryo-EM (Bieri et al., 2017). Insights into ribosome-
associated factors were rapidly facilitated by the structure
modeling capabilities of cryo-EM technology (Ahmed et al.,
2017; Bieri et al., 2017; Graf et al., 2017; Boerema et al., 2018).

Plastid-specific ribosomal proteins (PSRPs) are split between
nuclear and plastid encoded and can be divided in the model plant
Arabidopsis into essential and nonessential components (Tiller
et al., 2012). By definition, the nonessential components of
chloroplast ribosomes are a subset of proteins that can be
removed without an obvious phenotype. These nonessential
accessory proteins may represent specialized factors that are
needed beyond optimized in vitro or controlled greenhouse
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TABLE 2 | Studies of structural ribosomal protein mutant lines of Arabidopsis thaliana, Oryza sativa, Nicotiana tabacum, and Nicotiana benthamiana sorted by RP family.

Gene code Paralog Family Phenotype

Cytosolic ribosome
Os03g0725000 RPL6—

OsRPL6
eL6 Two mutants with high water-use efficiency in rice (Moin et al., 2017).

AT4G27090 RPL14B eL14 Heterozygous female gametophytes from rpl14b/RPL14B ovules are impaired for cell fate specification resulting in pollen tube
defects (Luo et al., 2020).

AT5G27850 RPL18C eL18 Pointed leaves (Horiguchi et al., 2011) and reduced leaf area (Wang et al., 2018).
AT1G02780 RPL19A eL19 Embryo lethal (Tzafrir et al., 2004).
AT3G16780 RPL19B—

NbRPL19
eL19 Decreased non-host disease resistance against bacterial pathogens (Nagaraj et al., 2016).

AT2G34480 RPL18aB eL20 Required for both male gametophyte function and embryo development (Yan et al., 2016).
AT2G36620 RPL24A eL24 Suppresses proline accumulation of the parental Arabidopsis thaliana ring zinc finger 1 (atrzf1) mutant (Park et al., 2017).
AT3G53020 RPL24B eL24 Pale leaf-color (Yao et al., 2008), defects in gynoecium apical–basal patterning, RP paralogs with different translational status

(Nishimura et al., 2005; Tiruneh et al., 2013).
AT2G19730 RPL28A eL28 Serrated-pointed leaves (Horiguchi et al., 2011), pale leaf color (Yao et al., 2008).
AT3G59540 RPL38B eL38 Larger palisade mesophyll cells coupled with serrated-pointed leaves (Horiguchi et al., 2011).
AT4G31985 RPL39C eL39 Pointed leaves (Horiguchi et al., 2011).
AT3G52590 RPL40B eL40 Embryo lethal (Tzafrir et al., 2004).
AT3G23390 RPL36aA eL42 Serrated-pointed leaves (Casanova-Sáez et al., 2014).
AT4G14320 RPL36aB eL42 Serrated-pointed leaves (Casanova-Sáez et al., 2014).
AT2G27530 RPL10aB uL1 Serrated-pointed leaves (Pinon et al., 2008) (Horiguchi et al., 2011).
AT2G18020 RPL8A uL2 Embryo lethal (Tzafrir et al., 2004).
AT1G43170 RPL3A uL3 Embryo lethal (Tzafrir et al., 2004), silencing uL3 genes in Nicotiana tabacum affects growth (Popescu and Tumer, 2004).
Os11g0168200 RPL3B uL3 Paralog A does not compensate mutation in paralog B, reduction in free 60S subunits and polysomes, aberrant leaf

morphology (Zheng et al., 2016), silencing uL3 genes in Nicotiana tabacum affects growth (Popescu and Tumer, 2004).
AT3G09630 RPL4A uL4 Aberrant auxin responses and developmental phenotypes (Rosado et al., 2010; Rosado et al., 2012).
AT5G02870 RPL4D uL4 Abaxialized leaves with larger palisade mesophyll cells (Horiguchi et al., 2011), defects in vacuole trafficking and development,

downregulation of genes implicated in lipid metabolism (Li et al., 2015), uORF-mediated translation repression of SAC51 by
sac52-d (AtRPL10A), sac53-d (AtRACK1A), sac56-d (AtRPL4D), and thermospermine (Kakehi et al., 2015).

AT1G33140 RPL9C uL6 Serrated-pointed leaves with laminar outgrowths (Pinon et al., 2008), delayed growth, paralogs C and D have redundant
functions (Devis et al., 2015).

AT4G10450 RPL9D uL6 Delayed growth, paralogs C and D have redundant functions (Devis et al., 2015).
AT5G60670 RPL12C—

NbRPL12
uL11 Decreased non-host disease resistance against bacterial pathogens (Nagaraj et al., 2016).

Os01g0348700 RPL23A—
OsRPL23A

uL14 Two mutants with high water-use efficiency in rice (Moin et al., 2017).

AT3G04400 RPL23C uL14 Embryo lethal (Tzafrir et al., 2004).
AT2G47110 RPL27aB uL15 Female gametogenesis less strongly affected than in aC paralog mutant (Zsögön et al., 2014).
AT1G70600 RPL27aC uL15 Serrated-pointed leaves, embryo and plant shoot developmental defects (Szakonyi and Byrne, 2011), female sterility (Zsögön

et al., 2014).
AT1G14320 RPL10A uL16 Female gametophyte lethality (Imai et al., 2008), embryo lethal (Ferreyra et al., 2010), uORF-mediated translation repression of

SAC51 by sac52-d (AtRPL10A), sac53-d (AtRACK1A), sac56-d (AtRPL4D) and thermospermine (Kakehi et al., 2015).
At1G26910 RPL10B uL16 knock down mutant, reduced growth in all measured physiological parameters (Ferreyra et al., 2010).
AT3G25520 RPL5A uL18 Reduced female/male transmission (Fujikura et al., 2009), serrated-pointed leaves and reduced leaf development (Wang et al.,

2018). Abnormal, similar to abaxialized leaves when combined with as1 (Pinon et al., 2008) or as2, otherwise wild-type like (Yao
et al., 2008).

AT5G39740 RPL5B uL18 Abnormal, similar to abaxialized leaves when combined with as2, otherwise pale coloring (Yao et al., 2008). Reduced female/
male transmission (Fujikura et al., 2009), functionally redundant to RPL5A paralog and decreased leaf width (Van Minnebruggen
et al., 2010).

AT2G39460 RPL23aA uL23 RNAi line, pointed and fused leaves, delayed flowering, retarded plant growth, apical dominance loss, lethal double-mutant with
paralog aB (Degenhardt and Bonham-Smith, 2008a), low levels of RPL23A amiRNA result in an albino phenotype (Kim et al.,
2015).

AT3G55280 RPL23aB uL23 No phenotype reported, lethal double-mutant with paralog aA (Degenhardt and Bonham-Smith, 2008a), low levels of RPL23A
amiRNA result in an albino phenotype (Kim et al., 2015).

AT1G80750 RPL7A uL30 Pointed leaves and reduced leaf area (Wang et al., 2018).
AT2G01250 RPL7B uL30 Serrated-pointed leaves (Horiguchi et al., 2011) and reduced leaf area and development (Wang et al., 2018).
AT4G31700 RPS6A eS6 Strongest phenotype within eS6 family, has been combined with as1 and as2 mutants (Horiguchi et al., 2011), reduced leaf

area and enhanced var2-mediated leaf variegation (Wang et al., 2018), slow growth (haplodeficiency) in paralog A-B double
mutant (Creff et al., 2010).

AT5G10360 RPS6B eS6 Defective phyllotaxy, apical dominance loss (Morimoto et al., 2002), slow growth (haplodeficiency) in paralog A-B double mutant
(Creff et al., 2010).

AT5G41520 RPS10B eS10 Affects the formation and separation of shoot lateral organs, including the shoot axillary meristems (Stirnberg et al., 2012)
AT3G53890 RPS21B eS21 Serrated-pointed leaves, reduced leaf area (Wang et al., 2018) and cell size in shoot (Horiguchi et al., 2011).
AT5G27700 RPS21C eS21 Functionally redundant to B paralog, reduced leaf area (Wang et al., 2018).
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conditions. The severity of the psrp mutant phenotypes does not
strictly correlate with their orthologous prokaryotic counterparts
(Romani et al., 2012). This observation suggests plant-specific
features of plastid ribosome biogenesis and translation. The
functional studies reported in Table 2 are selections of snapshots
that highlight plant-specific aspects of plastid ribosomes. PSRP
families are typically smaller than cytosolic RP families, and some
PSRPs appear to be single copies. Future research will determine
whether concepts of ribosome heterogeneity, specialization, and
insufficiency or PSRP moonlighting may apply to plastid ribosomes
that acclimate to environmental stress, such as cold stress. Plants
appear to modify plastid ribosomes at suboptimal temperatures. In
Arabidopsis, tolerance to cold can be achieved by overexpression of
plastid ribosomal proteins, e.g., uS5c (PRSP5) (Zhang et al., 2016).
PRPS5 and PRPS1 interact indirectly with the CHLOROPLAST
RIBOSOME ASSOCIATED (CRASS) protein to support
translation during cold stress (Pulido et al., 2018). In rice, uL13c
is important for plastid development during cold (Song et al., 2014).

Mitochondrial Ribosomal Proteins
The number of plant mito-rp studies is small as compared to those
analyzing genes of the cytosolic or plastidic ribosomes. Nevertheless,
the already existing body of literature, reviewed elsewhere (Robles
Frontiers in Plant Science | www.frontiersin.org 12
and Quesada, 2017), points toward mito-RP families with
functionally divergent members across plant species. Moreover,
mito-RPs have particular roles during development (Robles and
Quesada, 2017) that still need to be linked to either moonlighting
functions or to their translational context. Interestingly, single-
particle cryo-EM images in combination with proteomic analyses
of enriched Arabidopsis mitochondrial ribosome fractions have
shown substantial structural divergence from their prokaryote and
eukaryote counterparts (Rugen et al., 2019; Waltz et al., 2019). The
current body of studies suggests plant-specific features of
mitochondrial translation.
TRANSCRIPTOMIC EVIDENCE OF PLANT
RIBOSOME SPECIALIZATION: A TEST-
CASE

This section exemplifies and critically assesses instances of
differential paralog usage that can be observed at the transcript
level. Final protein abundance is shaped at several control points
ranging from chromatin modifications to transcription, translation
and PTMs (Vogel and Marcotte, 2012). Hence, transcript levels
TABLE 2 | Continued

Gene code Paralog Family Phenotype

AT5G28060 RPS24B eS24 Serrated-pointed leaves, reduced leaf area (Wang et al., 2018).
AT3G61110 RPS27A eS27 Increased sensitivity to UV-B and methyl methanesulfonate (Revenkova et al., 1999).
AT5G03850 RPS28B eS28 Decreased cell proliferation, has been combined with as1 and as2 mutations (Horiguchi et al., 2011).
AT3G11940 RPS5A uS7 Cell-division perturbed when heterozygous, embryo lethal when homozygous (Weijers et al., 2001).
AT2G19720 RPS15aB uS8 Pointed leaves, a double mutant with RPL28A was investigated (Horiguchi et al., 2011), type II uS8, evolutionarily divergent and

plant specific paralog (Szick-Miranda et al., 2010).
AT4G29430 RPS15aE uS8 Type II uS8, evolutionarily divergent and plant specific paralog, larger leaf surface, root, and cells (Szick-Miranda et al., 2010).
AT1G22780 RPS18A uS13 Pointed leaves and reduced growth (Van Lijsebettens et al., 1994).
AT4G00100 RPS13A uS15 Defects of leaf and trichome morphology, retarded flowering and root growth (Ito et al., 2000).
AT3G48930 RPS11A uS17 Embryo lethal (Tzafrir et al., 2004).
AT1G18080 RACK1A RACK1 Pointed leaf phenotype and partial genetic redundancy of paralogs by complementation studies (Guo and Chen, 2008),

AtRPL4D restored by sac52-d (AtRPL10A), sac53-d (AtRACK1A), sac56-d and thermospermine (Kakehi et al., 2015).
AT1G48630 RACK1B RACK1 No phenotype reported, exacerbates RACK1A mutation defects (Guo and Chen, 2008).
AT3G18130 RACK1C RACK1 No phenotype reported, exacerbates RACK1A mutation defects (Guo and Chen, 2008).

Plastid ribosome
Os01g0662300 RPL12 bL12c Albino lethal phenotype at seedling stage (Zhao et al., 2016).
Os02g0259600 RPL21/

CL21
bL21c Chloroplast developmental defects and seedling death in rice, the synonymous mutant name is asl2 (albino seedling lethality 2)

(Lin et al., 2015).
Os01g0749200 RPL13A uL13c Single-base substitution affects chloroplast development in rice grown under low temperature conditions (Song et al., 2014),

albino lethal-seedlings of T-DNA insertion mutant (Lee et al., 2019).
AT3G25920 RPL15 uL15c Decreased levels of uL15c lead to chlorosis and reduced leaf photosynthetic capacity, the null mutant is embryo lethal (Bobik

et al., 2019).
AT5G54600 RPL24 uL24c Reductions in growth, leaf pigments and photosynthesis (Romani et al., 2012).
AT5G30510 RPS1 bS1c Reductions in growth, leaf pigments and photosynthesis (Romani et al., 2012).
Os12g0563200 RPS6 bS6c Albino phenotype at low temperature (Wang et al., 2018), pale leaves and defective thylakoid architecture (Sun et al., 2016).
Os01g0678600 RPS20 bS20c Albino lethal phenotype at seedling stage (Gong et al., 2013).
AT2G38140 PSRP-4 bTHXc Putative role in light-dependent regulation of translation (Tiller et al., 2012).
AT3G52150 PSRP-2 cS22 Putative role in light-dependent regulation of translation (Tiller et al., 2012).
AT1G68590 PSRP-3 cS23 Putative role in light-dependent regulation of translation (Tiller et al., 2012).
AT2G33800 RPS5 uS5c Smaller rosettes, photosystem I and II components, and many PRPs are suppressed, involved in plant development and cold

stress (Zhang et al., 2016).
Os03g0769100 RPS9 uS9c Embryo lethal in maize (Ma and Dooner, 2004), albino at three leaf stage in rice (Qiu et al., 2018).
AT1G79850 RPS17 uS17c Reductions in growth, leaf pigments and photosynthesis (Romani et al., 2012), embryo-lethal in maize (Schultes et al., 2000).
To reduce ambiguity of interpretation, we avoided to report mutants of multiple defective loci where unique RP mutant lines were available; information of combined mutants is indicated.
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cannot predict the final active protein concentration or nature and
extent of PTMs. Nevertheless, transcript changes are arguably a
crucial component of the translational response to environmental
cues in plants (see Deviation From Canonical Compositions and
Table 1). In yeast, a mechanism that remains to be probed in plants
relies on regulating the transcription of RPs in response to arrested
ribosome biogenesis (Albert et al., 2019). Hence, we argue that
changes in RP transcript levels provide one line of evidence—in the
sense of a translation potential (Figure 1 Step 3) or feedback
mechanisms—that supports the search for ribosome specialization
in the context of stress acclimation.

To substantiate this claim, we chose temperature stress
acclimation as a test case and show that differential gene
expression may indicate changes of ribosome paralog composition
as one mechanism of generating functional heterogeneity adjusted
to environmental cues (Figure 3). Exploring temperature stress was
the obvious choice in view of the increasingly visible effects of global
warming. We propose a meta-analysis of the dynamics of RP family
transcripts following opposing temperature shifts. In our case study,
we compare Arabidopsis thaliana Col-0 root exposed to heat shock
(38°C) and cold (4°C) stress with the respective control at 20°C
optimized temperature. The experiment is identified as entry AT-
00120 in the Genevestigator repository (organism: Arabidopsis
thaliana, selection: AT-8, type: Gene). We based our test-case on
a compiled list of 376 Arabidopsis genes that have been annotated as
members of the cytosolic ribosomal proteome. As to the procedures,
the background-subtracted microarray signals of experiment AT-
00120 were retrieved and imported into the R statistical
programming environment. All initial matrix related
transformations, object conversions and data handling were
performed with the R packages stringi (version 1.4.6—https://
cran.r-project.org/web/packages/stringi/index.html), reshape
(Wickham, 2007), and Tidyverse (version 1.0.0—https://github.
com/hadley/tidyverse). Only the signals belonging to heat or cold
stress subset of AT-00120 were further processed, because
suboptimal temperature was reported to impact significantly RBF
and RP transcripts (Sáez-Vásquez and Delseny, 2019). The resulting
matrix was quantile normalized using the R package
preprocessCore (version 1.46.0 - https://github.com/bmbolstad/
preprocessCore). Afterwards the distribution of the data within
treatments and genes was evaluated with density plots for
treatments using the R package ggplot2 (Ginestet, 2011), and a
Cullen and Frey graph for ATGs using the R package fitdistrplus
(Delignette-Muller and Dutang, 2015). Analysis of the distribution
patterns determined that a generalized linear model (GLM) was the
appropriate statistical test. Accordingly, GLMs were fitted with
different link functions to parametrize the mean and variances.
Gamma, Lognormal and Gaussian functions were applied. The
ranking and significances of resulting P values did not differ among
link functions, showing the robustness of quantile normalization of
data. Significance values were corrected for multiple testing using
the false discovery rate (FDR) approach (Benjamini and Hochberg,
1995) and a significance threshold of P < 0.05 applied to all analyses.

We selected a test case of RP gene expression in root tissue
because this tissue is often neglected in temperature studies, even
though root systems of crops are frequently exposed to
Frontiers in Plant Science | www.frontiersin.org 13
temperature extremes (Kaspar and Bland, 1992). Normalized
gene expression intensities were divided in 60S and 40S subunit
coding genes according to a curated list of the Arabidopsis
cytosolic ribosomal proteome (Supplemental Table S1).
Abundances were auto-scaled in order to plot them in a
heatmap with equal means and variances (Gu et al., 2014; Gu
et al., 2016) (Figure 3A). The Arabidopsis RP names were used as
identifiers in the heatmap to highlight paralog-specific behavior of
transcripts. Each ribosomal protein family was scored to belong to
one of three response groups. Group (1) was defined as
“increased”, if transcripts of one or more paralogs within a RP
family were significantly increased. Group (2) was defined as
“decreased”, if transcripts of one or more paralogs within a RP
family were significantly decreased. Finally, group (3) was defined
as “inversely regulated”, if a transcript of at least one paralog was
significantly increased and in parallel another paralog of the same
RP family was significantly decreased, either under heat or under
cold stress (Figures 3A–C). To visualize the spatial distribution
and location within the 80S ribosome, the increased, decreased,
and inversely regulated RP families were mapped onto the
previously outlined 3D representation of the 80S wheat
monosome (Figure 2), applying different color codes to the
significantly changed RP families (Figure 4). For the mapping
PyMOL visualization software (RRID : SCR_000305) was used to
obtain a surface representation and to highlight proteins with
significant changes. By choice of 2D rotations, emphasis was given
to the proteins that are visible from either the interface- or
solvent-sides. In the interest of simplifying the image, rRNAs
were excluded from the structural representation. The expression
patterns were reduced from paralogs in Figure 3 to RP-family
level in Figure 4 for the sake of visualization and reflect the RP
paralog specific behaviors reported in Supplemental Table S2.

This meta-analysis adds the new aspect of differential RP
paralog usage to the plethora of insights gathered on plant
system reprogramming during temperature acclimation at
metabolic, transcript or protein levels, e.g. (Scharf and Nover,
1982; Merret et al., 2017; Calixto et al., 2018; Beine-Golovchuk et
al., 2018). Considering the significant observations only from this
exemplary study, heat shock may induce more changes than cold
acclimation (Figure 3). The results indicate fundamental
temperature-specific reprogramming of RP gene transcription
(Figures 3A, B) and differential responses among cytosolic RP
families under opposing conditions of temperature stress.
Focusing on the changes that occur within RP families, we
encountered instances of potential temperature-specialized RP
paralogs, and, as exemplified by the inversely regulated P1/P2 P-
stalk components AtRPP1D and AtRPP1A, even indications of
paralog preference under heat stress (Figures 3C and 4C, D).

Some of the significant gene expression changes from our test
case have been reported and investigated previously. For example,
the transcript encoding for eL37 (AtRPL37B) is sequestered into
stress granules upon heat stress to be quickly released during stress
deacclimation to resume cytosolic ribosome synthesis (Merret et al.,
2017). This process limits availability of eL37 (AtRPL37B)
transcripts for translation under heat stress. Sequestration into
stress granules stores and recycles transcripts and therefore does
June 2020 | Volume 11 | Article 948
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not require changes of total mRNA. Our meta-analysis indicates an
additional regulation of the eL37 family at total mRNA level.
Significant transcript changes of two different eL37 paralogs,
AtRPL37a and AtRPL37C, occur following heat stress and are
also part of cold acclimation (Figures 3 and 4).

RP transcript levels of Arabidopsis roots are, however, not
necessarily associated with compositional changes of the non-
translating ribo-proteome (Cheong et al., 2020). Ribosomes are
stable complexes and have a longer half-life as compared to average
protein half-lives. Ribosomes may share this property with other
multi-protein complexes as plant enzymes embedded in complexes
have a significantly longer half-life than free enzymes (Nelson et al.,
2013). Mammalian RPs have a longer half-life in the cytoplasm,
Frontiers in Plant Science | www.frontiersin.org 14
where RPs can be considered to be enriched in the ribosome-bound
state, as compared to RPs of the nucleolus, where higher fractions of
free RPs are expected to support the assembly process (Boisvert
et al., 2012). A ribosome half-life range of ~ 72-178 h is reported for
normal and regenerating rat liver (Hirsch and Hiatt, 1966; Nikolov
et al., 1983). A similar range of 3-4 days was determined for
Arabidopsis ribosomes (Salih et al., 2019). Therefore, it can be
argued that transcript changes will need to extend over long periods
to alter overall RP or RP paralog abundances or, alternatively,
transcript changes will only affect the subpopulation of newly
synthesized ribosomes. Cytosolic ribosomes may remodel surface
accessible RPs upon environmental cues, e.g., by paralog loss and
addition or by exchange processes. Such variation may explain why
A B

C

FIGURE 3 | Differential expression in response to temperature stress of Arabidopsis genes encoding structural ribosomal proteins of the 60S subunit. Expression
values of 96 40S and 136 60S RPs and RP paralogs were retrieved from Genevestigator experiment AT-00120 of root tissue (n = 30) exposed to 38°C heat shock
(n = 6) or 4°C cold stress (n = 12) compared to 20°C control conditions [n= 12]. Transcriptome data processing and analysis was carried out in the R programming
language and environment for statistical computing, https://www.R-project.org/ (Ihaka and Gentleman, 1996), using the R project for statistical computing (RRID :
SCR_001905). Gene intensities were background subtracted and quantile normalized. (A) Heatmap of autoscaled and treatment-scaled abundances ranging from -1
(yellow) to +1 (purple), mean centering was performed by the function colMeans with the R package timeSeries (version 3042.102; https://CRAN.R-project.org/
package=timeSeries). Correlation and Euclidean distance produced equivalent heatmaps due to the mode of scaling. R packages ComplexHeatmap (Gu et al.,
2016), circlize (Gu et al., 2014) and fBasics (version 3042.89; https://CRAN.R-project.org/package=fBasics) were used to transform data and create the Heatmap.
The statistical significance of changed gene expression relative to the control was evaluated by a generalized linear model (GLM). (B) False discovery rate (FDR)-
corrected, significant temperature-responsive transcripts following heat shock (red, 20 genes) or cold stress (blue, 10 genes). One example of inversely regulated
expression of two members of a single RP family, i.e., P-stalk components, during heat is highlighted in bold and by a gray outline (* in panel C). (C) Boxplots of the
highlighted inversely heat responsive transcript abundances of the P1/P2 paralogs RPP1D and RPP1A. Data are log2-transformed, background subtracted, quantile
normalized, and non-scaled.
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cytosolic plant RPs have significantly higher standard deviations of
mean degradation rates as compared to other large plant protein
complexes (Li et al., 2017a). In contrast to the long ribosome half-
life, the variance of total RP degradation rates does not differ
compared to the average variance of proteins that are not part of
large complexes. Higher turnover of individual cytosolic RPs may
favor the quick appearance of new ribosomal populations by
restructuring the cellular CRP population rather than by a
complete degradation and de novo synthesis cycle. Therefore, we
suggest that altered transcript abundances may rapidly translate into
altered CRP stoichiometry. Studies aiming to characterize
translatome-reprogramming at the onset of stress acclimation
should reveal differential dynamics of RP and RP paralog
synthesis and incorporation into the translating CRP.
FUTURE PERSPECTIVES

Evidence of ribosome specialization by differential paralog use alone
(e.g., Yu et al., 2019) or in combination with the other modes of
structural variation is currently considered a hard problem in science
(Haag and Dinman, 2019). Functional specialization of ribosomes,
ribosome insufficiency, and the moonlighting functions of RPs (e.g.,
Kyritsis et al., 2019) in their non-ribosome-bound state are difficult
Frontiers in Plant Science | www.frontiersin.org 15
to differentiate and likely are not mutually exclusive. For example, 1)
an RP or RP paralog that gives rise to a substoichiometric ribosome
subpopulation may have a moonlighting function in its free state or
2) the absence of a ribosome subpopulation lacking a specialized RP
paralog or combination of paralogs from different RP families, may
cause partial insufficiency. Clearly, future studies of RP paralogsmust
consider and characterize ribosome heterogeneity and test potential
constraints of translation for effects of ribosome insufficiency and for
control by moonlighting functions (Ferretti and Karbstein, 2019).

Despite the complexity of investigating ribosome heterogeneity
and specialization, new technologies make tackling this hard
problem feasible (Emmott et al., 2019). These technologies fill the
gap of knowledge between the transcriptome and the acting
proteome. Ribosome profiling methods support claims of
ribosome specialization by monitoring actively translated mRNAs.
This variant of transcript analysis sequences the ~30 nucleotide
footprints that are protected by 80S translating ribosomes (Ingolia
et al., 2009; Juntawong et al., 2015; Hsu et al., 2016; Ingolia et al.,
2019). Ribosome profiling or footprinting is an improved proxy of
transcript translation compared to total mRNA profiling. This
technique answers questions related to transcripts that are
ribosome-bound under given experimental conditions, revealing
the distribution of monosomes along translated transcripts and
allowing to spot translational stalling events. Furthermore,
A B

C D

FIGURE 4 | RP remodeling potential of Arabidopsis 80S ribosomes upon 4°C cold stress (A, B) or 38°C heat stress (C, D). The visualization outlines mapped
changed transcript abundances in response to temperature stress compared to optimized control conditions, i.e., ~ 20°C. Transcript data were statistically evaluated
across individual paralogs within RP families as reported in Figure 3 and mapped to a 3D rendering of the wheat 80S monosome (Armache, 2011) using the rotated
2D positions of Figure 2. Homology of wheat and Arabidopsis RP families was confirmed by protein BLAST matching. Black color indicates RP families with
inversely regulated paralog transcripts following either cold or heat stress. Yellow and purple represent RP families with increased or decreased transcript
abundances of at least one of the RP paralogs. The paralog identities and temperature specific transcript changes are reported in Supplemental Table S2.
June 2020 | Volume 11 | Article 948

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Martinez-Seidel et al. Plant Ribosome Heterogeneity and Specialization
improvements relative to RNA-seq partly rely on excluding mRNA
that is part of inactive transcript pools. Examples of excluded
transcripts include those sequestered in stress granules for
transient storage or associated with processing bodies and subject
to catabolism (Chantarachot and Bailey-Serres, 2018; Lee and
Seydoux, 2019), as well as the contribution of the nuclear
transcriptome and incompletely spliced pre-mature mRNAs (Lee
and Bailey-Serres, 2018). Ultimately, transcript complexity is
reduced by more than 50% when polysomal-bound mRNAs are
sequenced (Zhang et al., 2015). In essence, Ribosome profiling, aka
Ribo-Seq, provides improved insight into the translated
transcriptome (Wang and Sachs, 1997; Seidelt et al., 2009;
Ishimura et al., 2014; Hou et al., 2016; Matsuo et al., 2017;
Yamashita et al., 2017; Zhang et al., 2017).

Additional information that is required to link the actively
translated transcriptome to the proteome may be obtained by
measuring de novo protein synthesis through label-assisted
proteomics. Label-assisted proteomic studies monitor the
kinetics of label incorporation into proteins, allowing for
calculations of protein synthesis and degradation rates at
biological steady states (Nelson and Millar, 2015). Under
optimized conditions, label incorporation can be used as direct
evidence of de novo ribosome biosynthesis or remodeling by
condition-specific RP paralogs. In the first case, the tracer
incorporation into total ribosome complexes can be measured
after amino acid hydrolysis and isotope enrichment analysis.
These measurements can be used to calculate rates of de novo
ribosome biosynthesis. In the latter case, calculations of
individual RP paralog turnover (Salih et al., 2019) indicate
which RPs and RP paralogs are de novo synthesized and which
paralogs are recycled from pre-existing ribosomes.

Moving beyond biological steady states will be required to reveal
whether environmental cues trigger ribosome heterogeneity. To do
so, current turnover studies using a metabolic tracer to label RP
paralogs have to be refined. The limitations that need to be
overcome include intrinsic properties of plant cytosolic ribosomes.
First, the unusually high variance of degradation RP rates (Li et al.,
2017a) suggests that the stoichiometry of the ribosome complexes or
paralog composition may change. Consequently, controls are
necessary that verify or detect remodeling and deviations of
ribosome complexes from the canonical structure (Figures 2 and
4). Second, paralog-resolved 15N-dependent turnover analysis of
RPs is possible (Salih et al., 2019; Salih et al., 2020), but the dynamics
of label incorporation into soluble amino acids pools need to be
taken into account. Environmental stresses including temperature
stress affect metabolites and change pool sizes of free amino acids,
e.g., (Kaplan et al., 2004). The rate of label incorporation into amino
acid monomers will change in response to environmental cues. If
the free amino acid pools are not carefully considered, observed
differential label incorporation rates into RPs or RP paralogs may be
misinterpreted. Third, non-translating and translating fractions of
ribosome complexes exist that may harbor different quantities of
pre-existing and de novo synthesized ribosome. Separation of the
diverse pools of ribosome complexes, e.g. (Beine-Golovchuk et al.,
2018), will enhance our insight and answer questions on complex
Frontiers in Plant Science | www.frontiersin.org 16
specific or non-specific label incorporation by calculating protein
turnover of plant RPs in the non-translating compared to
translating ribosomal fractions.

Finally and as a general consideration, functional ribosome
heterogeneity research in plants will enhance sustainability in
agriculture. Rice and maize are plant models and crops in which
ribosome biology is already well understood. In rice, the paralog
OsL23A, homolog of AtRPL23A, was shown to positively affect
the drought and salt stress responses (Moin et al., 2017).
Moreover, ribosome heterogeneity is apparently triggered by
environmental stress in rice (Moin et al., 2016; Moin et al.,
2017). This observation indicates that ribosome heterogeneity
may be generalized. Crops engineered at ribosome level may be
of utmost importance for future food security. In maize, the tool
box of ribosome profiling has been refined (Chotewutmontri
et al., 2018), and insights into translatome regulation during
drought stress (Lei et al., 2015) and viral infection (Xu et al.,
2019) have been gained. RP abundance and phosphorylation
status change during germination in maize (Hernández-
Hermenegildo et al., 2018) and provide the potential of selective
mRNA translation by heterogeneous ribosome populations
during seedling development. Similarly, specific clusters of
tomato RBFs and RPs are differentially expressed and are
characteristics of tissue identity (Simm et al., 2015). These
studies indicate the importance of future functional RP studies
for diminishing the effects of climate stress on crop production.
SUMMARY

Given the highly variable nature of the plant ribosomal proteome
and the availability of many experimental tools in the plant field
(Merchante et al., 2017), plants may have extraordinary potential
for the study of structural and functional ribosome heterogeneity at
RP level. The high number of plant paralogs per RP family
compared to other eukaryote models warrants explanation and
in depth analysis of potential paralog specialization that can
contribute to a plant ribosomal code. Current research indicates
that plant ribosome populations are heterogeneous at multiple
levels. Deviations of the canonical ribosome structure by
substoichiometry, additional interacting proteins, PTMs of rRNA
and RPs, or rRNA variants, and by multiple RP paralogs are
known. The functional consequence of ribosome heterogeneity,
however, is in many cases a matter of debate, but ribosome
specialization has been proven in some cases, for instance in the
case of the TOR-mediated control of ribosome function by
secondary modification of the RPS6 structural protein (Kim
et al., 2014; Chowdhury and Köhler, 2015; Dobrenel et al., 2016).
A wealth of functional analyses of plant RPs indicates that the
structural variation potential of the multiple RPs or paralogs may
have functions in plant development and physiology. The
involvement of RP paralogs in plant stress physiology is
supported by current literature (Table 2). Differential gene
expression analysis of high versus low temperature responses,
where RP gene expression is largely inverted and the balance
June 2020 | Volume 11 | Article 948
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between paralogs of RP families can be changed (Figures 3 and 4)
supports the notion of plant ribosome specialization.

Ribosomesmust translate specific subsets ofmRNAspecies tobe
considered functionally specialized. The intrinsic potential of
ribosome remodeling and de novo synthesis to produce ribosome
populations adapted to control translation of mRNA subsets needs
to be further investigated. Such research has been applied to
developmental biology as well as to stress physiology across many
model organisms (Bailey-Serres, 1999; Kawaguchi et al., 2004;
Branco-Price et al., 2005; Nicolaï et al., 2006; Branco-Price et al.,
2008; Mustroph et al., 2009; Matsuura et al., 2010; Sormani et al.,
2011a; Juntawong and Bailey-Serres, 2012; Moeller et al., 2012;
Ueda et al., 2012; Wu et al., 2012; Xue and Barna, 2012; Browning
and Bailey-Serres, 2015; Thompson et al., 2016; Jha et al., 2017; Shi
et al., 2017; Simsek et al., 2017; Bates et al., 2018; Genuth and Barna,
2018; Guo, 2018; Emmott et al., 2019; Mageeney and Ware, 2019;
Sulima and Dinman, 2019; Yu et al., 2019). However, questions of
functional conservation, convergence, or speciation across
organism kingdoms remain largely unanswered. Full explanation
of a ribosomal code will likely reveal synergies of mechanisms and
may require concomitant exchanges of RPs, involvement of
ribosome associated factors, changes of rRNA status, PTMs, and
ribosome biogenesis or ribosome remodeling. All in all, we
hypothesize that all ribosome functions, i.e., ribosome biogenesis,
translation initiation, elongation, termination, and recycling, may
be affected by ribosome heterogeneity.
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