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Selenium (Se) is a beneficial element to plants and an essential element to humans.
Colonization by arbuscular mycorrhizal fungi (AMF) and supply of phosphorus (P) fertilizer
may affect the bioavailability of Se in soils and the absorption of Se by plants. To
investigate the interaction between AMF and P fertilizer on the transformation of soil Se
fractions and the availability of Se in the rhizosphere of alfalfa, we conducted a pot
experiment to grow alfalfa in a loessial soil with three P levels (0, 5, and 20 mg kg-1) and
two mycorrhizal inoculation treatments (without mycorrhizal inoculation [−AMF] and with
mycorrhizal inoculation [+AMF]), and the interaction between the two factors was
estimated with two-way ANOVA. The soil in all pots was supplied with Se (Na2SeO3) at
1 mg kg-1. In our results, shoot Se concentration decreased, but plant Se content
increased significantly as P level increased and had a significant positive correlation with
AMF colonization rate. The amount of total carboxylates in the rhizosphere was strongly
affected by AMF. The amounts of rhizosphere carboxylates and alkaline phosphatase
activity in the +AMF and 0P treatments were significantly higher than those in other
treatments. The concentration of exchangeable-Se in rhizosphere soil had a positive
correlation with carboxylates. We speculated that rhizosphere carboxylates promoted the
transformation of stable Se (iron oxide-bound Se) into available Se forms, i.e.
exchangeable Se and soluble Se. Colonization by AMF and low P availability stimulated
alfalfa roots to release more carboxylates and alkaline phosphatase. AMF and P fertilizer
affected the transformation of soil Se fractions in the rhizosphere of alfalfa.

Keywords: alkaline phosphatase activity, Glomus mosseae, legume, phosphorus, rhizosphere carboxylates,
selenium fraction
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HIGHLIGHTS

1. AM inoculation and P input enhanced alfalfa P and Se
accumulation and availability

2. Carboxylates and alkaline phosphatase affected Se
translocation in soil-alfalfa systems

3. AM inoculation and P input increased Se availability through
increasing EX-Se

4. Fe-Se and EX-Se could reflect Se availability in loessial soil
INTRODUCTION

Selenium (Se) is a naturally occurring metalloid element which is
essential at low concentrations to humans and animals, but toxic
at high concentrations (Sors et al., 2005). Se concentrations in
staple foods should not be lower than the critical standard of 100
mg kg-1, below which a human’s basic needs cannot be met
(Combs, 2001). Low intakes of Se by humans can cause health
disorders and increase the risk of cancers (Liu et al., 2004;
Whanger, 2004; He et al., 2017a). Se in soil can enter food
chain via plant uptake, and humans mainly acquire dietary Se
from plant-based foods through the food chain (Rayman, 2000;
Yu et al., 2011). Besides, low concentrations of Se in soil can
upregulate the production of higher plant enzymes (e.g.,
peroxidases and reductases) and protect plants from abiotic
stresses (Wang et al., 2019), and have beneficial effects on
plant growth and yield (Wang, Q. et al., 2016; White, 2018).
Therefore, in agricultural production, the application of Se
fertilizers is one of the effective ways to increase plant Se
uptake, thus meeting the requirements of human health
(Zhang et al., 2014).

The bioavailability of Se in soils is not only affected by soil
properties such as pH, redox conditions, organic matter content,
and synergy or antagonism of coexisting elements (Eich-
Greatorex et al., 2010; Wang, Q. et al., 2016), but is also
related to soil Se content and fraction (Wang et al., 2012).
Activating stable Se in soil is a key process to increase the
content of available Se and promote Se uptake by plants.
According to the differences in water solubility and binding
strength with various soil components, soil Se can be divided into
different fractions, including soluble Se, exchangeable Se, iron
oxide-bound Se, organic-matter-bound Se, and residual Se.
These fractions are widely used to study the chemical Se forms
(Wang, Q. et al., 2016; Zhang et al., 2017). Soluble Se and
exchangeable Se are easily taken up by plants, and considered
as plant-available fractions (Zhang et al., 2017). Iron oxide-
bound Se is firmly fixed on the mineral surface, so it’s not
readily absorbed by plants (Qin et al., 2012). Organic-matter-
bound Se is a potential source of available Se, and it can be
released into soil solution and absorbed by plant through
mineralization (Kulp and Pratt, 2004; Wang et al., 2018). Some
reports have indicated that low molecular weight organic acids
(LMWOAs) play a key role in mobilizing Se, thus greatly
increasing bioavailable Se (Qin et al., 2004). The mobilization
Frontiers in Plant Science | www.frontiersin.org 2
process with LMWOAs, through competitive adsorption or
desorption, can release Se from the solid phase in soil into
soluble Se and exchangeable Se (Dinh et al., 2017). Li et al.
(2017b) reported that organic acids can activate stable Se and
increase Se availability in low pH soils.

Phosphorus (P) plays an important role in plant growth, and
P deficiency limits crop production in many regions of the world
(He et al., 2017b). Mainly due to the poor solubility and slow
diffusion of P salts, and tight adsorption of P by iron-oxides,
aluminum-oxides/hydroxides or calcium compounds in soil, P
availability in soils is often very low (Turrión et al., 2018). To
increase the availability of soil P, P fertilizers are commonly
added to the soil to maintain crop P demand and achieve yield
targets (Wang et al., 2015). The reliance on high rates of P
fertilizers not only consumes the limited rock phosphate
reserves, but also causes environmental pollution (Pang et al.,
2018). Therefore, increasing the availability of P in soils and the
amount of available P for plant uptake is very important to
overcome P deficiencies in agricultural ecosystems. On the other
hand, due to the strong competition between phosphate and
selenite by sorption sites, it is expected to raise selenite
availability to plants by the use of phosphate fertilizers (Barrow
et al., 2005; Mora et al., 2008). Ngigi et al. (2019) observed that
addition of P fertilizers positively affects the impact of Se
fertilization with low soil P, and Li et al. (2018) got a similar
conclusion in rice (Oryza sativa). However, some studies have
conflicting results that P fertilizer has a negative effect on the
uptake of Se by plants (Liu et al., 2004; Zhang et al., 2014). As yet,
the effects of P fertilizers on Se uptake by plants are controversial.

Arbuscular mycorrhizal fungi (AMF) are an important
component of the soil microbial community living in the
rhizosphere and are present around more than 80% of
terrestrial plant roots (Nanjareddy et al., 2014; He et al.,
2017b). AMF are mandatory symbionts, which colonize most
terrestrial plants and help in plant growth, nutrition, and
tolerance for diseases (He et al., 2017c). They provide a direct
link between plant roots and soil, and explore soil beyond the
rhizosphere by increasing the absorptive root surface through
hyphae, thus helping host plant acquire water and essential
nutrients, especially P (Smith and Read, 1997; Langer et al.,
2010). Due to higher phosphatase activity of the internal hyphae
of mycorrhizal fungi, which can hydrolyze more organic P,
mycorrhizal association benefited yield in barley by improving
phosphatase activity for P uptake (Goicoechea et al., 2004).
Smith and Read (2008) indicated that the inoculation of AMF
can improve P uptake by increasing the volume of soil explored
by roots. When roots were colonized by AMF, the mycorrhizal
pathway of uptake was the dominant pathway for P acquisition
(Smith et al., 2003; Watts-Williams et al., 2015). Seymour et al.
(2019) also found that AMF markedly increased P content of the
linseed (Linum usitatissimum L.). Meanwhile, there are some
studies about the effects of AMF on the uptake and accumulation
of Se by plants, which are controversial. In the study of Durán
et al. (2016), there was no significant difference in Se
concentrations between mycorrhizal and non-mycorrhizal
plants. Munier-Lamy et al. (2007) reported that AMF reduced
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Se uptake by 30% in ryegrass. Goicoechea et al. (2015) got a
similar conclusion in leaves of lettuces. Researches by Yu et al.
(2011) showed that mycorrhizal inoculation increased plant
uptake of P, but inhibited selenite uptake by plant roots. In
contrary, Luo et al. (2019) indicated that AMF significantly
enhanced Se accumulation in winter wheat in selenite-spiked
soils. Nevertheless, the mechanisms related to the interaction of
AMF and P input on Se uptake by alfalfa and fractions
transformation in the soil systems are still not clear.

Alfalfa (Medicago sativa L.) is a perennial forage legume
grown widely, it is sensitive to changes in soil P supply, and it
is also able to accumulate Se (He et al., 2020; Peng et al., 2020). In
Se-deficient areas, the production of Se-enriched alfalfa is one of
the most important ways to supply Se to humans and livestock
(He et al., 2019). Previous studies have reported the effects of
AMF or P fertilizers on the uptake and accumulation of Se by
plants, but little is known about soil available Se levels and the
transformation of soil Se fractions under P and AMF interaction.
The objective of this study was to investigate how AMF
treatments affect the transformation of soil Se fractions in a
plant-soil system with three levels of P fertilizer treatments. We
hypothesized that: 1) colonization by AMF and low P availability
would stimulate alfalfa roots to release more carboxylates and
alkaline phosphatase; 2) AMF and P fertilizer would affect the
transformation of soil Se fractions in the rhizosphere of alfalfa;
3) variations in carboxylates exudation and alkaline phosphatase
activity in the rhizosphere are important for P and Se acquisition.
MATERIALS AND METHODS

Substrate Preparation
The loessial soil was collected from the top plow layer (0–20 cm)
of the Ansai County in the middle of the Loess Plateau in China
(approximately 108°5’E, 36°30’N). The soil was air-dried and
passed through a 2-mm sieve for the pot experiment. The texture
of the soil was 45% sand, 41.6% silt, and 13.4% clay. The soil had
a pH of 8.7, it had 0.1 mg kg-1 total Se, 0.1 g kg-1 total nitrogen
(N), 0.5 g kg-1 total P, 3.3 mg g-1 plant-available P, 16.4 mg kg-1

total potassium (K), 2.8 g kg-1 organic matter, and 41.1 mg g-1 total
calcium (Ca), 4.2 mg g-1 total magnesium (Mg), 12.4 mg g-1 total
iron (Fe), 257 mg g-1 total manganese (Mn), 9.7 mg g-1 total copper
(Cu), 37.9 mg g-1 total zinc (Zn). The substrates in all pots were
amended with 1 mg Se kg-1 (supplied as sodium selenite [Na2SeO3]
[Analytically pure, Xiya Reagent, China]).

The experiment included three P-application levels (0 [0P], 5
[5P], and 20 [20P] mg kg-1) and two mycorrhizal inoculation
treatments, i.e. without mycorrhizal inoculation (−AMF) and
with mycorrhizal inoculation (+AMF). The AMF inoculum
specie was vesicular-arbuscular mycorrhiza Glomus mosseae
BGC YN02 (511C0001BGCAM0022, National Infrastructure of
Microbial Resources, China), supplied by the Bank of
Glomeromycota in China. We cultivated each fungal isolate
using capsicum (Capsicum annuum L) as the host species in
pot cultures in a greenhouse in the Institute of Plant Nutrition
and Resources, Beijing Academy of Agriculture and Forestry
Frontiers in Plant Science | www.frontiersin.org 3
Sciences. The substrate of these cultures was collected after 4
months, air-dried, and controlled for the presence of viable AM
fungal spores of the correct morphotype. The inoculum
consisted of a mixture of soil, hyphae, spores, and infected root
fragments. Non-transparent PVC tubes of 15-cm diameter and
25-cm height with a sealed bottom were used as pots for the
experiment. Each pot was first filled with 4 kg of the loessial soil.
The soils used for this experiment were sterilized once by
autoclaving at 120°C for 2 h. The +AMF treatments contained
20 g of the mycorrhizal inoculum. For the -AMF treatments, 20 g
of the same inoculum was filtered using distilled water through
11 mm filter papers (Whatman, UK) to obtain 20 ml filtrate to
supply the soil with microbes without AMF communities, then
the same amount of mycorrhizal inoculum was autoclaved and
added to the soil in each pot.

One hundred milligrams N kg-1 as ammonium nitrate
(NH4NO3) was used for all treatments, and 5 and 20 mg P kg-1

as monopotassium phosphate (KH2PO4) were used in the 5P and
20P treatment groups, respectively. In all groups, KCl was added
to each pot to obtain the dose of K supply at 50 mg K kg-1 soil. The
experiment was set as a completely randomized block design, with
four replicates for each treatment. The soil in all pots was
incubated for 8 weeks by watering with deionized (DI) water at
about 60% field capacity in a greenhouse before growing plants.

Plant Cultivation and Harvest
Medicago sativa L. cv Golden Empress, an introduced cultivar of
alfalfa, was used in this study. Seeds were first sterilized in a 30%
(v:v) hydrogen peroxide (H2O2) solution, rinsed with DI water
repeatedly. Twenty seeds were sown in each pot and thinned to
10 plants per pot 4 weeks after sowing. DI water was added to
maintain the soil moisture content at about 60% field capacity by
regular weighing. Plant fresh weight (about 30 g per pot at
harvest) was small compared with the water content (about 792 g
per pot), therefore, it was ignored when the amount of water that
should be replenished was calculated. The experiment was
carried out from May 2018 to September 2018 for a total of
120 d in a greenhouse in the Institute of Soil and Water
Conservation, Yangling, Shaanxi, China.

At harvest, shoots were carefully cut from the pots. The root
systems were gently shaken to remove excess soil, the soil
remaining attached to the roots was defined as rhizosphere soil
(Pang et al., 2018). The rhizosphere soil was divided into two
parts, one air-dried for analysis of Se fractions and soil P, and
another stored at −20°C for the determination of alkaline
phosphatase activity and microbial P immobilization.

Collection and Determination of
Rhizosphere Carboxylates
Carboxylates in the rhizosphere were extracted according to
Pang et al. (2018) and He et al. (2017b). For each pot with
plants, about 1.0 g fresh roots with rhizosphere soil was
transferred to a beaker containing 20 ml of 0.2 mM CaCl2 to
ensure cell integrity and gently shaken to remove the rhizosphere
soil. The pH of the rhizosphere extract was measured using a pH
meter. A 1 ml subsample of the rhizosphere extract was filtered
June 2020 | Volume 11 | Article 966
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through a 0.22-mm syringe filter into a 1-ml HPLC vial, then
acidified with one drop of concentrated phosphoric acid, and
frozen at −20°C until HPLC analysis. HPLC analysis of the
elution liquid was performed using a Waters 1525 HPLC
equipped with Waters 2489 detector and Alltima C-18 reverse
phase column (250 × 4.6 mm, 5 mm) (Waters, Milford MA,
USA). Working standards of malic acid, oxalic acid, citric acid,
acetic acid, malonic acid, and tartaric acid were used to identify
carboxylates at 210 nm (Cawthray, 2003). The root in the beaker
after the extraction of carboxylates was cleaned, oven-dried at
60°C for 72 h, and RDM recorded. Amount of rhizosphere
carboxylates were calculated as mmol g root-1 dry mass.

Determination of Root Colonization
by AMF
After the extraction of carboxylates, all roots in each pot were
picked out and placed in individual plastic bag. These roots were
washed carefully with DI water and then kept at 4°C. Fresh root
subsamples were randomly taken to evaluate root AMF
colonization. Roots were maintained in 10% (w/v) KOH
solution in a 90°C water bath for 40 min, rinsed with water,
acidified with 2% (v/v) HCl, and then stained with 0.05% (w/v)
Trypan blue (Wen et al., 2019). For each root sample, 15 pieces of
1-cm segment were randomly selected and mounted on three
slides for observation with a light microscope. The percentages of
AM colonization were calculated under a microscope using the
gridline intersect method (Giovannetti and Mosse, 1980).

Determination of Plant Phosphorus and
Selenium Concentrations
Shoots and roots were oven-dried at 60°C for 72 h, and weighed
separately to obtain the dry mass. The oven-dried samples were
then finely ground for analysis of P and Se concentrations. For
each plant sample, about 0.5 g subsample was digested using a
mixture of nitric and perchloric acid (v/v, 4:1). Plant P
concentration was determined using the molybdenum blue
method after digestion (Lu, 2000). For plant Se analysis, the
digested solution was treated with 6 M HCl and heated for 20
min at 93–95°C to reduce all species of Se to selenite. Se
concentration was determined using an atomic fluorescence
spectrophotometer (AFS-230E, Beijing Haiguang Instruments
Company, China) (Wang et al., 2012).

Analysis of Soil Phosphorus and Alkaline
Phosphatase Activity
Bulk soil samples were taken from each pot after being mixed
thoroughly at harvest. The bulk soil was divided into two parts,
one air-dried for analysis of Se fractions and soil P, and another
stored at −20°C for the determination of alkaline phosphatase
activity and microbial P immobilization.

Soil available phosphorus (Olsen-P) was extracted with 0.5 M
NaHCO3, and its concentration was determined by the
molybdenum blue method (Lu, 2000). Soil microbial biomass
phosphorus (MBP) were determined using the method of
chloroform fumigation-extraction (Brookes et al., 1985; Vance
et al., 1987). Alkaline phosphatase (EC 3.1.3.1) activity was
Frontiers in Plant Science | www.frontiersin.org 4
measured based on the absorption of released phenol (Guan
et al., 1986).

Determination of Soil Selenium Fractions
Soil Se fractions were determined using the sequential extraction
procedure described by Wang et al. (2012). In brief, soil samples
(about 1.000 g) were placed into 50 ml centrifuge tubes and
extracted using different solutions (solid/liquid = 1:10) for each
step. The solutions for extracting the soluble fraction (SOL-Se),
exchangeable fraction (EX-Se), iron oxide-bound fraction (Fe-
Se), and organic-matter-bound fraction (OR-Se) are 0.25 M KCl,
0.1 M KH2PO4-0.1 M K2HPO4, 2.5 M HCl, and 0.1 M K2S2O8,
respectively. All solutions obtained were heated at 93–95°C for
20 min in 6MHCl solution to transform selenate into selenite. Se
concentration in the solution was determined using an atomic
fluorescence spectrophotometer (AFS-230E, Beijing Haiguang
Instruments Company, China) (Wang et al., 2012).

Statistical Analysis
The data were statistically analyzed using analysis of variance
(ANOVA) and Pearson correlation analysis procedures with the
SPSS 20.0 statistical software. Linear regression analysis was
conducted in Origin 9.0. The effect of AMF treatment (+AMF
and −AMF), P fertilizer (0P, 5P, and 20P), and the interaction
between the two factors were estimated with two-way ANOVA.
One-way ANOVA and Tukey test were performed individually
for each P fertilizer level (0P, 5P, and 20P) and AMF treatments
(+AMF and −AMF). Significance level was set at 0.05. Partial
least squares path modeling (PLS-PM) was used to identify the
major pathways of the influences of predictor variables on plant
Se uptake using the “innerplot” function of the plspm package in
R 3.6.0.
RESULTS

AMF Root Colonization and Plant Growth
In the +AMF treatments, the mean values of AMF root
colonization rate in 0P, 5P, and 20P treatments was 54, 45,
and 69% (Figure S1). Shoot dry mass (SDM) and root dry mass
(RDM) significantly increased in 5P and 20P treatments
compared to 0P treatment (P < 0.01), and increased in +AMF
treatments compared to −AMF treatments at the same P level.
The two-way ANOVA revealed that P level had a stronger effect
on SDM and RDM compared to inoculation (Table S1). Root to
shoot ratio was higher in +AMF treatments than in −AMF
treatments within the 0P and 20P treatments. Inoculation and
P level had a significant interaction on the root to shoot ratio (P <
0.01) (Figure 1).

Phosphorus and Selenium Concentrations
in Plants
Shoot and root P concentrations increased in 5P and 20P
treatments compared to 0P treatment (Figure 1). Only P level
had a significant effect on shoot and root P concentration, yet
there was a significant interaction between P level and
June 2020 | Volume 11 | Article 966
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inoculation on shoot and root P concentrations (both P < 0.01).
Plant P content was higher in +AMF treatment than in −AMF
treatment within the 5P and 20P treatments, and it significantly
increased in 5P and 20P treatments compared to 0P treatment
(P < 0.001) (Table S1).

Shoot Se concentration decreased when soil P level increased,
being significantly lower in 20P treatment than in 0P treatment
(P < 0.05). Root Se concentration significantly decreased in 20P
treatment compared to 0P treatment (P < 0.05). Only soil P level
had a significant effect on shoot and root Se concentrations. Plant
Se content significantly increased when soil P level increased (P <
0.001). At the same P level, +AMF treatment significantly
increased Se content compared to −AMF treatment. (Figure 1;
Table S1).

Soil Microbial Biomass Phosphorus and
Plant-Available Phosphorus
Soil MBP decreased when soil P level increased in both the
rhizosphere soil and bulk soil (Figure 2). In all treatments,
rhizosphere soil MBP was significantly higher than bulk soil
MBP within the same P and inoculation treatments (P < 0.001).
Frontiers in Plant Science | www.frontiersin.org 5
Soil Olsen-P in both the rhizosphere soil and bulk soil
significantly increased with increasing P level (both P < 0.05).
In +AMF treatment, Olsen-P was higher in bulk soil than in
rhizosphere soil within the 5P and 20P treatments. On the
contrary, in the −AMF treatment, Olsen-P was lower in bulk
soil than rhizosphere soil within the 5P and 20P treatments.
Inoculation did not have a significant effect on MBP and Olsen-P
(Table S1).

Soil pH, Rhizosphere Soil Alkaline
Phosphatase Activity, and Carboxylates
Rhizosphere pH was significantly lower than bulk soil pH (P <
0.05) and significantly declined as P level increased (P < 0.05)
(Figure S2). Rhizosphere pH was 7.90–8.09 in the −AMF
treatments, and 7.72–8.06 in the +AMF treatments. Alkaline
phosphatase activity in the rhizosphere soil is presented in
Figure 3. In the +AMF and −AMF treatments, alkaline
phosphatase activity significantly decreased, i.e. by 16–38% (P <
0.001) and 14–32% (P < 0.001) respectively, as P level increased.
Alkaline phosphatase activity was significantly higher in +AMF
treatment than in −AMF treatment within the same P treatments
A B C

D E F

G H I

FIGURE 1 | Shoot dry mass (A), root dry mass (B), root to shoot ratio (C), P and Se concentrations (D, E, G, H), total P and Se contents in plants per pot (F, I) for
all treatments. Data are presented as means ± S.E. (n = 4). One-way ANOVA and Tukey’s test were performed for each AMF treatment (+AMF or −AMF). Significant
differences (P < 0.05) between treatments are indicated with different letters above the bars.
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(P < 0.001). According to the two-way ANOVA, AMF and P
treatments did not have a significant interaction on rhizosphere
alkaline phosphatase activity, and P treatment had a stronger
effect compared to AMF treatment (Table S1). Alkaline
phosphatase activity in rhizosphere soil was significantly higher
than that in bulk soil (P < 0.05).

The amounts of carboxylates in the rhizosphere are presented
in Figure 4. In +AMF treatment, the amount of oxalate, tartrate,
malate, malonate, acetate, citrate, and the total amount of
rhizosphere carboxylates measured relative to RDM was 35–69,
191–378, 278–311, 189–263, 337–369, 122–152, and 1,196–1,457
mmol g-1, respectively. In −AMF treatment, the amount of
oxalate, tartrate, malate, malonate, acetate, citrate, and the total
amount of rhizosphere carboxylates measured relative to RDM
was 31–45, 47–121, 209–248, 100–163, 120–203, 65–111, and
674–863 mmol g-1, respectively. In both +AMF and −AMF
treatments, the amounts of carboxylates decreased when soil P
level increased, and it was significantly higher in +AMF
treatment than in −AMF treatment within the same P
treatments (P < 0.001) (Table S1).
A B

FIGURE 2 | Microbial-biomass P (A) and available P (B) in the rhizosphere soil and bulk soil. Data are presented as means ± S.E. (n = 4). One-way ANOVA and
Tukey’s test were performed in the +AMF and −AMF treatments separately for the bulk soil and rhizosphere soil. Lower-case letters indicate significant differences
between the rhizosphere soil, and upper-case letters indicate significant differences between the bulk soil. One-way ANOVA significance (P < 0.05) to test for
significant differences between the bulk soil and rhizosphere soil for each treatment is indicated by *. *P < 0.05; **P < 0.01; ***P < 0.001.
A B

FIGURE 3 | Alkaline phosphatase activity in the rhizosphere (A) and bulk soil (B). Data are presented as means ± S.E. (n = 4). Two-way ANOVA and Tukey’s test
were performed for each AMF treatment (+AMF and −AMF) and P treatment (P0, P5, and P20). ANOVA P-values are indicated in the graphs. Significant differences
(P < 0.05) between treatments are indicated with different letters above the bars.
Frontiers in Plant Science | www.frontiersin.org 6
FIGURE 4 | The amount of carboxylates relative to root dry mass. Data are
presented as means ± S.E. (n = 4). Two-way ANOVA and Tukey’s test were
performed for each AMF treatment (+AMF and −AMF) and P treatments (P0,
P5, and P20). ANOVA P-values are indicated on the graph.
June 2020 | Volume 11 | Article 966

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Peng et al. Interaction of AMF and P on Se Uptake
Soil Selenium Fractions
Se fractions in bulk soil and rhizosphere soil Se in the soil was
fractionated into four fractions. The average proportions of Se in
different fractions followed the order of EX-Se > SOL-Se >
Fe-Se > OR-Se (Figure S3). In the rhizosphere soil, SOL-Se
decreased in the +AMF treatment, but increased significantly in
the −AMF treatment as the P level increased, while EX-Se
concentration did not change significantly in the +AMF or
−AMF treatment (Figure 5). Compared to bulk soil, SOL-Se
and EX-Se concentrations in rhizosphere soil increased by 2–36
and 17–50% in the +AMF treatment, and decreased by 2–49 and
2–18% in the −AMF treatment, respectively. In the rhizosphere
soil, Fe-Se concentration was higher in 20P treatment compared
to 0P and 5P treatments in +AMF and −AMF treatments. In the
+AMF treatment, Fe-Se concentration increased by 7–29% in
rhizosphere soil compared to bulk soil, and decreased by 4–26%
in the −AMF treatment. In bulk soil, OR-Se concentration
increased significantly as the P level increased in +AMF
treatment (P < 0.05), but decreased significantly in −AMF
treatment (P < 0.05). In the rhizosphere soil, OR-Se
concentration was higher in 20P treatment than in 0P and 5P
Frontiers in Plant Science | www.frontiersin.org 7
treatments. In the +AMF treatment, OR-Se concentration
increased by 13–39% in rhizosphere soil compared to bulk soil.
No significant difference among three P levels in the bulk soil was
observed in SOL-Se, EX-Se, and Fe-Se concentrations in +AMF
or −AMF treatment.

Correlations and Partial Least Squares
Path Modeling
Plant Se content showed a significant correlation with plant P
content (r = 0.729, P < 0.01), dry mass (r = 0.599, P < 0.01), alkaline
phosphatase activity (r = –0.391, P < 0.05), MBP (r = –0.620, P <
0.001), rhizosphere pH (r = –0.518, P < 0.01), Olsen-P (r = –0.514,
P < 0.05), and carboxylates (r = –0.452, P < 0.05) (Table 1). Root Se
concentration had a significant positive correlation with total
carboxylates (r = 0.453, P < 0.05) and citrate (r = 0.485, P < 0.01)
(Figure 6), but no significant correlation with oxalate (r = 0.045, P >
0.05), tartrate (r = 0.163, P > 0.05), malate (r = 0.014, P > 0.05),
malonate (r = 0.140, P > 0.05), or acetate (r = 0.055, P > 0.05).

The PLS-PM identified direct and indirect effects of the
colonization by AMF colonization rate, P supply rate,
rhizosphere carboxylates amount, soil properties (rhizosphere
A B

C D

FIGURE 5 | Sequential extraction results of selenium fractions in the bulk soil and rhizosphere soil. (A) Soluble Se; (B) Exchangeable Se; (C) Iron oxide-bound Se;
(D) Organic matter-bound Se. Data are presented as means ± S.E. (n = 4). One-way ANOVA and Tukey’s test were performed for each Se fraction in the +AMF and
−AMF treatments separately for the bulk soil and rhizosphere soil. Lower-case letters indicate significant differences between the bulk soil, and upper-case letters
indicate significant differences between the rhizosphere soil. One-way ANOVA significance (P < 0.05) to test for significant differences between the bulk soil and
rhizosphere soil for each treatment is indicated by *.
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pH, MBP, and Olsen-P), rhizosphere soil alkaline phosphatase
activity, plant biomass, and plant P content on plant Se content
(Figure 7). The soil properties (–0.098), rhizosphere carboxylates
(–0.400), and alkaline phosphatase activity (–0.455) had negative
total-effects on plant Se content, while the colonization by AMF
(0.234), P supply (0.523), plant biomass (0.564), and plant P
content (0.597) showed positive total-effects on it.
DISCUSSION

Our results show that alfalfa dry mass and shoot and root P
concentrations were significantly increased by the interaction of
AMF and P treatments. Patharajan and Raaman (2012) reported
that alfalfa dry mass in mycorrhizal plants were significantly
higher than that in non-mycorrhizal plants. Mycorrhizal
symbiosis can play an important role in improving plant
viability (Patharajan and Raaman, 2012; Ju et al., 2019). In the
5P and 20P treatments, inoculation of AMF increased plant P
content, possibly due to the higher plant growth and greater
mobilization of soil P by external hyphae (Asghari et al., 2005;
Parihar et al., 2019). Some previous reports also indicated that
mycorrhizal colonization can improve the P status of plants
(Chen et al., 2010; Goicoechea et al., 2014; He et al., 2017c). The
Frontiers in Plant Science | www.frontiersin.org 8
result that mycorrhizal colonization rate was the highest in P20
treatment in the present study did not agree with the conclusions
of some studies, which have shown a negative correlation
between AMF colonization rate and soil available P (Asghari
et al., 2005; Kowalska and Konieczny, 2019). It might be due to
the relatively low levels of available P in the soil in all treatments
(<10 mg available P kg-1 soil). Fornara et al. (2019) reported that
when soil available P concentration reached 50 mg kg-1 and
beyond, AMF colonization rate decreased significantly. On the
other hand, AM fungi may be parasitic to their host plants if the
net cost of AM symbiosis exceeds the net benefit (Johnson et al.,
1997). AM symbiosis could be altered by the level of soil available
P, and mutualism likely occur in P-deficient soils (Johnson et al.,
2015). In the results of Liu et al. (2020), AMF colonization rate
was the highest in P30 treatment compared with the control and
P100 treatments. In the present study, both AMF colonization
rate and P content were the highest in P20 treatment, likely
indicating the best benefit of AM symbiosis (Sawers et al., 2017).

In our results, shoot Se concentration decreased from 6.0 to
5.5 mg kg-1, but plant Se content per pot increased from 26 to 35
mg as the P level increased in the +AMF treatments. It can be
explained by the dilution effect that the increased biomass
diluted the Se concentration in plants (Mora et al., 2008; Lee
et al., 2011). Carter et al. (1972) found that P-fertilizer
TABLE 1 | Pearson’s correlation matrix for plant traits and soil properties.

Plant P content Plant Se content Dry mass Root to shoot ratio Apase MBP pH Olsen-P Carboxylates

Plant Se content 0.729**
Dry mass 0.588** 0.599**
Root to shoot ratio −0.092 0.172 0.441*
Apase −0.751** −0.391* −0.432* 0.257
MBP −0.556** −0.620** −0.638** −0.229 0.391
pH −0.538** −0.518** −0.389 0.027 0.383 0.717**
Olsen-P 0.736** −0.514* 0.608** −0.074 −0.707** −0.540** −0.479*
Carboxylates 0.001 −0.452* −0.028 0.070 0.467* 0.046 −0.049 −0.360
AMF colonization 0.242 0.384 0.199 0.383 0.233 −0.243 −0.300 0.097 0.750**
June 2020
 | Volume 1
Apase, rhizosphere alkaline phosphatase activity; MBP, microbial-biomass P; Olsen-P, available P; pH, rhizosphere pH; carboxylates, the amount of total carboxylates in the rhizosphere.
*P < 0.05. **P < 0.01; ***P < 0.001.
Correlation coefficients with P < 0.05 were shown in bolded.
A B

FIGURE 6 | Correlation between root Se concentration and total carboxylates (A), and citrate (B) in the rhizosphere. ANOVA P-values are indicated in the graphs.
Gray areas are the 95% confidence intervals of the models.
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application increased Se content in alfalfa grown in alkaline soils,
and speculated that the addition of P replaced soil-adsorbed Se,
since P had a higher adsorption capacity than Se. The presence of
P in soil decreased Se adsorption on soil surfaces, and increased
Se concentration in soil solution, thereby increasing Se uptake by
plants (Nakamaru and KenjiSekine, 2008; Lee et al., 2011). The
effects of AMF on plant Se uptake are still not clear. In the study
of Yu et al. (2011), mycorrhizal inoculation inhibited Se uptake
by plant roots, due to enhanced binding of Se on hyphae and root
surface, which inhibited further movement of Se to roots.
However, Luo et al. (2019) reported that mycorrhizal
inoculation significantly increased uptake of selenate and
selenite by increasing the valid absorption area of roots in
winter wheat (Triticum aestivum L.). Golubkina et al. (2019)
reported that colonization by AMF increased yield and Se
content of shallot bulbs (Allium cepa L.) by increasing the
antioxidant activity of ascorbic acid when compared with the
non-inoculated control. Most of previous studies have been
focused on the effects of only P input or mycorrhiza
colonization on plant Se uptake. Our study demonstrated for
Frontiers in Plant Science | www.frontiersin.org 9
the first time that the synergistic effect of colonization by AMF
and low P input promoted Se uptake by alfalfa, and the release of
carboxylates, especial citrate, and alkaline phosphatase in the
rhizosphere was the key factor driving increased Se uptake. In the
present results, the AMF had a positive effect on plant Se content,
which was increased by 5–10% with AMF. Our hypothesis that
carboxylates are important for Se acquisition was supported by the
observation of a significant positive correlation between root Se
concentration and total carboxylates (r = 0.45, P < 0.05), especially
citrate (r = 0.49, P < 0.01). There are studies showing that root
exudates can compete with Se for sorption sites and reduce the
retention of Se in soil, thus promoting the release of Se and
facilitating plant Se uptake (Kaiser and Guggenberger, 2003;
Adeleke et al., 2017; Dinh et al., 2017). Furthermore, the results
of PLS-PM also supported that the colonization by AMF directly
determined the carboxylates in the rhizosphere, and indirectly
caused the increase of plant Se content.

Inoculation by AMF can affect plant rooting patterns as well
as the supply of available nutrients to hosts, thereby changing the
composition and quantity of root exudates, which may modify
A

B

FIGURE 7 | Cascading relationships of plant Se content with plant traits and soil properties. Partial least squares path modelling disentangles the major pathways of
the influences of plant traits and soil properties on plant Se content (A, B). Blue and red arrows indicate positive and negative flows of causality, respectively.
*P < 0.05; **P < 0.01; ***P < 0.001. Numbers on the arrow indicate significant standardized path coefficients. R2 indicates the variance of dependent variable
explained by the model.
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fungal and microbial activity (Barea et al., 2005). Lower P
availability and +AMF stimulated plant roots to release more
carboxylates to the soil, and AMF had a stronger effect than P
treatments on the carboxylates content (Table S1). The amount
of total carboxylates had a positive correlation with root to shoot
ratio, alkaline phosphatase activity, and MBP (Table 1). Given
the high alkaline phosphatase activity close to the roots, alfalfa
roots apparently released substantial amounts of carboxylates.
Roots inoculated by AMF can improve the acquisition of the
mobilized P (Gerke, 2015). The release of carboxylates, especially
oxalate and citrate, was considered the most effective way of P
mobilization (Gerke, 2015). Compared to −AMF treatment,
oxalate and citrate concentrations significantly increased in
+AMF treatment within the same P levels. The increase in
microbial activity and the change in microbial community
structure could have affected the oxalate and citrate secretion
(Dessaux et al., 2016; Bornø et al., 2018).

Soil phosphatases affect soil P cycling and can be affected by
many factors, including rhizosphere processes and growth periods
(Ye et al., 2018; Duan et al., 2019). Some reports have indicated
that the high activities of the rhizosphere enzymes are due to their
release by roots or fungi (Asmar et al., 1995; Kandeler et al., 2002;
Wang, Y. L. et al., 2016). Our results showed that alkaline
phosphatase activity was significantly affected by the P and
AMF treatments. Within the same AMF and P treatments,
alkaline phosphatase activity was significantly higher in
rhizosphere soil than in bulk soil. We also found that alkaline
phosphatase activity had a positive correlation with root to shoot
ratio (Table 1). Therefore, the increase in alkaline phosphatase
activity in rhizosphere soil might be due to release greater amounts
of alkaline phosphatase from the roots. Wang, Y. L. et al. (2016)
got similar results in canola (B. napus cv. MARIE). Kandeler et al.
(2002) also revealed that alkaline phosphatase activity was affected
by the presence of maize roots. Furthermore, inoculation by AMF
can influence soil microbial community, which determined the
potential for enzyme synthesis (Kandeler et al., 2002). In our
study, alkaline phosphatase activity in the rhizosphere was higher
in +AMF treatment compared with −AMF treatment, and had a
significant positive correlation with carboxylates and MBP. The
differences between +AMF and −AMF treatments in alkaline
phosphatase activity can be explained by the increased microbial
biomass (Li et al., 2017a) and the shift in microbial community
structure (Ventura et al., 2014).

Se availability depends not only on the content of Se but also
on its fractions in the environment (Dinh et al., 2017). Some
reports indicated that SOL-Se and EX-Se are available for plant
uptake because they are free in soil solution or weakly adsorbed
on the surface of soil particles (Kulp and Pratt, 2004; Wang, Q.
et al., 2016). In this study, the main Se fraction in the soil was EX-
Se. EX-Se concentration was significantly higher in +AMF
treatment than that in −AMF treatment, and higher in the
rhizosphere soil than that in bulk soil. EX-Se had a positive
correlation with the amount of carboxylates (Table S2). Previous
reports indicated that organic acids significantly reduced the
number of sorption sites by affecting soil surface characteristics
(Kaiser and Guggenberger, 2003; Zhu et al., 2016). Kaiser and
Frontiers in Plant Science | www.frontiersin.org 10
Guggenberger (2003) indicated that after equilibration for 24 h,
surface sorption sites were reduced by 33.8% by oxalate.
Therefore, carboxylates compete with Se for adsorption sites,
thereby reducing the retention of Se in soil and promoting the
release of soil Se, promoting plant Se uptake (Adeleke et al., 2017;
Dinh et al., 2017). On the other hand, EX-Se and SOL-Se
concentrations significantly increased as P supply increased. It
also can explain the increased plant Se content by the increasing
available Se concentrations. Meanwhile, compared to −AMF
treatments, Fe-Se concentrations were decreased by 23–35%,
and the total amount of carboxylates were increased by 41–53%
in +AMF treatments. Fe-Se is firmly fixed by mineral surfaces
and thus not readily absorbed by plants. This process is
controlled by the quantity and quality of organic acids (Qin
et al., 2012). Our results indicated that the increased amounts of
organic acids caused the transformation of stable Se into
available Se forms that are relatively available to plants.
CONCLUSION

The present study provides an integrated perspective of how
AMF and P fertilizer enhance the Se acquisition by alfalfa via
altering the rhizosphere. Colonization by AMF and low P
availability stimulated alfalfa roots to release more carboxylates
and alkaline phosphatase, which are important in P and Se
acquisition. Rhizosphere carboxylates, especially citrate,
increased when roots were colonized by AMF and under low P
input, indicating that the response of alfalfa to AMF and P
fertilizer can alter the composition and amounts of root exudates.
The presence of P in soil reduced Se adsorption on soil surfaces,
and increased Se concentration in soil solution, thereby
increasing Se uptake by alfalfa. Furthermore, the increased
amounts of carboxylates likely reduced the retention of Se in
soil, caused the transformation of stable Se into available Se
forms and consequently promoted the absorption of Se by alfalfa.
Therefore, the variations in carboxylates exudation and alkaline
phosphatase activity in the rhizosphere might play a major role
in promoting P and Se acquisition by alfalfa. The results in this
study are valuable for understanding Se and P uptake by alfalfa
and the transformation of Se fractions in soil under the
interaction between AMF and P fertilizers.
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