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The Role of ROS Homeostasis in
ABA-Induced Guard Cell Signaling

Anthony E. Postiglione and Gloria K. Muday *

Department of Biology and the Center for Molecular Signaling, Wake Forest University, Winston Salem, NC, United States

The hormonal and environmental regulation of stomatal aperture is mediated by a
complex signaling pathway found within the guard cells that surround stomata.
Abscisic acid (ABA) induces stomatal closure in response to drought stress by binding
to its guard cell localized receptor, initiating a signaling cascade that includes synthesis of
reactive oxygen species (ROS). Genetic evidence in Arabidopsis indicates that ROS
produced by plasma membrane respiratory burst oxidase homolog (RBOH) enzymes
RBOHD and RBOHF modulate guard cell signaling and stomatal closure. However, ABA-
induced ROS accumulates in many locations such as the cytoplasm, chloroplasts,
nucleus, and endomembranes, some of which do not coincide with plasma membrane
localized RBOHs. ABA-induced guard cell ROS accumulation has distinct spatial and
temporal patterns that drive stomatal closure. Productive ROS signaling requires both
rapid increases in ROS, as well as the ability of cells to prevent ROS from reaching
damaging levels through synthesis of antioxidants, including flavonols. The relationship
between locations of ROS accumulation and ABA signaling and the role of enzymatic and
small molecule ROS scavengers in maintaining ROS homeostasis in guard cells are
summarized in this review. Understanding the mechanisms of ROS production and
homeostasis and the role of ROS in guard cell signaling can provide a better
understanding of plant response to stress and could provide an avenue for the
development of crop plants with increased stress tolerance.

Keywords: guard cell, reactive oxygen species, stomata, abscisic acid, flavonols, respiratory burst oxidase homolog

INTRODUCTION

Stomatal aperture must be tightly regulated to ensure optimal CO, entry for photosynthesis while
protecting plants against excess water loss and pathogen attack (Nilson and Assmann, 2007). The
opening and closing of stomata are mediated by changes in turgor pressure inside guard cells that
surround the stomatal pore (Schroeder et al, 2001). Guard cell turgor is controlled by signal
transduction cascades that are induced by many environmental signals, including water availability
(Xu et al., 2014; Xu et al., 2016; Li et al., 2017; Qi et al., 2018; Qu et al., 2018; Tdldsepp et al., 2018).
Decreased water availability increases abscisic acid (ABA) synthesis, which induces stomatal closure
and a myriad of other plant responses (Zhu, 2016; Vishwakarma et al., 2017).

Guard cells have an elegant signaling cascade induced upon ABA binding to a family of soluble
receptor proteins including PYRABACTIN RESISTANCE 1 (PYR1) (Park et al., 2009), which is
summarized in Figure 1A. The ABA-bound receptor inhibits Clade A protein phosphatases type 2C
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(PP2Cs), such as ABI1 (Ma et al., 2009; Park et al., 2009;
Nishimura et al, 2010). The inhibition of PP2Cs prevents
protein dephosphorylation and negative regulation of ABA
signaling (Park et al., 2009). Targets of PP2Cs include Sucrose
nonfermenting Related Kinase 2 family members (SnRK2s), with
the best characterized target being OPEN STOMATA 1 (OST1)/

SnRK2.6 (Mustilli et al., 2002). OST1 transmits the ABA signal
through phosphorylation of downstream targets, ultimately
triggering a rapid burst of Reactive Oxygen Species (ROS) (Pei
et al., 2000), which can then stimulate guard cell ion channels
(Geiger et al., 2009; Demidchik, 2018). In this review, we
summarize the current literature on ABA-induced ROS
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FIGURE 1 | ABA increases ROS levels in guard cells in multiple subcellular locations. (A) A schematic model of the ABA signaling pathway during stomatal closure.
Blue fonts represent proteins, while green fonts represent molecules. (B) Treatment with ABA for 45 min increases DCF fluorescence and decreases stomatal
aperture in tomato guard cells. (C) The signal of the generic ROS sensor, DCF (green), is detected in the cytosol, nucleus, chloroplasts (pink), and endomembranes,
with rapid and dramatic increases in all these locations in response to ABA treatment. RBOH enzymes (purple) produce ROS at the plasma membrane but can be
internalized into endosomes. ROS signal also overlays peroxisome (orange), but whether this signal increases with ABA has not yet been reported. Central vacuole is
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production, targets of ROS signaling pathways, and how ROS
homeostasis is maintained to keep ROS concentration
appropriate for productive guard cell signaling.

ABA INDUCED ROS IN GUARD CELLS
DRIVES STOMATAL CLOSURE

ROS can act as a developmental and hormonal response signal
(Mittler, 2017; Huang et al., 2019) with ABA-induced ROS bursts
emerging as an elegant example (Singh et al, 2017). ABA-
induced ROS accumulation in guard cells is most frequently
visualized by fluorescence of the ROS sensor 2',7'-
dichlorofluorescein (DCF) (Pei et al., 2000; Murata et al., 2001;
Watkins et al., 2014; Watkins et al., 2017). Improvements in the
resolution of confocal microscopy have revealed ABA-induced
ROS signals in the guard cell nucleus, cytoplasm, chloroplasts,
and endomembrane bodies (Watkins et al., 2017), (Figure 1B).
ABA-dependent increases in DCF fluorescence are rapid, having
been reported within 2 min after ABA treatment (Pei et al,
2000), although other studies detect slower changes observed
within 15 min and maximal after 45 min (Figure 1B) (Watkins
et al,, 2017). These DCF changes are slower than changes in ion
movements detected at 1 min after ABA treatment via
electrophysiology (Hamilton et al,, 2000). This difference may
reflect the methodology used for these measurements.

It is important to understand which ROS are increased in
response to ABA as they each have distinct functions. ROS as
they each have distinct functions are highly reactive derivatives
of molecular oxygen, which include hydroxyl radical (-OH),
singlet oxygen ('O,), superoxide anion (O,-”), and hydrogen
peroxide (H,O,). DCF is a general ROS sensor as it is oxidized by
multiple ROS (Chen et al., 2010). A recent study used the H,0,
specific probe Peroxy Orangel (POI1) and showed that the

pattern of H,O, accumulation parallels the total ROS profile
detected by DCF, except in the nucleus where little PO1 signal
was observed (Watkins et al., 2017) (Figure 2B).

ABA induced stomatal closure has been shown to be dependent
on ROS increases using several approaches. Guard cell closure is
reduced, but not totally abolished, by treatment with ROS
scavengers (Zhang et al, 2001) and inhibitors of or mutants in
ROS producing enzymes (Pei et al., 2000; Watkins et al., 2017; Iwai
et al,, 2019). These partial effects are consistent with ROS
independent closure and/or multiple sources of guard cell ROS.
The most intriguing results were obtained via genetic mutants of
Respiratory Burst Oxidase Homolog (RBOH)/NADPH Oxidase
(NOX) enzymes, suggesting RBOH dependent ROS synthesis
drives the ABA response (Kwak et al., 2003).

EXPRESSION AND FUNCTION OF RBOH
ENZYMES IN ABA SIGNALING

The Arabidopsis genome encodes 10 RBOH family members,
RBOHA-RBOH]J that have important roles in signaling induced
ROS synthesis (Suzuki et al., 2011; Chapman et al., 2019). RBOH
enzymes have distinct expression patterns and regulate
development and signaling (Chapman et al., 2019). These
plasma membrane (PM)-localized proteins have six
transmembrane domains, a C-terminal FAD-binding domain
and two N-terminal calcium-binding EF hands (Torres and
Dangl, 2005). RBOHs produce extracellular superoxide by
transferring electrons from NADPH or FADH, to oxygen
(Suzuki et al., 2011). Superoxide can then be converted to
H,0, spontaneously or by Superoxide Dismutase (SOD). This
extracellular H,O, enters the plant cells through PM aquaporins
(Bienert et al., 2007; Tian et al., 2016; Rodrigues et al., 2017).
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FIGURE 2 | Arabidopsis and tomato mutants with decreased flavonoid antioxidants have increased ROS accumulation. (A) Confocal micrographs of DCF-stained
guard cells of 4-week-old VF36 (wild-type) and are plants show that flavonol deficient mutants have increased ROS levels both in the absence or presence of 20 uM
ABA. (B) Confocal micrographs of DCF and PO1 fluorescence in guard cells of 4-week-old tomato and Arabidopsis leaves show tomato and Arabidopsis with
decreased flavonol levels have increased total ROS and H,O. levels. Scale bars = 5 pm. DCF signal is shown in green, PO1 signal in blue, and chlorophyll
autofluorescence in magenta. Images obtained from experiments completed in (Watkins et al., 2014; Watkins et al., 2017).
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Genetic approaches have demonstrated the importance of
RBOHD and RBOHF in ABA-induced stomatal closure (Kwak
et al., 2003). An rbohf single mutant and an rbohd/f double
mutant show reduced rates of ABA-induced ROS synthesis and
partial impairment in stomatal closure, while the rbohd single
mutant had wild-type responses (Kwak et al., 2003). Treatment
with an RBOH inhibitor, diphenyleneiodonium (DPI), also
impaired ROS production and ABA-induced stomatal closure
in Arabidopsis (Zhang et al., 2001) and tomato (Watkins et al,
2017). Together these results implicate RBOHs as important
modulators of ABA-dependent stomatal closure.

REGULATION OF RBOH SYNTHESIS AND
ACTIVITY

The synthesis of RBOHs is regulated transcriptionally (Yun et al.,
2011; Hao et al., 2014; Qu et al., 2017). In Arabidopsis, RBOHD
and RBOHF, the two RBOHs with known function in guard cells,
are expressed in this cell type as judged by transcript abundance
and transcriptional reporters (Kwak et al., 2003; Chapman et al.,
2019). The abundance of RBOHD and RBOHF transcripts has
been reported to be increased by ABA treatment and abiotic
stress including drought, salt, and elevated osmoticum (Kwak
et al., 2003; Kilian et al., 2007).

RBOH activity is also posttranslationally regulated to
coordinate the timing and magnitude of the ROS burst.
Mutants in phospholipase Dal (PLDoal) have decreased
phosphatidic acid synthesis, which impaired ABA-induced
ROS production and stomatal closure (Zhang et al., 2009).
Treatment with DPI did not affect the pldal mutant further,
implicating phosphatidic acid as a positive regulator of RBOHs
(Zhang et al., 2009). RBOHF is regulated by Ca** dependent
phosphorylation by Calcineurin B-Like (CBL) which interacts
with CBL-Interacting Protein Kinases (CIPKs) (Kimura et al.,
2013). One report indicated that this complex negatively
regulated ROS synthesis (Kimura et al., 2013), while a second
report showed that coexpression of CIPK26 and CBLI or CBL9
increased RBOHF-dependent ROS production, while CIPK26
alone had no effect (Drerup et al., 2013). Additionally, activated
OST1 phosphorylates RBOHF, which may be required for its
activation (Sirichandra et al.,, 2009). Nitrosylation of RBOHD at
Cysteine 890 eliminates ROS production to block guard cell
apoptosis when these cells are undergoing a pathogen induced
immune response in Arabidopsis (Yun et al., 2011).

ROS INTEGRATION WITH ABA SIGNALING
MACHINERY

A central question is where ABA-induced ROS integrates with
guard cell signaling machinery. Two PP2C enzymes, ABA
insensitive 1 (ABI1) and ABI2, which were identified in
mutant screens for ABA insensitivity in stomatal closure
assays, are negative regulators of ABA signaling. Both proteins
are inactivated by H,O, (Meinhard and Grill, 2001; Meinhard

et al., 2002). The abil-1 and abi2-1 mutants are defective in
interactions with ABA receptors resulting in constitutive SnRK2
inactivation, blocking ABA signaling and stomatal closure
(Umezawa et al., 2009). In abil-1, ABA treatment failed to
induce ROS production and stomatal closure (Murata et al.,
2001). Impaired stomatal closure in abil-1 was restored by
exogenous H,0, treatment, suggesting that ROS is
downstream of ABI1 (Figure 1A). However, in this same
study, ABA induced a ROS burst in abi2-1, and the impaired
stomatal closure was not rescued by H,O, treatment, suggesting
ABI2 may be downstream of the ABA-induced ROS burst.

ROS can regulate plant signaling cascades by modulating the
activity of target proteins through reversible oxidation of cysteine
residues (Waszczak et al.,, 2015). ABA-induced ROS activates the
plasma membrane-localized Guard Cell Hydrogen Peroxide
Resistant] (GHR1) receptor-like kinase which controls calcium
channel activation (Pei et al., 2000; Hua et al., 2012; Sierla et al.,
2018). Mitogen Activated Protein Kinases (MAPKs) are also
downstream targets of ROS in guard cells (Lee et al, 2016).
Treatment with both ABA and H,0, activated the guard cell
specific MPK12, which works with MPK9 to positively regulate
ABA-induced stomatal closure (Jammes et al., 2009). Two other
guard cell map kinases, MPK3 and MPK®, are implicated in guard
cell response to pathogen attack and have increased activity after
H,0, treatment (Kovtun et al., 2000; Yuasa et al., 2001). MPK3 and
MPKG6 activation is unaffected in the rbohd/f double mutant
following treatment with flg22, a pathogen elicitor, suggesting that
MPK3/MPKG6 activation during pathogen response is not RBOH
dependent (Xu et al, 2014). Altogether, the current evidence
suggests that ABII is upstream of ABA-induced ROS synthesis
(and feedback inhibited by ROS) while ABI2, GHR1, and MAPKs
are downstream of ROS (Figure 1A), although aspects of this model
need further experimentation.

ANTIOXIDANTS REGULATE ROS
HOMEOSTASIS TO MODULATE
STOMATAL APERTURE

For ROS to serve as productive signaling molecules, they need to
increase to drive signaling and development (Chapman et al.,
2019), but if ROS increases are left unchecked, ROS can
accumulate to dangerous levels resulting in oxidative damage
of proteins, DNA, and lipids (Betteridge, 2000). Guard cells
contain both enzymatic and nonenzymatic machinery to
maintain ROS homeostasis to prevent ROS from reaching
damaging levels (Chen and Gallie, 2004; Watkins et al., 2014;
Singh et al., 2017; Watkins et al., 2017; Yamauchi et al,, 2019).
These antioxidants regulate the responses to ABA in guard cells.

Flavonols are a class of plant specialized antioxidant
metabolites that reduce ROS accumulation in guard cells to
regulate stomatal closure (Watkins et al., 2014; Watkins et al.,
2017). Mutants in tomato and Arabidopsis with decreased
flavonol production had increased guard cell ROS (Watkins
et al., 2014) and were more sensitive to ABA-induced stomatal
closure (Watkins et al., 2017) (Figure 2). Mutants with elevated
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levels of flavonols have decreased ROS accumulation and
decreased ABA sensitivity (Watkins et al., 2017) as visualized
using DCF and PO1. ROS signals in flavonol deficient mutants
were increased in chloroplasts and unidentified endomembrane
structures with both sensors, while DCF, but not PO1, was
elevated in the nucleus (Figure 2).

Guard cells also maintain ROS homeostasis during ABA
signaling via antioxidant enzymes such as catalases, SODs,
thioredoxin reductases, glutathione peroxidases, and ascorbate
peroxidases (APX) (Chen and Gallie, 2004; Miao et al., 2006;
Jannat et al., 2011; Tiew et al, 2015). The H,0, scavengers,
APX1 and catalases 1 and 3 are abundant enzymatic antioxidants
in guard cells (Chen and Gallie, 2004; Jannat et al., 2011) and
mutants deficient in these enzymes have enhanced ABA
responses (Pnueli et al., 2003; Jannat et al., 2011). The
calmodulin-like20 (cmlI20) mutant showed decreased APX2
expression and increased ROS levels, resulting in an ABA
hypersensitive stomatal phenotype (Wu et al.,, 2017), consistent
with the absence of antioxidant enzyme synthesis.

DISTINCT LOCATIONS OF ABA-INDUCED
ROS

ABA-induced ROS accumulates in the cytoplasm, chloroplasts,
nucleus, and endomembrane structures; many of these locations
are highlighted by DCF and PO1 accumulation shown in Figures
1 and 2 (Watkins et al., 2017). In addition to membrane-
localized RBOHs, chloroplasts and peroxisomes are also major
sources of plant cell ROS that are produced by organelle-
localized metabolic processes and enzymatic machinery (Foyer
and Noctor, 2003; Asada, 2006). The following sections explore
organelle specific ABA-regulated ROS accumulation
and signaling.

Nuclear ROS

ABA treatment increases ROS levels in guard cell nuclei (Leshem
et al,, 2010; Watkins et al., 2014; Watkins et al., 2017), although
the mechanisms for this increase are unknown. Isolated tobacco
nuclei have increased H,O, following calcium application
(Ashtamker et al., 2007), consistent with ROS synthesized
within this organelle. Nuclear ROS may also increase via
diffusion from the cytosol, retrograde signal transport from
other organelles (see Chloroplast section), or through
trafficking of ROS-producing enzymes to the nucleus. The
mammalian NOX1 and NOX4 localize to the nucleus to
produce ROS necessary for regulating gene expression,
(Chamulitrat et al., 2003; Kuroda et al., 2005; Saez et al., 2016),
but whether plants share this mechanism is unclear.

Nuclear ROS may function to regulate transcriptional
cascades through reversible cysteine oxidation of transcription
factors (TFs) to change their activity and/or localization (Peleg-
Grossman et al, 2010; Poole, 2015). In plants, several stress
responsive TF families such as WRKY, MYB, NAC, heat shock
factors (HSF), and ZAT are redox regulated (He et al., 2018).
Additionally, ABA-induced ROS could function to oxidize

proteases that degrade TFs or modulate kinase or phosphatase
activity that target TFs through mechanisms that have been
demonstrated in other systems (Schieber and Chandel, 2014).

Endosomes and Endomembrane
Trafficking

ABA increases ROS in small endomembrane structures,
visualized with both DCF and PO1, which share common
features with endosomes (Leshem et al., 2010; Hao et al., 2014;
Watkins et al,, 2017). In mammalian systems, redox-activated
endosomes, termed “redoxosomes”, contain NOX family
components that deliver ROS where it is needed for productive
signaling (Oakley et al., 2009). While literature surrounding
endosomal ROS in plants is scarce, endomembrane trafficking
has been shown to play a role in ABA-induced stomatal closure.
Knockdown of vesicle associated membrane protein 71 family
(VAMP71), which mediates endosome fusion to the central
vacuole, resulted in increased quantities of ROS-containing
vesicles in the cytoplasm, although the magnitude of total ROS
was similar to the wild-type. VAMP71 knockdown also impaired
stomatal closure following ABA treatment (Leshem et al., 2010).
RBOH trafficking may drive these localized ROS increases.

ABA treatment results in clathrin-dependent endocytosis of
GFP-RBOHD (Hao et al., 2014). Similarly, salt stress resulted in
RBOH endocytosis and increased ROS levels in endosomes
(Leshem et al., 2007). Trafficking of ion channels to and from
the PM regulates guard cell turgor to modulate stomatal opening
(Meckel et al., 2004). Together these findings suggest that the
internalization of RBOHs and ion channels into endosomes may
be a mechanism to spatially regulate intracellular ROS-mediated
signaling. In tomato guard cells, ABA was shown to induce
unidentified ROS-containing endomembrane structures that
were in greater quantities in mutants with reduced synthesis of
flavonol antioxidants (Watkins et al.,, 2017). Determination of
the organelle identity of these endomembrane structures is an
important area of future study.

Two other endomembrane organelles may participate in ROS
signaling in guard cells. The guard cell central vacuole has
recently been suggested to be a site of ROS synthesis via a
copper amine oxidase (CuAOJ) involved in ABA-dependent
vacuolar ROS increases and stomatal closure (Fraudentali et al.,
2019). It is not yet clear how vacuolar ROS signals integrate into
ABA signaling and guard cell closure. Guard cell ROS may also
be regulated by autophagy of aggregated peroxisomes formed
under oxidative stress (Yamauchi et al., 2019). Autophagy
impaired mutants had increased ROS levels, increased number
of oxidized peroxisomes, and decreased sensitivity to light-
dependent stomatal opening. Antioxidant treatments rescued
this phenotype (Yamauchi et al., 2019), yet whether this is linked
to ABA-induced closure was not reported.

Chloroplasts

ABA biosynthesis begins in chloroplasts (Finkelstein, 2013) and
ABA signaling and ROS production also occur in this organelle
(Asada, 2006; Pornsiriwong et al., 2017). Mg-chelatase H subunit
(CHLH) is a chloroplast protein that functions in communicating
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chloroplast signals to the nucleus, or retrograde signaling, and
positively regulating ABA signaling. A CHLH RNAI line has
impaired stomatal closure and drought tolerance (Shen et al,
2006). It is still unclear whether CHLH affects ABA-induced ROS
production, though OSTI expression was decreased following
CHLH knockdown, suggesting there is crosstalk with positive
regulators of ABA-induced ROS (Shen et al, 2006). Initially
CHLH was suggested to act as an ABA receptor, but was later
shown to modulate ABA signaling without binding ABA directly
(Tsuzuki et al, 2011) suggesting additional studies are needed
(Cutler et al., 2010).

Other signals that originate within guard cell chloroplasts
have been shown to stimulate ROS increases and stomatal
closure in Arabidopsis (Zhao et al., 2019). The molecule 3'-
phosphoadenosine 5'-phosphate (PAP) shows oxidative stress-
induced synthesis and restores ABA-induced ROS production
and stomatal phenotypes to the ABA insensitive mutants ost1-2
and abil-1. PAP may function in parallel to the canonical ABA
machinery by upregulating Ca®" signaling proteins that activate
SLACI and other ion channels to regulate stomatal closure
(Pornsiriwong et al., 2017).

H,0, can be a chloroplast retrograde signal by moving
through stromules, which are tubules that extend from
chloroplasts to the nucleus (Kwok and Hanson, 2004; Caplan
et al,, 2015) at a sufficient concentration to induce programmed
cell death during pathogen response (Caplan et al,, 2015).
Stromule formation was induced by ABA and other oxidative
signals (Gray et al, 2012; Brunkard et al, 2015), but whether
stromules can transport ROS to the nucleus in other stress
responses still needs to be evaluated. ROS produced through
photorespiration have also been shown to be necessary for
stomatal closure (Iwai et al., 2019). Treatment with two
photosynthetic electron transport inhibitors in Arabidopsis led
to reduced guard cell ROS and stomatal closure in the wild-type
and the rbohd/f double mutant (Iwai et al., 2019). Together these
findings highlight the importance of chloroplast signaling on
ABA-induced ROS production and stomatal closure.

CONCLUSION AND FUTURE DIRECTIONS

It is an exciting time to study the role of ROS as second
messengers in guard cell signaling. Genetic approaches have
shown that ROS produced by RBOH enzymes at the PM plays a
significant role in ABA-induced stomatal closure, although there
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