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Cold treatment (vernalization) is required for winter crops such as rapeseed (Brassica napus L.).
However, excessive exposure to low temperature (LT) in winter is also a stress for the semi-
winter, early-flowering rapeseed varieties widely cultivated in China. Photosynthetic efficiency is
one of the key determinants, and thus a good indicator for LT tolerance in plants. So far, the
genetic basis underlying photosynthetic efficiency is poorly understood in rapeseed. Here the
current study used Associative Transcriptomics to identify genetic loci controlling
photosynthetic gas exchange parameters in a diversity panel comprising 123 accessions. A
total of 201 significant Single Nucleotide Polymorphisms (SNPs) and 147 Gene Expression
Markers (GEMs) were detected, leading to the identification of 22 candidate genes. Of these,
Cab026133.1, an ortholog of the Arabidopsis gene AT2G29300.2 encoding a tropinone
reductase (BnTR1), was further confirmed to be closely linked to transpiration rate. Ectopic
expressing BnTR1 in Arabidopsis plants significantly increased the transpiration rate and
enhanced LT tolerance under freezing conditions. Also, amuch higher level of alkaloids content
was observed in the transgenicArabidopsis plants, which could help protect against LT stress.
Together, the current study showed that AT is an effective approach for dissecting LT tolerance
trait in rapeseed and that BnTR1 is a good target gene for the genetic improvement of LT
tolerance in plant.

Keywords: rapeseed, associative transcriptomics, photosynthetic gas exchange parameter, tropinone
reductase, alkaloid
INTRODUCTION

Rapeseed (Brassica napus L.) is one of the major oil crops worldwide, with an average annual
cropping area of 35.3 million hectares producing 72.8 million tons of seeds in the past five years
(http://www.fao.org/faostat/). Meal cake, the byproduct of rapeseed is also an important source of
protein-rich feed for livestock (Wanasundara et al., 2016). Due to the agronomic importance of this
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oil crop, there is a great interest to boost its yield via genetic
improvement of major agronomic traits.

The winter type rapeseed is mainly grown in Europe, which
requires strong vernalization and is cold tolerant (O’neill et al.,
2019). However, the semi-winter type rapeseed grown in China
only needs moderate or weak vernalization, and excessive
exposure to low temperature (LT) stress in winter will lead to
plant damage at vegetative stage and finally cause yield loss (Liao
and Guan, 2001; Zhang et al., 2015; O’neill et al., 2019). Yangtze
River basin is the major area for growing semi-winter rapeseed,
which accounts for at least 80% of the nation’s total production
(Tian et al., 2018). The rapeseed is usually sown in early October
shortly after the harvest of rice in this area (Cong et al., 2019).
However, in recent years, the delay of rice harvest usually lead to
the postpone of rapeseed sowing until late October or early
November, which results in poor germination and seedling
establishment due to LT (Luo et al., 2019). The biomass of
rapeseed seedling is also significantly reduced at overwintering
stage, and thus is more susceptible to LT stresses, i.e. chilling (0–
15°C) or freezing (<0°C) (Sage and Kubien, 2007; Zhang et al.,
2012; Zhang et al., 2016). Moreover, delay of floral initiation and
floral bud differentiation processes (Luo et al., 2018) and decrease
of effective pod number, pod length, and seed yield (Ozer, 2003)
were observed in the late-sowing rapeseed. To cope with LT
stresses, plants have evolved several elaborate regulatory
mechanisms; among these, balancing or coordinating the
photosynthetic processes could be a critical one (Leister, 2019).

It has been established that light-harvesting complex II (LHCII)
proteins in higher plants can facilitate their adaption to external
biotic or abiotic environmental stresses such as drought stress or
blast fungus infection (Andersson et al., 2003; Ganeteg et al., 2004;
Xu et al., 2012; Liu et al., 2019b), and the positive function of LHCBs
in abscisic acid (ABA) mediated signaling pathway is repressed by
WARY40 (Xu et al., 2012; Liu et al., 2013). LT stress induces the
accumulation of transcript encoding heat-shock proteins (HSPs),
and the persistence of HSPs can enhance the chilling tolerance of
tomato fruit (Sabehat et al., 1996; Ding et al., 2001). In Arabidopsis,
HSP21 protects the photosynthetic electron transport chain against
the deleterious effects imposed by heat stress (Zhong et al., 2013;
Bernfur et al., 2017). However, it is unclear whether HSPs function
similarly in rapeseed to alleviate injury from LT stress. The other
observations havemechanistically described how the photosynthetic
organisms maintain their PSII function under stressful conditions
with continuing or fluctuating light (Liu et al., 2019a). For instance,
the chloroplast protein HHL1 forms a complex with LQY1 to repair
and re-assemble PSII, which in turn helps overcome excessive light
stress (Jin et al., 2014). In rapeseed, CBF/DREB transcription factors
appear to have important roles in maintaining stronger
photosynthetic efficiency and higher Calvin circulating enzyme
activity under LT conditions (Savitch et al., 2005).

To date, several genetic studies have been reported for
quantitative trait loci (QTLs) mapping of photosynthesis (De
Miguel et al., 2014; Li et al., 2014; Li et al., 2016; Liu et al., 2017;
Oakley et al., 2018; Basu et al., 2019) and LT tolerance in different
plant species (Jha et al., 2017). However, very few QTLs have
been identified in Brassica species (Ge et al., 2012; Yan et al.,
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2015). The temperature causing 50% of the maximal damage
(LT50) has been regarded as a good index for evaluating LT
tolerance (Hincha et al., 1987; Steponkus et al., 1990), which is
also significantly correlated with net photosynthesis rate (An) in
rapeseed (Urban et al., 2013). Therefore, photosynthetic gas
exchange parameters such as An are a suitable index for the
evaluation of LT tolerance in rapeseed that can facilitate the
follow-up genetic study.

Photosynthesis plays an indispensable role in ensuring
adequate energy supply throughout the plant lifecycle.
Therefore, enhancing photosynthetic efficiency has been a
commonly adopted strategy for crop yield improvement (Long
et al., 2006; Lawson et al., 2012; Evans, 2013). In rice, a new
photorespiratory bypass was assembled by over-expressing
OsGLO3, OsOXO3, and OsCATC genes in the chloroplast,
which resulted in obvious increases in photosynthetic
efficiency, biomass, and grain yield (Shen et al., 2019). In
rapeseed, photosynthetic efficiency has a notable effect on
yield, oil content, and fatty acid composition (Ju and Li, 2012;
Wang et al., 2015). However, the utilization rate of light energy in
rapeseed is only 0.615% to 1.056%, which is much lower than
that in rice, wheat or soybean (Zhang et al., 2017a). Therefore, it
is possible to further improve the yield by enhancing
photosynthetic efficiency in rapeseed.

During the long history of evolution, plants appear to
overcome abrupt or mild temperature stresses in winter
through a series of changes at molecular, cel lular,
physiological, and biochemical levels (Zhang et al., 2017b).
Alkaloid is one of the major secondary metabolites that is
inducible under unfavorable conditions, especially drought
stress (Selmar and Kleinwachter, 2013). Heavy metals can also
promote the accumulation of alkaloid in Catharanthus roseus L.
(Srivastava and Srivastava, 2010). The short-chain
dehydrogenase/reductase (SDR) protein, which belongs to the
NAD(P)-binding Rossmann-fold superfamily, functions in the
biosynthesis of benzylisiquinoline alkaloids (i.e. morphine,
codeine) and tropane-derived alkaloids such as scopalamine,
atropine, and cocaine. Tropinone reductases (TRs) are a group
of SDR proteins which play key roles as a branch point in the
biosynthesis pathway of tropane alkaloids (Tonfack et al., 2011).
Hence, a study on TRs could help understand how alkaloids
function in response to different stresses.

Associative transcriptomics (AT) strategy, which combines
association mapping and transcriptome, has greatly facilitated
the genetic dissection of complex traits (Bazakos et al., 2017).
Considerable progress has been achieved by AT in allopolyploidy
crops, such as oilseed rape and wheat, which provided a large
number of causative genes or functional markers for molecular
marker-assisted breeding. For instance, a transcription factor
(HAG1) was identified in rapeseed by AT, which plays an
indispensable role in the synthesis of aliphatic glucosinolates
(Harper et al., 2012). With AT platform, the genetic studies of
many other complex traits in rapeseed were also reported,
including homeostasis of nitrate, phosphate, and sulfate anions
(Koprivova et al., 2014), calcium and magnesium accumulation
(Alcock et al., 2017), lodging resistance (Miller et al., 2018),
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clubroot resistance (Hejna et al., 2019), erucic acid, and
tocopherol (vitamin E) isoform accumulation in seeds
(Havlickova et al., 2018), and leaf nutrition concentration
(Alcock et al., 2018). Recently, the power of AT was further
enhanced by using a much larger panel comprising 383 rapeseed
accessions (Havlickova et al., 2018). In bread wheat, two
causative genes underlying stem strength variation have also
been detected by AT (Miller et al., 2016). Despite the above
efforts, the AT approach has not yet been applied to
photosynthetic related traits under LT conditions in rapeseed.

The present study aims to identify candidate genes associated
with photosynthetic gas exchange parameters including An,
stomatal conductance to water vapor (Gsw), internal CO2

concentration (Ci) and transpiration rate/evapotranspiration
(E) in rapeseed by AT. Twenty-two candidate genes were
obtained, and one was functionally validated. Ectopic
expressing tropinone reductase (BnTR1) in Arabidopsis can
significantly enhance transpiration rate and LT tolerance,
implying its great potential for the genetic improvement of LT
tolerance in plant.
MATERIALS AND METHODS

Plant Materials
A panel comprising 123 rapeseed accessions was used for
association study, which is available from the John Innes Centre,
Norwich, UK (Supplementary Table S1) (Havlickova et al., 2018).
Within this panel, there are 37 winter type, 32 spring type, 47 semi-
winter type, and 7 unclassified rapeseed accessions. The panel was
sown on 28th Oct in 2016 in Wuhan (114.30°E, 30.57°N), China.
All accessions were planted using a completely randomized block
design with three replications. The temperature was recorded
during the field experiments (Supplementary Figure S1).
Compared with those sown on normal occasion (28th Sept in
2016), the late-sown (i.e. 28th Oct) rapeseed seedlings were
subjected to LT stress during winter.

Determination of Photosynthetic Gas
Exchange Parameters
The fourth true leaf of each of the 123 rapeseed accessions was
chosen for the measurement of photosynthetic gas exchange
parameters including An, Gsw, Ci, and E in the open field at the
60-d-old seedling stage. Two independent plants of one accession
from each block were measured by LI-6400 photosynthesis
equipment (Li-Cor 6400; Li-CorInc, Lincoln, NE, USA) as
described previously (Yan et al., 2015). The measurements were
performed on a sunny day from 27th December to 30th December
with a maximum temperature of 9°C in daytime and the lowest
temperature of −1°C at night. The phenotypic data were collected
from three blocks as biological replications (Supplementary Table
S2). Broad-sense heritability was estimated according to a previous
study (Kaler and Purcell, 2019).

The photosynthetic gas exchange parameters of Arabidopsis
wild type (WT) and transgenic seedlings (ecotype Columbia) were
measured on the second functional leaf with the light intensity of
Frontiers in Plant Science | www.frontiersin.org 3
800 mmol m−2 s−1 and CO2 concentration of 400 ml L−1. All of the
Arabidopsis plants were grown in the greenhouse (16-h-light/8-h-
dark) with the light intensity of 120 mmol m−2 s−1 at 23°C. Each
leaf was measured three times as technical replications, and five
independent plants from each line were measured as biological
replications (Supplementary Table S2).

Genome-Wide Association Study
The association panel and the procedure of AT analysis have
been reported in detail previously (Havlickova et al., 2018). In
brief, RNA-Seq data were generated from young leaves of the
association panel harvested 21 d after sowing under 16-h-light
(20°C)/8-h-dark (14°C) glasshouse condit ions. The
transcriptome data were mapped onto the developed ordered
Brassica A and C pan-transcriptomes (He et al., 2015) and
resulted in a set of 355,536 SNPs and RPKM values for
116,098 CDS models. Following the removal of SNP markers
with minor allele frequencies below 0.01, a total of 256,397 SNPs
were retained (http://www.yorknowledgebase.info/) and used as
marker input for the Associative Transcriptomics analysis as
previously described (Harper et al., 2012; Lu et al., 2014). The
current study adopted a compressed mixed linear model including
both fixed and random effects according to a previous method
(Lipka et al., 2012). The P-values (–log10 converted) for all SNPs
were plotted against their physical position in the “pseudo-
molecules” to produce a Manhattan plot. The Bonferroni
significance threshold was set as P = 3.9 × 10−6 (1/256397)
(Duggal et al., 2008). Allelic effects of all candidate SNPs were
calculated according to a previous study (Prado et al., 2017); a
positive effect indicates that the allele increases the trait value,
whereas a negative effect indicates that the alternative allele
increases the trait value.

The transcript level was quantified as reads per kb per million
aligned reads (RPKM) across the panel. After filtering (RPKM ≤
0.4), a total of 53,889 gene expression marker (GEM) was
obtained. The GEM was regarded as the dependent variable
and trait data as the independent variable (Wood et al., 2017).
The fixed effect linear model was performed to assess the
relationship between gene expression level and the traits
(Alcock et al., 2017). The P-value for each GEM was converted
(-log10P) and plotted against its physical position to generate a
Manhattan plot. The Bonferroni significance threshold was set at
P = 1.85 × 10−5 (1/53889).

Growth Conditions and Stress Treatments
To determine the gene function of BnTR1 on Arabidopsis under
freezing conditions, the seeds of WT and transgenic Arabidopsis
plants were germinated on 1/2 MS medium and 1/2 MS medium
plus 30 mg/ml hygromycin, respectively. After 1 week growth at
23°C (16-h-light/8-h-dark), healthy seedlings with uniform sizes
were transplanted into 8×8 cm pots (four plants per pot). Then, the
21-d-old plants were transferred into a growth chamber at −4°C for
4 h after 24 h of cold acclimation and recover at 23°C (16-h-light/8-
h-dark). Six pots from each transgenic line or WT plants were used
to investigate the survival rate 3 d after recovery. The leaves were
sampled for physiological and biochemical measurements.
June 2020 | Volume 11 | Article 971
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To determine the effects of alkaloid on Arabidopsis and
rapeseed seedlings, WT plants of Arabidopsis were firstly
grown under the same conditions as above. Before the freezing
treatment, a dosage of 0, 10, and 30 nmol alkaloid (atropine) per
seedling was added to the soil for Arabidopsis, while a dosage of
0, 50, and 150 nmol per seedling was added to the soil for
rapeseed accession Zhongshuang 11 (ZS11) according to the
previous study (Hara and Kurita, 2014). After inoculation
overnight, the 21-d-old Arabidopsis plants were transferred
into a growth chamber at −4°C for 4 h, the three-leaf-stage
rapeseed plants were transferred into the growth chamber at
−4°C for 4 h (Yan et al., 2019). The survival rate was investigated
in six pots 3 d after recovery (Supplementary Table S2).

To investigate the expression of candidate genes under LT
stress conditions, six rapeseed accessions showing extreme
photosynthetic efficiency (i.e. Sv706118, Kajsa, Callypso,
Libritta, Gefion, and Jupiter; Supplementary Table S1) were
used for expression analysis of candidate genes. The four-leaf
seedlings were transferred into the plant growth chamber with
−4°C for 4 h (Yan et al., 2019). The leaves were sampled before,
and after freezing treatment, and then used for RNA extraction
and molecular analysis. The detailed information was listed in
Supplementary Table S2.

Physiological and Biochemical
Measurements
To determine the effects of BnTR1 on Arabidopsis at
physiological and biochemical levels under LT stress
conditions, the seedlings of transgenic and WT Arabidopsis
plants were treated under freezing conditions (−4°C for 4 h)
and, the leaves of 21-d-old seedlings were sampled at three time-
point (i.e. before freezing treatment, after freezing treatment, and
recovery for 3 d at 23°C) for measuring physiological and
biochemical characteristics, including Fv/Fm, electrolyte
leakage, 3,3′-diaminobenzidine (DAB) staining, proline
content, soluble sugar content, reactive oxygen species (ROS)
scavenging enzymes activity, H2O2 content, alkaloid content. All
measurements were performed with at least three biological
replications; detail information for experimental design and
plant materials used was listed in Supplementary Table S2.

The Fv/Fm measurement was performed using the second
functional leaves before and after the freezing treatment. The
leaves were firstly immersed in 1% agarose overnight avoiding of
the dark, then the chlorophyll measurement (Fv/Fm) wasmeasured
using the modulated chlorophyll fluorescence instrument (PAM-
2500; Walz) as previously reported (Lv et al., 2017).

The electrolyte leakage measurement was performed according
to the previous study (Lv et al., 2016). Briefly, six leaves from six
were cut and immersed in 8 ml of double-distilled H2O in a 10-ml
tube. After shaking overnight, the electrolyte leakage was
measured using a model DDS-IIA device (Leici Instrument) as
R1; it was measured again and recorded as R2 after boiling at 95°C
in a water bath for 15 min and cooling down. The relative
electrolyte leakage was calculated as a ratio of R1/R2.

The proline and soluble sugar contents were measured using
the kits from Beijing Solarbio Science & Technology as described
Frontiers in Plant Science | www.frontiersin.org 4
before (Yan et al., 2019). In brief, 0.1 g fresh tissue was powdered
and incubated in 1 ml 3% sulfosalicylic acid (for proline) or
ddH2O (for soluble sugar). After centrifuging, 400 ml supernatant
was mix with other reaction buffers and incubated at 95°C in a
water bath for 15 min, then the absorbance was measured using
MULTISCAN FC (Thermo Scientific).

The ROS scavenging enzymes activity was measured by
commercial kits according to the manufacturer’s instruction
(Beijing Solarbio Science & Technology) with minor
modification (Yan et al., 2019). 0.1 g fresh tissue was powdered
using 1 ml 0.05 mol/L PBS buffer (pH 7.8). The supernatant was
obtained after centrifuging at 8,000g for 10 min at 4°C and used
for superoxide dismutase (SOD) activity, peroxidase (POD)
activity, catalase (CAT) activity measurement using
MULTISCAN FC (Thermo Scientific).

DAB staining was performed as previously described (Ning
et al., 2010; Zhang et al., 2011). The fourth functional leaf of each
plant was sampled and infiltrated in 0.1 mg/ml 3,3′-
diaminobenzidine liquid (50 mM Tris-acetate buffer, pH 5.0).
After incubation overnight at 25°C in the dark, the stained leaves
were photographed after removing the chlorophyll by absolute
ethanol. The H2O2 content was quantified according to the
instruction of the kit (Beijing Solarbio Science & Technology)
(Yan et al., 2019).

The total alkaloid was extracted as described previously
(Zhang et al., 2004; Chen et al., 2013). The freeze-dried leaves
were powdered; 0.1 g powder was homogenized overnight with
1.0 ml 70% aqueous methanol at 4°C. Following centrifugation at
10,000 g for 10 min at 4°C, the extracts were absorbed
(CNWBOND Carbon-GCB SPE Cartridge, 250 mg, 3 ml;
ANPEL) and filtrated (SCAA-104, 0.22 mm pore size; ANPEL).
Next, the total alkaloid content was determined using the
alkaloid ELISA kit (Hiton) according to the instructions.

RNA Extraction and Gene
Expression Analyses
Total RNA was extracted from the Arabidopsis or rapeseed
seedlings with TransZol reagent (Trans) and converted to the
first-strand cDNA using the EasyScript®One-Step cDNA
Synthesis SuperMix (Trans). The Quantitative Real-time PCR
(qRT-PCR) was performed using Power SYBR®Green PCR
Master Mix according to the manufacturer’s instructions on a
StepOnePlusReal-Time PCR System (Applied Biosystems). The
primers used for expression analysis of candidate genes either
detected by AT approach or involved in the known biosynthetic
pathway of alkaloid were listed in Supplementary Table S3. The
relative expression level was determined as previously described
(Livak and Schmittgen, 2001).

Vector Construction and Gene
Transformation
To generate transgenic lines over-expressing candidate gene
(BnTR1), the coding sequence (CDS) of LOC106445422 was
amplified from a rapeseed variety ZS11 and ligated into vector
pCAMBIA1300 driven by a tobacco cauliflower mosaic virus 35S
promoter (CaMV35S). The construct was introduced into
June 2020 | Volume 11 | Article 971
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Arabidopsis variety Columbia (Col) by Agrobacterium-mediated
transformation (Zhang et al., 2006). Three T4 homozygous lines
(L1, L3, L5) significantly over-expressing BnTR1 were obtained
by screening at 30 mg/ml hygromycin. The primers used for
vector construction were listed in Supplementary Table S3.

Statistical Analyses
Statistical analyses were conducted with Microsoft Excel (2003)
and SPSS (version 22.0) software using one-way analysis of
variance (ANOVA) with Tukey’s multiple comparisons test or
two-tailed Student’s t-test. All data were presented as the means
± standard error (SE) based on three replicates. P<0.05 and
P<0.01 were considered statistically significant and highly
significant, respectively.
RESULTS

Phenotypic Variation of Photosynthetic
Gas Exchange Parameters
A field-grown rapeseed association panel experienced long-term
LT stress in winter (Supplementary Figure S1). The
photosynthetic gas exchange parameters such as An, Gsw, Ci,
and E were measured since they can reflect photosynthetic
efficiency for a plant. Substantial variations for the four traits
Frontiers in Plant Science | www.frontiersin.org 5
were observed in 123 rapeseed accessions (Figure 1). An varied
from 12.87 to 24.02 with a mean of 19.29 mmol (CO2) m

−2 s−1.
Similarly, Gsw ranged from 245.21 to 383.28 mmol (CO2) mol−1

and E from 0.96 to 3.75 mmol (H2O) m
−2 s−1. Gsw was the most

variable trait since it has the largest coefficient of variation (0.69),
with a minimum of 0.16 and a maximum of 2.53 mol (H2O) m

−2

s−1; the range of broad-sense heritability varied from 49.49% to
68.91% (Supplementary Table S4). Moreover, the four traits in
the association panel were positively correlated with each other
(P ≤ 0.01) (Supplementary Table S5). For instance, there was a
strong correlation between An and E (r = 0.785, P<0.01).

Associative Transcriptomics for
Photosynthetic Gas Exchange Parameters
To identify genomic regions controlling photosynthetic related
traits, AT was performed in rapeseed. Using the mixed linear
model, a total of 201 significant SNPs were detected, which
originated from 148 CDSs (Figure 2). Unexpectedly, most of the
significant CDSs were associated with Gsw trait, while only one
was related to E trait. The detail results including physical
positions, P-values, allelic effects were summarized in
Supplementary Table S6. For GEM analysis, a total of 145
CDSs above the corrected Bonferroni thresholds were identified
(Figure 2). Of these, a respective of 5, 10, 20, and 110 CDSs were
detected for An, Gsw, Ci, and E. The detailed information,
FIGURE 1 | Phenotypic variation of photosynthetic gas exchange parameters in 123 rapeseed accessions. Trait definition: Net photosynthesis rate (An), Stomatal
conductance to water vapor (Gsw), Internal CO2 concentration (Ci), Transpiration rate (E).
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including physical positions and P values for all significant
GEMs, was listed in Supplementary Table S7.

By annotating all the above significant CDS in public
database TAIR (https://www.arabidopsis.org/), the present
study shortlists the number of candidate genes to only 22 that
putatively involved in photosynthesis or LT stress response
(Supplementary Table S8). To verify their roles in rapeseed
with or without LT stress, six accessions from the association
panel were selected; Sv706118, Kajsa, and Callypso (Accessions
1–3) exhibited higher photosynthesis efficiency and were tolerant
to freezing stress, while Libritta, Gefion, and Jupiter (Accessions
4–6) presented lower photosynthesis efficiency and were
sensitive to freezing stress (Supplementary Table S1,
Supplementary Figure S2). The gene expression profiles were
Frontiers in Plant Science | www.frontiersin.org 6
investigated by qRT-PCR in the six accessions under freezing
conditions. Results showed that all of these genes exhibited a
significantly different expression level in the six accessions,
suggesting that these genes indeed involved in freezing stress
response. Cab026133.1 seemed to have a much higher expression
level in the three tolerant accessions (Accessions 1–3) with or
without freezing stress (Figure 3A); so did Cab011968.1,
Cab022014.2, and Cab007526.2, an ortholog of inorganic
carbon transport protein (AT1G70760.1), bZIP transcription
factor (AT5G28770.3) and citrate synthase 2 (BnaA10g24440D),
respectively. An opposite trend was observed for Bo5g017460.1 and
Cab008128.1, an ortholog of F-box family protein (AT2G32560.1)
and dehydroascorbate reductase (AT5G16710.1), respectively
(Supplementary Figure S3).
FIGURE 2 | Manhattan plots for AT analysis in 123 rapeseed accessions. Manhattan plots from left to right, represented for An, Gsw, Ci, and E using SNPs (upper
section) and GEMs (bottom section), respectively. The -log10 (P values) were plotted against the position of the SNPs or GEMs on 19 chromosomes of Brassica
napus. The black line represents the -log10 (P values) converted Bonferroni significance threshold for SNP (5.41) and GEM (4.73), respectively.
A

B

C

D

FIGURE 3 | Expression and allelic variation of BnTR1 in rapeseed. (A) Expression analysis of BnTR1 (homolog of Cab026133.1) in six accessions corresponding to
Hap 1 and Hap 2 under freezing conditions. The name of accessions 1 to 6 was Sv706118, Kajsa, Callypso, Libritta, Gefion, and Jupiter, respectively. ACTIN gene
was used as an internal control. Bars indicate the SE of three biological replicates. Different letters indicate significant differences at P< 0.05 (one-way ANOVA with
Tukey’s multiple comparisons test). (B) Correlation analysis between Transpiration rate (E) value and expression level of Cab026133.1 in the association panel
(n=123). R2 indicates the coefficient of determination in linear regression. (C, D) Allelic variations at BnTR1 formed two main haplotypes and their effects on E value.
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Selection and Characterization of
Candidate Gene
Cab026133.1 was selected for further analysis because it not only
exhibited the highest P-value (6.33 × 10−9) for E trait in GEM
analysis (Supplementary Table S8) but also highly expressed in
LT tolerant accessions (Figure 3A). Besides, the expression of
Cab026133.1 (presented as RPKM) across the rapeseed panel was
positively correlated with E level (r=0.406, P < 10−3) and
accounted for 16.5% of trait variation (Figure 3B). The
ortholog of Cab026133.1 in Arabidopsis (AT2g29300) encodes
an SDR protein involved in the oxidation-reduction process of
secondary metabolites, such as phenols, isoprene, and alkaloid
(Selmar and Kleinwachter, 2013). SDR proteins are classified into
six subfamilies, and the tropinone reductase subfamily belongs to
the major route of alkaloid biosynthesis (Tonfack et al., 2011).
The alignment of amino acid sequence clearly illustrated that
LOC106445422 shared 87.3% similarity with Cab026133.1 and
57% with CoTR, a known tropinone reductase in Cochlearia
officinalis (Brock et al., 2008). LOC106445422 displayed typical
SDRs motifs (Gly-X3-Gly-X-Gly) and four conserved residues
that form the catalytic tetrad NSYK (N127, S155, Y168, K172)
(Supplementary Figure S4). The current study name
LOC106445422 as BnTR1 and used as the candidate gene for
the follow-up studies.

To assess the effect of allelic variation on BnTR1 in the
rapeseed association panel, the genomic region covering the
whole gene as well as the 2-kb promoter region was amplified.
One TAA/TAATAA insertion was detected in the fourth intron
that formed two major haplotypes, i.e. Haplotype I (with TAA
insertion) and Haplotype II (with TAATAA insertion) (Figure
3C). Haplotype I (n=31) displayed significantly higher E value
than Haplotype II (n=60) (P=5.43 × 10−4) (Figure 3D). Besides,
the LT tolerant Accessions 1 to 3 were determined as Haplotype I
while sensitive Accessions 4 to 6 as Haplotype II at BnTR1 locus
(Supplementary Table S1). The expression level of BnTR1 in
Accessions 1 to 3 was also significantly higher than that in
accessions 4 to 6 with or without stress treatment (Figure 3A).
Therefore, it was evident that E variation may be attributed to
expression or allelic variation at BnTR1, which was expressed
almost in all tissues of rapeseed at both vegetative and
reproductive stages (Supplementary Figure S5).

Ecotopic Expressing BnTR1 Enhances
Freezing Tolerance in Arabidopsis
To analyze gene function, three independent Arabidopsis lines
(L1, L3, L5) ectopic expressing BnTR1 were generated. All
transgenic lines showed an increased expression level of BnTR1
in comparison to the WT plants (Figure 4A). At the seedling
stage, E value of the transgenic lines was much higher than that
of WT plants (Figure 4B), thus confirming that BnTR1 controls
transpiration rate. Since photosynthetic gas exchange parameters
are significantly correlated with cold tolerance (Urban et al.,
2013), it was speculated that BnTR1 also involves in LT stress. To
test this hypothesis, seedlings were treated at −4°C for 4 h and
then recover at 23°C. All of the transgenic lines were shown to be
freezing-tolerant because there was no obvious syndrome, while
Frontiers in Plant Science | www.frontiersin.org 7
the WT plants were wrinkled and hydrophanous (Figure 4C).
After recovery for 3 d at 23°C, all transgenic plants survived, but
62% of the WT plants died (Figure 4D). These results strongly
suggested that BnTR1 enhanced the freezing tolerance of
Arabidopsis plants.

To assess whether C-repeat-binding factors (CBFs)
contributed to the enhanced freezing tolerance of the
transgenic lines, the current study measured the relative
expression level of CBFs in transgenic and WT plants after
freezing stress (Figures 4E–G). In the transgenic lines grown
under normal conditions, expressions of CBFs were much higher
than that in WT plants, indicating that they were markedly
induced by BnTR1. Moreover, the expression of CBF1 and CBF3
was significantly up-regulated and CBF2 down-regulated by
BnTR1 during freezing treatment in comparison with those of
normal conditions. The current study further examined the
expression level of CBFs-targeted cold-responsive genes (COR
genes) (Figures 4H, I). As expected, the transcript levels of COR
genes (namely COR15 and RD29A) in the transgenic lines were
highly induced when compared with that in WT plants. These
results indicated that BnTR1 influences CBF regulon in the
stress-signaling pathway to control freezing tolerance.

The chlorophyll fluorescence parameter Fv/Fm, an indicator
for the potential maximum photosystem II (PSII) capacity of
plants, has been widely used to determine the ability of tolerance
to environmental stresses under laboratory conditions (Mishra
et al., 2014; Thalhammer et al., 2014). Here, markedly higher Fv/
Fm ratio was observed in leaves of the transgenic lines under
freezing as well as normal conditions (Figure 5A). To further
clarify whether the difference of photosynthetic capacity was
caused by the excessive expression of BnTR1, the current study
assessed the expression level of BnTR1 and other genes involved
in photosynthetic processes such as RCA, SBPASE (for CO2

fixation or assimilation) and CAB1-4 (for light-harvesting) (Sun
et al., 2017; Basu et al., 2019) (Figures 5B–H). Under normal
conditions, the expression level of RCA, SPASE, and CAB1 were
slightly reduced in the transgenic lines compared to WT plants,
whereas CAB2, CAB3, and CAB4 were induced. The freezing
treatment led to a notable suppression of all genes; however, the
expression of genes in the transgenic lines returned to a high level
when freezing stress was removed.

BnTR1 Contributes to Cell Membrane
Protection and Antioxidants
Altering the osmotic balance to maintain the integrity and
stability of cell membrane is proposed to be an efficient way
for plants adapting to the changing environments (Morsy et al.,
2005; Valerio et al., 2011). To test this hypothesis, physiological
and biochemical assays were carried out. Results showed that
freezing treatment led to only 40% to 200% increase of proline
content in WT plants but as high as 100% to 300% in transgenic
plants, indicating that the transgenic plants expressing BnTR1
could accumulate more proline (Figure 6A). The soluble sugar
content showed a similar pattern (Figure 6B). However, the
electrolyte leakage increased more rapidly in WT plants than in
transgenic lines (Figure 6C). These results implied that BnTR1
June 2020 | Volume 11 | Article 971
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actively responded to freezing stress by maintaining cell
membrane stability and osmotic balance.

Antioxidants, which function in scavenging the reactive oxygen
species (ROS), are generally considered as another effective element
in defending abiotic stresses (Choudhury et al., 2017). To determine
whether BnTR1 affects the antioxidant system, the accumulation of
ROS was determined by DAB staining. The brown precipitate
(H2O2) in WT was much larger than that in the transgenic lines
(Figure 6D), indicating that WT plants had a higher level of H2O2
Frontiers in Plant Science | www.frontiersin.org 8
content than transgenic plants (Figure 6E). Oxidoreductases like
POD, SOD, and CAT also function in scavenging redundant ROS
(Gupta et al., 2016). Here, we found that the transgenic lines
exhibited stronger SOD activity than WT (Figure 6F), which help
plants alleviate oxidation damage from freezing conditions.
However, no significant difference was detected for POD and
CAT activities. Together, the enhanced freezing adaption for
transgenic plants could be attributed to the increased ROS
scavenging ability.
A

B

C

D E F

G H I

FIGURE 4 | BnTR1 confers freezing tolerance in Arabidopsis. (A) Expression analysis of the BnTR1 transgenic plants (L1, L3, L5) and WT plants under normal
condition (i.e. 23°C). (B) Investigation of transpiration rate (E) value in the BnTR1 transgenic lines and WT plants under normal conditions. (C) Performance of the
transgenic lines and WT plants before and after freezing treatment (−4°C for 4 h). Scale=2 cm. (D) Survival rates of the transgenic lines and WT plants after freezing
treatment. (E–I) Relative expression levels of CBF1 (E), CBF2 (F), CBF3 (G), COR15 (H), RD29A (I) in the transgenic lines and WT plants before and after freezing
stress with the Arabidopsis ACTIN gene used as an internal control. Normal represents 23°C, freezing treatment represents 4 h at −4°C, recovery represents 3 d of
recovery at 23°C. Bars indicate the SE of three biological replicates. Significant differences are determined by Student’s t-test (*P < 0.05, or **P < 0.01).
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BnTR1 Positively Affects Alkaloid
Metabolism
BnTR1 (homolog of AT2g29300) is predicted to be a tropinone
reductase involved in the biosynthesis of alkaloid (KO00960), which
mainly produces atropine. Although all alkaloids (with more than
12,000 different structures) have been well-documented in
pharmacology, their roles in abiotic stress remain elusive
(Schlager and Drager, 2016). To investigate the specific role of
BnTR1 in alkaloid metabolism, the total alkaloids content was
quantified. As expected, the transgenic lines led to one- to two-
fold increase of alkaloids contents compared with WT plants after
freezing stress (Figure 7A). To further confirm the effect of alkaloid
on stressed plants, exogenous atropine was applied to WT plants,
since atropine was considered to be the product of alkaloid
metabolism (KO00960) (Hara and Kurita, 2014). Results
demonstrated that application of 10 nmol atropine per plant
significantly rescued the susceptibility of WT plants, but the
protective effect was weakened when dosage increase to 30 nmol
(Figure 7B). The survival rate increased by three- to four-fold
compared with WT plants without atropine treatment (Figure 7C).

To further elucidate the protective role of alkaloid in
rapeseed, the current study applied exogenous atropine to a
widely cultivated rapeseed variety, ZS11, under freezing
conditions. Phenotypic analysis showed that the wilting
phenotype of ZS11 plants was partially rescued by exogenous
atropine application (50 and 150 nmol per plant) (Figure 7D),
while no significant difference was observed in the survival rate.
Frontiers in Plant Science | www.frontiersin.org 9
It was concluded that alkaloids alleviated the damage on plants
from extreme LT stress.
DISCUSSION

Power of AT Approach
Brassica napus originated from the hybridization of Brassica rapa and
Brassica oleraceawhich contribute the A and C genomes, respectively
(Cheung et al., 2009). There is only 15% difference in nucleotide
structure and 3% difference in transcriptional expression patterns
between chromosomes A and C, which limits the development of
SNP markers in genome-wide association analysis until the
availability of the high throughput next-generation sequencing
technology (Adams et al., 2003; Higgins et al., 2012). Over the past
years, AT approach based on abundant SNPmarkers and GEMs, has
successfully simplified the complexity of the whole genome (Harper
et al., 2012), and has been widely applied in rapeseed, wheat, and
other polyploidy crops (Harper et al., 2012; Schuster et al., 2013;
Koprivova et al., 2014; Lu et al., 2014; Harper et al., 2016a; Harper
et al., 2016b; Miller et al., 2016; Alcock et al., 2017; Havlickova et al.,
2018; Miller et al., 2018). However, the genetic basis of
photosynthetic-related traits in oil crops remains elusive. Here, the
genetic architecture of photosynthetic gas exchange parameters was
investigated by AT approach, and a gene termed BnTR1 was
confirmed to be responsible for E trait (Figure 4), which might be
a promising candidate beneficial to rapeseed in coping with climatic
A B C D

E F G H

FIGURE 5 | Variation of photosynthetic related traits and genes expression pattern in BnTR1 transgenic plants. (A) Fv/Fm ratio in the transgenic lines and WT plants
under freezing stress conditions. (B–H) Relative expression levels of BnTR1 (B), RCA (C), SBPASE (D), CAB1 (E), CAB2 (F), CAB3 (G), CAB4 (H) in the transgenic
lines and WT plants before and after freezing stress treatment with Arabidopsis ACTIN gene used as an internal control. L1, L3, L5 represent three independent
homozygous lines of BnTR1 transgenic plants. Bars indicate the SE of three biological replicates. Significant differences are determined by Student’s t-test (*P <
0.05, or **P < 0.01).
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changes. Several other interesting candidates were also identified. For
instance, Bo5g155110.1 was found to be significantly associated with
E traits (P=1.1×10−5), and down-regulated by freezing stress
(Supplementary Figure S3). The homolog in Arabidopsis is
Cyclophilin38 (AtCYP38), which functions in the assembly and
maintenance of PSII super complex (Supplementary Table S7).
The loss-of-function mutant of AtCYP38 shows reduced growth
rate and photosynthetic efficiency compared to its wild type.
Additionally, the D1 and D2 proteins in PSII reaction center show
a short half-life, resulting in susceptibility upon exposure to excessive
light (Fu et al., 2007; Sirpio et al., 2008). Bo3g153100.1 was hit by an
SNP marker, with -log10 (P-value) value as high as 9.06
(Supplementary Table S6), it was also markedly up-regulated by
freezing stress (Supplementary Figure S3). Bo3g153100.1 was
homologs to AT4G37930 in Arabidopsis, which has been
documented in the photorespiration process (Takahashi et al.,
2007). In the knockout mutant of AT4G37930, the
photorespiration pathway is destroyed, and the chlorophyll
deficiency results in chlorosis (Voll et al., 2006). Therefore, it
seems that AT is a powerful tool to identify candidate genes for
photosynthesis and LT stress in rapeseed. It is worthy to further
study the function of all 22 candidate genes identified here.

The Positive Role of BnTR1 Under
LT Conditions
It is generally accepted that photosynthesis is vulnerable to adverse
environmental stresses such as extreme temperature, salinity,
Frontiers in Plant Science | www.frontiersin.org 10
drought or combined stresses (Sainz et al., 2010; Strzepek et al.,
2019). Abiotic stresses lead to photoinhibition as well as excessive
generation of ROS, which suppresses the photosynthetic progress
and ultimately repress the growth and productivity in plants
(Gabriel et al., 2010; Nishiyama et al., 2014). During the long-
term evolution, plants have developed a variety of adaptive
mechanisms to cope with the stressful conditions (Liu et al.,
2019a; Strzepek et al., 2019). The CBF transcription factors in
rapeseed are known to be responsible for the photosynthetic
performance; CBF5 and CBF17 enhance the energy conversion
efficiency under LT conditions (Savitch et al., 2005; Dahal et al.,
2012). CBF1-CBF3, also termed dehydration-responsive element-
binding factors, have been well-documented in plants. In
Arabidopsis, CBF2 represents a negative regulator for LT
response, while CBF1 and CBF3 are positive regulators (Novillo
et al., 2004; Novillo et al., 2012). Interestingly, increased expression
of CBF1 and CBF3 and repressed expression of CBF2were observed
in the BnTR1 transgenic lines (Figures 4E–G), indicating that
BnTR1 represented a unique influence on CBF members. Both
alleviated accumulation of ROS and activated SOD enzyme system
was observed in the BnTR1 transgenic lines (Figure 6), suggesting
active impacts of BnTR1 on the ROS scavenging system. In
addition, ectopic expressing BnTR1 also promote the expression
of the genes associated with plant photosynthesis (Figure 5).
Specifically, the decrease of RCA transcripts leads to lower An

value, which in turn slows down plant growth (Von Caemmerer
et al., 2005; Yin et al., 2010). Moreover, RCA enhances growth and
A B C

D E F

FIGURE 6 | Physiological characterization of BnTR1 transgenic plants under freezing stress conditions. (A–F) Investigation of the proline content (A), soluble sugar
content (B), relative leakage (C), DAB staining analysis (D), H2O2 content (E), SOD activity (F) in the transgenic lines and WT plants under freezing stress conditions.
L1, L3, L5 represent three independent homozygous lines of BnTR1 transgenic Arabidopsis plants. Bars indicate the SE of three biological replicates. Significant
differences are determined by the Student’s t-test (*P< 0.05, or **P < 0.01).
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photosynthesis under moderate heat stress conditions (Kurek et al.,
2007; Kumar et al., 2009). However, overexpression of SBPASE
improves sugar accumulation and enhanced photosynthesis
efficiency (Miyagawa et al., 2001; Feng et al., 2007; De Porcellinis
et al., 2018). In the present study, PSII was severely repressed during
freezing treatment, whereas the BnTR1 transgenic Arabidopsis
plants still exhibited higher Fv/Fm level compared to WT (Figure
5A). These observations suggest that BnTR1 triggered a series of
responses including the ROS scavenging system, CBF pathway, and
photosynthetic processes. However, further work is required to
confirm their roles in LT tolerance.

Protective Role of Alkaloids Under
LT Conditions
Previous studies have been instrumental in revealing some
metabolites underlying stress response mechanisms (Thalmann and
Santelia, 2017). So far, definitions of alkaloids are generally focused on
strong pharmacological effects, such as antimitotic, antidote,
anticancer, and antioxidants (Schlager and Drager, 2016). The
concentration of alkaloid compounds is predominantly inducible
when plants are subjected to multiple stresses (Srivastava and
Srivastava, 2010; Cheng et al., 2018). However, few studies have
recognized the positive correlations between alkaloids and stress
resistance. Application of sanguinarine for Arabidopsis seedlings
under heat stress condition could markedly enhance the tolerance,
which presumably by promoting the expression of heat shock
proteins like HSP70 and HSP90.1S (Hara and Kurita, 2014;
Matsuoka et al., 2016). BnTR1 is predicted to encode a tropinone
reductase, which is involved in the metabolic pathway of atropine
alkaloids. The current study determined the total alkaloids content
Frontiers in Plant Science | www.frontiersin.org 11
under stress conditions, which showed an increased level in BnTR1
transgenic lines under normal and freezing stress conditions
compared with WT plants (Figure 7A). Moreover, the application
of exogenous atropine alleviated the damage caused by extreme
temperature in both Arabidopsis and rapeseed seedlings (Figures
7B, D), which was in agreement with the observations in
sanguinarine under heat stress conditions (Schlager and Drager,
2016). However, more studies are still required to confirm that
alkaloids could function as a protectant for plants to confer
stronger resistance to LT stresses. The current study has compared
the expression level of stress-related genes in Arabidopsis plants
treated with exogenous atropine under freezing conditions
(Supplementary Figure S6). It was found that atropine could
promote the expression of CBF1, CBF3, CAB1, CAB3, CAB4,
SPASE before or after freezing treatment, but the extent is much
lower than that induced by BnTR1 (Figures 4 and 5). Thus the results
confirmed at least in part the protective role of atropine for a plant in
adaption to LT stress. It is proposed that BnTR1 works as an effecter
viametabolizing alkaloids accumulation, photosynthesis, CBF/DREB
pathways, and ROS scavenging system in stressed Arabidopsis, which
in turn contributes to the adaptation under LT conditions.
CONCLUSIONS

During overwintering for the semi-winter type rapeseed grown in
China, the extremely low temperature has a deleterious impact on
plant productivity. Therefore, the identification of genes responsible
for stress response is the prime interest of researchers. Despite of
limited phenotypic data, our associative transcriptomics approach
A B

C D

FIGURE 7 | BnTR1 mediates alkaloid accumulation and exogenous atropine application enhances freezing tolerance. (A) Total alkaloids accumulation in BnTR1
transgenic lines and WT plants under freezing stress conditions. L1, L3, L5 represent three independent homozygous lines of BnTR1 transgenic Arabidopsis plants.
(B) Phenotypes of Arabidopsis WT plants with exogenous atropine application (0 nmol per plant, 10 nmol per plant, 30 nmol per plant) under freezing stress
conditions. Scale = 2 cm. (C) Survival rates of Arabidopsis WT plants with exogenous atropine application after the freezing treatment. (D) Phenotypes of rapeseed
WT plants with exogenous atropine application (0 nmol per plant, 50 nmol per plant, 150 nmol per plant) under LT conditions. Scale=5 cm. Bars indicate the SE of
three biological replicates. Significant differences are determined by Student’s t-test (*P < 0.05 or **P < 0.01).
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has been successfully used to dissect the genetics of photosynthetic-
related traits under low temperature conditions. The first short-
chain dehydrogenase/reductase, BnTR1 was identified in rapeseed,
which improved the transpiration rate and freezing tolerance of
Arabidopsis plants. Taken together, our findings illustrated the
molecular mechanism of plant adaption to low temperature
stress. Finally, this work sheds light on the way to increase low
temperature tolerance in rapeseed by genetic engineering strategies.
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