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The comprehension of the bioactive fractions involved in the biostimulant activity of plant
derived protein hydrolysates (PH) is a complex task, but it can also lead to significant
improvements in the production of more effective plant biostimulants. The aim of this work
is to shed light onto the bioactivity of different PH dialysis fractions (PH1 < 0.5–1 kDa; PH2
> 0.5–1 kDa; PH3 < 8–10 kDa; PH4 > 8–10 kDa) of a commercial PH-based biostimulant
through a combined in vivo bioassay and metabolomics approach. A first tomato rooting
bioassay investigated the auxin-like activity of PH and its fractions, each of them at three
nitrogen levels (3, 30, and 300 mg L−1 of N) in comparison with a negative control (water)
and a positive control (indole-3-butyric acid, IBA). Thereafter, a second experiment was
carried out where metabolomics was applied to elucidate the biochemical changes
imposed by the PH and its best performing fraction (both at 300 mg L−1 of N) in
comparison to water and IBA. Overall, both the PH and its fractions increased the root
length of tomato cuttings, compared to negative control. Moreover, the highest root length
was obtained in the treatment PH1 following foliar application. Metabolomics allowed
highlighting a response to PH1 that involved changes at phytohormones and secondary
metabolite level. Notably, such metabolic reprogramming supported the effect on rooting
of tomato cuttings, being shared with the response induced by the positive control IBA.
Taken together, the outcome of in vivo assays and metabolomics indicate an auxin-like
activity of the selected PH1 fraction.

Keywords: dialysis fractionation, rooting assay, auxin-like activity, plant secondary metabolism, Solanum
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INTRODUCTION

Nowadays, the improvement of sustainable agronomic practices
to reduce the input of chemical inputs and to improve
environmental aspects and quality of agricultural productions
is becoming mandatory (Searchinger et al., 2013; De Pascale
et al., 2017). With this regard, several technological innovations
have been proposed, including the use of bio-based products
such as plant biostimulants (Rouphael and Colla, 2018; Rouphael
et al., 2018b; Xu and Geelen, 2018). Plant biostimulants include
substances and/or microorganisms that are able to enhance
plant growth, tolerance to abiotic stress, water, and nutrients
use efficiency, rather than promote nutritional and functional
quality of the products (Du Jardin, 2015; Rouphael et al., 2018b).
Different classes of non-microbial and microbial products have
been proposed among biostimulants, such as beneficial
microorganisms (e.g. mycorrhiza or plant growth promoting
rhizobacteria), humic substances, seaweed extracts, and protein
hydrolysates (PH) (Calvo et al., 2014; Battacharyya et al., 2015;
Canellas et al., 2015; Colla et al., 2015; Haplern et al., 2015;
Rouphael et al., 2015; Ruzzi and Aroca, 2015; Colla et al., 2017a;
Bitterlich et al., 2018). Among organic non-microbial plant
biostimulants, humic acids and PH command half of the
market share (Rouphael and Colla, 2018). These latter are a
mixture of peptides and free amino acids resulting from the
chemical or enzymatic partial hydrolysis of protein sources from
either animal or vegetal origin (Colla et al., 2015; Colla et al.,
2017b). The applications of PH-based biostimulants have been
reported to enhance nutrient use efficiency and tolerance to
abiotic stressors such as drought, extreme temperatures, and
salinity (Calvo et al., 2014; Haplern et al., 2015; Lucini et al.,
2015; Colla et al., 2017a; Colla et al., 2017b; Rouphael et al.,
2017a; Rouphael et al., 2017b; Carillo et al., 2019a; Carillo et al.,
2019b). In a recent review Colla and co-workers were able to
summarize the main physiological and molecular mechanisms
behind the biostimulant action of PH (Colla et al., 2017a). Direct
and indirect mechanisms include: i) stimulation the C and N
metabolism by triggering key enzymes, ii) increasing the
antioxidant defense systems, iii) triggering hormone-like
activities, and modulating the root system apparatus thus
increasing nutrient uptake/assimilation and consequently
boosting crop productivity.

Considering that several molecular mechanisms and
biochemical processes have been related to PH activity to crops,
it is clear that the biostimulant action is far beyond a mere supply
of amino acids as nitrogen source. Besides representing an
available source of nitrogen and carbon skeletons, the peptides
in PH are supposed to exert a direct regulatory activity toward
plants growth, known as hormone-like activity (Colla et al., 2014;
Oh et al., 2018; Tejada et al., 2018). Signaling peptides are mainly
short-amino acid chains (2–50 amino acids), having specific
amino acid primary sequences and inducing biological effects at
very low concentration (nM). Matsumiya and Kubo (2011)
identified in PH obtained through enzymatic hydrolysis of
soybean meal a signaling peptide having a 12 amino acid
sequence; this peptide, the so-called “root hair promoting
peptide”, seems to stimulate key gene(s) that increase root
Frontiers in Plant Science | www.frontiersin.org 2
number and length of root hair. Moreover, some amino acids
can also exert a signaling role. As an example, L-glutamate was
shown to inhibit primary root growth and increase root branching
near the root apex when roots were exposed to low concentrations
of the amino acid (Forde and Lea, 2007). Noteworthy, the
information on the substances being actually responsible of the
biostimulant activity of PH is still limited, and a synergic role of
different components has been recently postulated (Paul et al.,
2019a; Paul et al., 2019b). Nonetheless, different contributions of
PH fractions can be postulated, with small molecules (including
amino acids), oligopeptides, and polypeptides likely representing
the fractions having a potential biostimulant activity.

The comprehension of the bioactive substances involved in
the biostimulant activity is a complex task, but it can also lead to
significant improvements in the field of plant biostimulants.
Indeed, the comprehension of the components to which
biological activity is related can assist the choice of the best
sources for PH, the improvement of hydrolysis processes and PH
manufacture in general and can support the definition of the best
agronomic strategies. Taken together, these improvements might
open the field toward new generation biostimulants (2.0). Given
the complex composition of products from natural origin such as
biostimulants, the understanding of the most active components
can be achieved following fractionation through molecular
weight cut-off. The results can assist companies to optimize the
production process in order to maximize the amount of the most
active fraction(s).

Taking into account that a PH is composed by several
components differing for chemical structure and molecular
weight, and considering that no information is available on the
actual contribution of each specific fraction, the aim of this work
is to shed light onto the biostimulant activity of the different
components of Trainer®, a representative commercially available
PH. With this purpose, molecular fractionation, in vivo bioassays
and plant metabolomics were combined to investigate the
contribution of low-molecular-weight components such as
amino acids and peptides on the activity and mode(s) of action
of a PH. Because the whole PH product and its fractions were
tested up to doses corresponding to 300 mg of N L−1, we cannot
exclude that such high doses of PH and its fractions may act not
only as biostimulants but also as sources of nitrogen. Besides this
specific case, the approach proposed might find application in all
cases where a biostimulant product is composed by a mixture of
small molecules and high molecular weight macro-biomolecules.
MATERIALS AND METHODS

The PH and Its Fractionation
The legume-derived PH biostimulant Trainer® was a commercial
product manufactured by Italpollina (Rivoli Veronese, Italy), and
purchased from a commercial retailer. This PH is obtained by
hydrolysis of proteins derived from legume seed flour that
underwent enzymatic hydrolysis followed by separation
of insoluble residual compounds by centrifugation and
concentration. The product pH was 4.4. The product electrical
June 2020 | Volume 11 | Article 976
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conductivity (EC) increases linearly with increasing PH
concentration (C) in the water with the following relationship
between EC (dS m−1) and C (ml L−1) in pure water:

EC = 0:1983 C (R2 = 0:996)

PH biostimulant Trainer® contains 5% of N (w/w) as free
amino acids, and soluble peptides. The aminogram of the
product was (%): alanine—Ala (1.2), arginine—Arg (1.8),
aspartic acid—Asp (3.4), cysteine—Cys (0.3), glutamic acid—
Glu (5.4), glycine—Gly (1.2), histidine—His (0.8), isoleucine—
Ile (1.3), leucine—Leu (2.2), lysine—Lys (1.8), methionine—Met
(0.4), phenylalanine—Phe (1.5), proline—Pro (1.5), threonine—
Thr (1.1), tryptophan—Trp (0.3), tyrosine—Tyr (1.1), valine—
Val (1.4) (Paul et al., 2019b). The macronutrient composition of
Trainer® is as follows (%): P (0.09), K (0.41), Ca (0.07), and Mg
(0.1). Trainer® also contains the following micronutrients (mg
kg−1): Fe (30.0), Mn (1.0), B (1.0), Zn (9.6), and Cu (9.0).

Ultrafiltration was carried out using a molecular weight cut-
off (MWCO) cellulose acetate membrane (cellulose acetate,
VWR, Milan, Italy) of 0.5–1 and 8–10 kDa, following
manufacturer recommendations. The two MWCO were chosen
to target the fractionation between small molecules and
oligopeptides (around 9 amino acid residues—MWCO 0.5–1
kDa), and polypeptides (up to 90 amino acid residues—MWCO
8–10 kDa), respectively. Water was used for partition, and the
product was allowed to diffuse for 24 h. At the end of partition,
total N was measured in each fraction for both MWCO, through
the Dumas' method using an elemental analyzer (Elemental vario
MAX CN, Langenselbold, Germany). The nitrogen analysis
showed low concentrations of N in all the PH-fractions in
comparison to the whole product, due to the dilution that took
place in the fractionation process. The total N content of each
fraction was as follow (% w/w): 0.105 for PH1 (< 0.5–1 kDa);
0.861 for PH2 (> 0.5–1 kDa); 0.128 for PH3 (< 8–10 kDa); 0.384
for PH4 (> 8–10 kDa).
In Vivo Bioassays
Tomato rooting test bioassay was carried out to identify the
auxin-like activity by estimating the ability of the whole product
and its fractions to promote initiation of adventitious roots in
tomato cuttings (Matsumiya and Kubo, 2011; Colla et al., 2014).
Tomato (Solanum lycopersicum L. cv. Marmande, SAIS Sementi,
Cesena, Italy) seeds were surface sterilized using commercial
bleach with sodium hypochlorite at 2% for 20 min. After being
raised with sterilized water, the tomato seeds were sown in a
germination tray filled with vermiculite. The growth chamber
had a 12 h photoperiod with a light intensity of 450 µmol m−2 s,
air temperature of 24°C, and 65% relative humidity. After 25 d
from sowing, 3-true leaf tomato cuttings were harvested. In the
experiment 1, cuttings were immersed for 5 min in a solution
(basal application) containing three rates of either the PH
Trainer® or its fractions whereas distilled water and indole-3-
butyric acid (IBA) were used as negative and positive control,
respectively. Since the amino acids and peptides are organic
nitrogenous compounds, a normalization of application rates for
PH and its fractions was carried out in order to apply the same
Frontiers in Plant Science | www.frontiersin.org 3
level of nitrogen for each dose level in experiment 1 (3, 30, or
300 mg L−1 of N). Product rates at each nitrogen level changed as
follow (g L−1 for 3, 30, or 300 mg L−1 of N, respectively): PH1
(2.86, 28.57, 285.71), PH2 (0.35, 3.48, 34.84), PH3 (2.34, 23.44,
234.38), PH4 (0.78, 7.81, 78.12), and PH (0.06, 0.60, 6.00). IBA
was applied at three rates as follow: 0.006, 0.06, and 0.6 g L−1. In
experiment 2, the following treatments were tested: water-treated
control, foliar application of a water solution containing PH at
6 g L−1, basal application of a water solution containing PH1 at
285.71 g L−1, foliar application of a water solution containing
PH1 at 285.71 g L−1, and basal application of a solution
containing IBA at 0.06 g L−1. PH1 was selected as the most
active fraction based on Experiment 1. In all treatments, the
applied rate of PH or its fraction (PH1) was established in order
to assure the same level of N (300 mg L−1 of N). Foliar
application of PH or its fraction (PH1) was made by a quick
dip of aerial part of cuttings into the solution. The cuttings
of both experiments were planted in transparent plexiglas
boxes containing 8 cm of wetted perlite. The boxes were
closed to ensure a relative humidity close to saturation (100%).
Treatments were arranged in a randomized complete block
design with three replications. Each experimental unit consist
of a box containing 30 cuttings. After 7 d from planting, the roots
of cuttings were gently washed with distilled water, until the root
systems were free from any perlite particles. The measurement of
the total root length was made on 18 cuttings per treatment using
a WinRHIZO Pro (Regent Instruments Inc., Canada), connected
to a STD4800 scanner. In the second experiment additional 18
cuttings per treatment (6 cuttings per experimental unit) were
sampled for metabolomics analysis. With this latter aim, cuttings
were removed and gently washed with distilled water, the basal
part was sampled (2.5 cm of basal part of cutting stems including
roots) and immediately quenched by dipping in liquid nitrogen,
then stored at −80°C until analyses.

Metabolomics
Samples of tomato cuttings gained from the in vitro assays were
grinded with liquid nitrogen using pestle and mortar, and then
extracted as previously reported (Rouphael et al., 2018a). Briefly,
an aliquot (1.0 g) was extracted in 10 ml of 0.1% HCOOH in 80%
aqueous methanol using an Ultra-Turrax (Ika T-25, Staufen,
Germany). The extracts were centrifuged (12,000 × g) and
metabolomic analysis was then carried out by UHPLC liquid
chromatography quadrupole-time-of-flight mass spectrometry
(UHPLC/QTOF-MS) as previously reported (Pretali et al.,
2016). With this aim, a 1290 ultra-high-performance liquid
chromatograph, a JetStream electrospray ionization source and
a G6550 QTOF (all from Agilent technologies, Santa Clara, CA,
USA) were used. Reverse phase chromatography was carried out
on an Agilent Zorbax Eclipse-plus C18 column (100 × 2.1 mm,
1.8 mm) using a linear binary gradient elution (5%–95%
methanol in water in 34 min, flow rate 220 ml/min). The mass
spectrometer was operated in SCAN mode (100–1000 m/z) and
positive polarity.

Mass (5 ppm difference in accuracy) and retention time (0.05
min as maximum shift allowed) alignment, as well as a filter-by-
frequency post-processing were done in post-acquisition using
June 2020 | Volume 11 | Article 976
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Agilent Profinder B.06 software. For filtering purposes, only the
compounds annotated in at least 75% of replications within
at least one treatment were retained. The combination of
monoisotopic mass, isotopes ratio and spacing was used to
annotate compounds. The reference database was PlantCyc 12.6
(Plant Metabolic Network, http://www.plantcyc.org; downloaded
April 2018). According to COSMOS Metabolomics Standards
Initiative (http://cosmos-fp7.eu/msi), our identification
corresponded to Level 2 (putatively annotated compounds).

Statistical Analysis
In both bioassay experiments 1 and 2, ANOVA tests were
conducted using the software package SPSS 10 for Windows (SAS
Inc., Cary, NC). Duncan's multiple range test was performed at
p = 0.05 on each of the significant variables measured.

Chemometric interpretation of the metabolomics dataset
was carried out using Mass Profiler Professional B.12.06,
as previously described (Salehi et al., 2018). Compounds
abundance was Log2 transformed, normalized at the 75th

percentile, and baseline against the median. Unsupervised
hierarchical cluster analysis (HCA) was done to describe
relatedness/distance of metabolomic signatures across treatments.
With this aim, the heatmap based on fold-change values was
used, similarity was set as “Euclidean” and the “Wards” linkage
rule was chosen. The dataset was then loaded into SIMCA 13
(Umetrics, Malmo, Sweden), Pareto-scaled and Orthogonal
Projections to Latent Structures Discriminant Analysis (OPLS-
DA) supervised analysis was carried out. Outliers were
preliminary investigated using Hotelling's T2 (95% and 99%
Frontiers in Plant Science | www.frontiersin.org 4
confidence limits for suspect and strong outliers, respectively).
CV-ANOVA (p < 0.01) and permutation testing (N = 300) were
also applied to validate the model and to exclude overfitting.
Goodness-of-fit R2Y and goodness-of-prediction Q2Y were
calculated for the OPLS-DA model and finally, Variable
Importance in Projection (VIP) analysis was used to select the
most discriminant metabolites. The metabolites included in the
dataset were subjected to fold-change analysis and ANOVA in a
Volcano analysis, to describe the extent and direction of regulation
following biostimulant treatments. Metabolites derived from
Volcano analysis with their fold-change values were finally
imported into PlantCyc pathway Tools software (Karp et al.,
2010) to highlight the pathways and processes involved in plant
response to treatments.
RESULTS

Biostimulant Action of PH and Its
Fractions on Tomato Rooting
Overall, both the PH and its fractions increased the root length,
compared to control (experiment 1; Figure 1). The highest root
length (342.8 mm/plant) was obtained in the treatment PH1,
corresponding to the small fraction (MWCO < 0.5–1 kDa) at
dose 3, whereas the lowest value was observed in control
treatment (170.9 mm/plant; Figure 1). In the experiment 2,
PH1 and IBA were the most efficient treatments in promoting
root growth in comparison with negative control (+83 and 64%
FIGURE 1 | Root length of tomato plants as affected by basal treatment of cuttings with solutions containing the protein hydrolysate Trainer® (PH) or one of its
fractions (PH1 = fraction with molecular weight below 0.5–1 kDa; PH2 = fraction with molecular weight above 0.5–1 kDa; PH3 = fraction with molecular weight
below 8–10 kDa; PH4 = fraction with molecular weight above 8–10 kDa), or indole-3-butyric acid (IBA) in the experiment 1. All products were applied at three doses.
Different letters over bars indicate significant differences between treatments according to Duncan's multiple range test (p = 0.05).
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for PH1 foliar and basal application, respectively; + 59% for IBA
treatment). PH-treated cuttings showed intermediate values of
root length (Figure 2).

Untargeted Metabolomics
A comprehensive analysis based on plant metabolomic profiling
was performed. The untargeted metabolomic approach, using a
hybrid quadrupole-time-of-flight mass spectrometer coupled to
an UHPLC chromatographic system (UHPLC-ESI/QTOF-MS),
was carried out to investigate the metabolic reprogramming
induced by treatments and then to discern the pathways and
processes elicitated by PH application.

In a preliminary step, the HCA allowed to group the samples
according to their similarities/dissimilarities in an unsupervised
manner. The fold-change (FC) of metabolites provided by
UHPLC-ESI/QTOF-MS analysis were used to build the HCA
heat-map and the relative clusters, as a first step of interpretation.
The complete list of metabolites annotated, with individual
intensities, is provided as supplementary material (Supplementary
Table 1). HCA outcome (Figure 3) indicated that the changes in
the metabolic profile could differentiate the effect of the different
treatment on tomato plants. The clustering results showed that
the samples were grouped in two principal clusters. The first
cluster grouped samples from IBA treatment (positive control)
and PH1 with foliar application, thus indicating a close
relationship between the two. The second cluster included a
sub-cluster grouping the (not fractioned) PH and PH1 with basal
application, as well as another sub-cluster including the
replicates from negative control. Therefore, this unsupervised
analysis suggested that the treatments induced a change in
metabolomic profile of tomato, and that such changes resulted
Frontiers in Plant Science | www.frontiersin.org 5
from the combination of the material considered (PH vs PH1)
and the mode of application (basal vs foliar).

To better understand the effect of each biostimulant and the
differences between them, a supervised multivariate analysis was
next performed considering the basal application of PH and
PH1 together with the two controls (water and IBA). OPLS
discriminant analysis allowed to effectively separate the treatments
into the score plot hyperspace, by discerning predictive and
orthogonal components of variance (Figure 4). All the treatment
resulted well separated from each other, suggesting a different effect
at molecular level. The model was validated, and the parameters
indicated a good predictivity (R2Y=0.989; Q2Y= 0.8; CV-ANOVA
P = 4.28E−7). At the same time, permutation testing excluded
model overfitting.

VIP analysis was therefore used to identify the metabolites
mostly involved in the separation between treatments. Metabolites
presenting a VIP score >1.4 were considered as discriminant and
used for the discussion. These discriminant compounds identified
by the supervised approach are provided in Supplementary Table
2. Among these metabolites, secondary metabolites were the most
represented compounds suggesting that the treatment had a specific
effect on the secondary pathways. In fact, hormones such as
gibberellins and brassinosteroids were the principal discriminants
isoprenoids. In addition, we underlined the presence of alkaloids
and some glucosinolates, together with polyphenols as isoflavones
and lignans.

A comprehensive overview of the metabolic processes involved
in tomato plant response to the treatments was provided by the
PlantCyc software. With this aim, the most significant compounds
obtained fromVolcano analysis (P-value<0.05; FC>1.5) were loaded
into the Pathway Tools Omics Dashboard. This tool allowed to
interpret the changes at molecular level and to link to a putative
physiological process and, therefore, to expand the knowledge
regarding the mode of action of the bioactive component(s) of
the PH.

Figure 5 summarizes the differential metabolites, classified by
categories based on their role in the biosynthesis pathways. As a
broad overview, PH-fraction 1 showed a similar profile to positive
control IBA, and different from PH. Secondary metabolism
included the most intensely modulated categories of compounds,
in response to PH and its fraction application (Table 1). Indeed,
over 250 compounds included in secondary metabolism related
pathways were affected by the treatments. Similarly, hormones and
compounds belonging to cofactors, prosthetic groups, electron
carrier's biosynthesis, and vitamins were identified as a general
plant response to treatments. However, the intensity of the
metabolite modulation and the carbon and nitrogen fluxes
appeared to be distinct, based on the treatment. In this sense, PH
induced an up accumulation in secondary metabolism and
cofactors-related compounds, and a down accumulation of
hormones. However, the fraction PH1 showed a behavior
differing from the PH, that resulted in a down accumulation of
several secondary metabolism biosynthetic pathways, in line with
IBA treatment.

The biochemical processes including nitrogen-containing
secondary metabolites, phenylpropanoids and terpenes were the
FIGURE 2 | Root length of tomato plants as affected by basal or foliar
treatment of cuttings as carried out in the experiment 2. To this aim, solutions
containing distilled water, protein hydrolysate (PH) Trainer® or its fraction with
molecular weight below 0.5–1 kDa (PH1) or indole-3-butyric acid (IBA) have
been tested. Different letters over bars indicate significant differences between
treatments according to Duncan's multiple range test (p = 0.05).
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most elicited by the biostimulant treatments, as confirmed from
volcano plot (p< 0.05, FC > 1.5) analysis for differential metabolites
(Supplementary Table 3). Flavonoids and alkaloids and, to a lesser
degree glucosinolates, were particularly up-accumulated in PH
Frontiers in Plant Science | www.frontiersin.org 6
treated-plants. It is worthy to note that compounds as N-
feruloyltyramine, intermediate in the biosynthesis of suberin, and
some lignans as (+)-secoisolariciresinol monoglucoside and
(−)-pluviatolide, were up-accumulated in the presence of PH. The
FIGURE 4 | Orthogonal projection to latent structures discriminant analysis (OPLS-DA) supervised modeling of tomato plants following basal application of a protein
hydrolysate (PH) or its PH1 fraction (MWCO < 0.51 kDa) (Exp 2). The metabolomic dataset produced through UHPLC-ESI/QTOF-MS was Pareto scaled and then
used for the multivariate OPLS-DA modeling. Indole-butyric acid (IBA) and water were used as positive and negative control, respectively.
FIGURE 3 | Unsupervised hierarchical cluster analysis carried out from UHPLC-ESI/QTOF-MS metabolomic analysis of tomato plants treated with a protein
hydrolysate (PH) or its fraction PH1 (MWCO < 0.5–1 kDa) either via basal or foliar application (Exp. 2). Indole-butyric acid (IBA) and water were used as positive and
negative control, respectively. The fold-change based heat map from compounds' normalized intensities was used to build hierarchical clusters (linkage rule: Ward;
distance: Euclidean).
June 2020 | Volume 11 | Article 976
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defence compounds indole-3-carboxylate and psoralen, both
considered phytoalexins, were found to be stimulated by PH.

On the contrary, the fraction PH1 showed a different effect on
these compounds, since a general response to the treatment depressed
the biosynthesis related to secondary metabolism and phytoalexins
plant defence. Phenylpropanoids, predominantly flavonoids,
terpenophenolics, as well as terpenoids, polyketides, and alkaloids
were negatively affected by PH1 application. Despite the general
decrease of defence compounds, metabolites as the fucocumarin
psoralen or the phenylpropanoid ferulate were up accumulated. As
recorded following PH application, the alkaloid isoalliin were highly
increased. Interestingly, anthranilate, intermediate in the pathway of
tryptophan and its related pathways, and the 3-hydroxycinnamic acid
were down-accumulated in both PH-fraction 1 and IBA. The
phytosiderophores mugineate and 3-epihydroxy-2'-deoxymugineate
presented the same down-accumulation trend in both fraction PH1
and IBA.
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Notably, also phytohormones presented a modulation as a
consequence of the treatments (Supplementary Figure 1).
Brassinosteroids, cytokinins, and jasmonates biosynthesis related
compounds were down accumulated following application of PH.
The pattern of the phytohormones in response to fraction PH1 and
IBA application was very similar. Abscisic acid related compounds
and cytokinins were down accumulated in the presence of both
fraction PH1 and IBA. However, gibberellins were elicited by
all treatments.
DISCUSSION

PHs are considered as plant biostimulants since they can have a
positive effect on plants by increasing shoot and root biomass, rather
than tolerance to abiotic stresses, thus promoting crop productivity
(Colla et al., 2015). This positive effect could be linked to the
TABLE 1 | Summarized biosynthesis processes involved in plant response to foliar application of a protein hydrolysate (PH) or its fraction PH1 (MWCO < 0.5–1 kDa)
(Expt. 2).

Log FC PH Log FC PH-fraction Log FC IBA

No.
compounds

Average Sum
FC

No.
compounds

Average Sum
FC

No.
compounds

Average Sum
FC

Amino acid biosynthesis 25 1.2 −29.9 25 −2.1 −53.7 25 0.4 9.2
Nucleosides and nucleotides biosynthesis 8 0.3 2.2 8 −2.6 −20.8 8 −2.3 −18.7
Fatty acid and lipid biosynthesis 24 0.8 18.9 24 −0.9 −21.7 24 0.5 11.7
Amines and polyamines biosynthesis 10 −0.4 −4.4 10 −2.2 −22.0 10 4.5 45.3
Carbohydrates biosynthesis 1 −0.1 −0.1 1 14.7 14.7 1 0.2 0.2
Secondary metabolites biosynthesis 252 0.9 221.2 254 −1.4 −344.1 252 −1.7 −425.1
Cofactors, prosthetic groups, electron carriers
biosynthesis

27 1.3 33.8 27 −2.1 −57.0 27 −1.9 −52.3

Hormones biosynthesis 25 −2.3 −58.0 25 −3.4 −85.7 25 −4.3 −107.6
Cell structures biosynthesis 11 3.3 36.0 11 0.7 7.7 11 0.4 4.1
Metabolic regulators biosynthesis 3 −0.8 −2.3 3 −1.3 −3.9 3 0.5 1.5
Other biosynthesis 27 0.7 18.0 27 −3.1 −82.7 27 −3.1 −83.8
Ju
ne 2020 | Volum
e 11 | Art
The metabolomic dataset produced through UHPLC-ESI/QTOF-MS was subjected to volcano plot analysis (P < 0.05, fold-change > 1.5) and differential metabolites loaded into PlantCyc
Pathway Tool (https://www.plantcyc.org/). Indole-butyric acid (IBA) and water were used as positive and negative control, respectively. The average and summed Log fold-changes (Log
FC) values, together with the number of compounds involved, is provided for each biosynthetic pathway and for each treatment.
FIGURE 5 | A summary of biosynthesis processes involved in tomato plant response to foliar application of a protein hydrolysate (PH) or its PH1 fraction (MWCO <
0.5–1 kDa) (Exp. 2). The metabolomic dataset produced through UHPLC-ESI/QTOF-MS was subjected to volcano plot analysis (P<0.05, fold-change > 1.5) and
differential metabolites loaded into PlantCyc Pathway Tool (https://www.plantcyc.org/). Indole-butyric acid (IBA) and water were used as positive and negative
control, respectively. The x-axis represents each set of subcategories while the y-axis corresponds to the cumulative fold-change. AA Syn: amino acids biosynthesis;
Nucleo Syn: nucleoside and nucleotide biosynthesis; FA/Lip Syn: fatty acid and lipid biosynthesis; Amine Syn: amine and polyamine biosynthesis; Carbo Syn:
carbohydrate biosynthesis; Sec Metab Syn: secondary metabolite biosynthesis; Cofactor Syn: cofactor, prosthetic group, electron carrier, and vitamin biosynthesis;
Hormone Biosynt: hormone biosynthesis; Cell-Struct Syn: cell structure biosynthesis; Metabolic Regul: metabolic regulator biosynthesis; Other: other biosynthesis.
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interference of PH on nutrient uptake and Fe, C, and Nmetabolism
(Colla et al., 2015; Paul et al., 2019a). The above findings can also be
linked to the increased availability of nutrients for plant uptake
resulting form the formation of metal complexes of amino acids and
peptides in PHs. Similarly, humic substances improvement of plant
iron nutrition as a consequence of metal complexation by humic
substances (HS) extracted from different sources has been widely
reported. In our study, OPLS-DA supervised multivariate modeling
and the following VIP analysis indicated differences in the
secondary metabolism and suggested that each treatment (i.e. the
PH rather than its fraction) had a specific effect at metabolome level.
The most active fraction of the PH (PH1, MWCO <0.5–1 kDa) was
that including oligopeptides and amino acids. Santi et al. (2017)
observed that PHs containing peptides and a low quantity of free
amino acids presented a higher effect on root growth and
micronutrient accumulation than free amino acid mixture.
Similarly to HS (Zanin et al., 2019), the improvement of
micronutrient uptake resulting from the PH applications can be
related to the direct effects of PH on micronutrient-acquisition
mechanisms and to the capability of amino acids and peptides to
form stable complexes with metals. Moreover, small peptides have
been postulated as key signalingmolecules, since they could regulate
various aspects of developmental processes in plants (Oh
et al., 2018).

A general accumulation of nitrogen-containing compound
was showed after PH application, in agreement with a previous
study revealing that the PH enhances nitrogen uptake (Colla
et al., 2014). In addition, probably due to the modulation of
nitrogen metabolism, alkaloids presented a variation of their
amount. The modulation of alkaloids is consistent with previous
findings using a PH on lettuce (Lucini et al., 2015); these
compounds are one of the largest groups of plant secondary
metabolites containing nitrogen in their structure. Among other,
the complex and partially understood roles ascribed to alkaloids
in plant metabolism included the regulation of plant growth and
the action as reservoir of nitrogen (Waller and Nowacki, 1978;
Facchini, 2001). Several studies linked the nitrogen content and
the bioavailability of N to the increase of alkaloids (Sreevalli et al.,
2004; Banani et al., 2017). Moreover, it has been postulated that
the increase of N assimilation due to the PH application could
stimulate phenylpropanoids pathway (Colla et al., 2015), which
could explain the changes observed in the phenylpropanoid
metabolites following PH application. Noteworthy, several
works reported that biostimulants are effective in modulating
the profile of phenolic compounds in wine (Boselli et al., 2019;
Salvi et al., 2019), tomato (Lucini et al., 2015), and pepper
(Barrajón-Catalán et al., 2020). In plant, phenolics play a
plethora of functions both in terms of physiology and
development as well as regarding interactions with biotic and
abiotic environments.

Besides the modulation of secondary metabolism, that was
expected, it is important to point out that the PH and even more
its fraction PH1 strongly affected the profile of phytohormones.
Interestingly, PH1-induced metabolomic changes showed always
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the same trend as IBA-induced changes. This is coherent with the
outcome of in vivo bioassays, where this fraction showed the highest
auxin-like activity, similarly to IBA. The effect of the not
fractionated PH was distinct from PH1, thereby indicating that
fractionation enriched the product by the component having an
auxin-like activity that promoted the growth of adventitious roots.
The fractionation-related activity of biostimulant materials has been
previously described for HS (Maggioni et al., 1987; Puglisi et al.,
2009), even though the knowledge about the underlying
mechanisms still remains partial and fragmentary (Calderin
Garcia et al., 2016). With this regard Nardi et al. (2002)
highlighted that the portions with low molecular weight (<3,500
Da) HS could easily reach the plasmalemma of plants, whereas high
molecular weight fractions (>3,500 Da) could interact only with the
cell wall. Similarly, Canellas et al. (2010) observed different
hormone-like activities when testing different size fractions of a
vermicompost humic substance. Although referring to a different
biostimulant material, these different clues contribute to support the
distinctive differences in metabolic signatures we observed between
PH and its low molecular weight fraction PH1.

This latter PH1 fraction provided an auxin-like activity when
applied to tomato. It is known that auxins play an important role in
plant development, including rooting (Enders and Strader, 2015).
Root growth is sustained by the apical meristem, a region near the
root tip where the development program regulates cell division and
elongation and is pivotally maintained by auxins, cytokinins, and
gibberellins. In particular, auxins play a key role in root
development, being involved in the positioning and formation of
the meristem, and stimulation of mitotic activity (Muraro et al.,
2016). In fact, auxins are reported to promote founder cells of both
shoots and roots (Toyokura et al., 2019). Nevertheless, it is
important to keep in mind that root development is the result of
a rather complicated and still poorly understood coordinated
multilayer interaction network between auxins, cytokinins,
gibberellins, and ethylene (Liu et al., 2017). Cytokinins regulate
the activity of the meristem antagonistically to auxins, negatively
modulating the transport of auxins (Marhavý et al., 2011) and
reducing mitotic activity via the promotion of cell differentiation
(Dello Ioio et al., 2007). As far as gibberellins are considered, their
involvement in root development is important during the early
stages when they promote auxin transport and cell proliferation
(Moubayidin et al., 2010). The hormonal regulation of root growth
can be further expanded, since the gibberellin-related DELLA
proteins are known to interact with jasmonate, ethylene, and
brassinosteroids, (Liu et al., 2017), the latter acting antagonistically
to auxins by inhibiting cell elongation in the root tip (Chaiwanon
and Wang, 2015). Finally, abscisic acid coordinates auxins to
determine root elongation and architecture, even under no stress
conditions (Harris, 2015).

Notably, this complex regulation network can be linked to our
results. The biostimulant fraction PH1 (i.e., the fraction inducing
the same metabolic modulation caused by IBA), determined a
coordinated hormonal change that supports the auxin-like activity
observed in the bioassays. The application of PH1 caused a down
June 2020 | Volume 11 | Article 976
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accumulation of cytokinins (antagonists of auxins in root
development), and a concurrent down accumulation of abscisic
acid intermediates (inhibitor of root elongation). The increase in
gibberellins observed following application of both PH and PH1,
can have promoted auxins transport and cell proliferation while
inhibiting brassinosteroids, these latter being antagonists of the
auxins. Noteworthy, the biostimulants-induces increase in
gibberellins has been previously linked to rooting of azalea
cuttings, especially at the early stage of root development
(Elmongy et al., 2018). Furthermore, the whole metabolite
signature (mainly targeting secondary metabolism) was largely
shared between IBA- and PH1-induced metabolomic
reprogramming, thereby corroborating the auxin-like activity
resulting from the changes in phytohormone profiles. Besides, we
cannot exclude a direct contribution of the endogenously present
auxin in determining to the shift in metabolic patterns we observed
following application of PH1. The long-distance effects we observed
in tomato plants are hard to be substantiated without specific
labeling experiments. Bearing in mind that auxins are known to
be transported from the shoot to the root apex (Muraro et al., 2016),
we can speculate that this process might have supported the
increased rooting when PH1 was foliarly applied. On the other
hand, the ability of biostimulants to affect tissues other than those of
application has been demonstrated by Kulikova et al. (2016) using a
tritium-labeled humic acid.

It must be noted that also the non-fractionated PH modulated
the hormone profile in tomato, with brassinosteroids, cytokinins,
and jasmonates being down accumulated and gibberellins being
accumulated following the treatment (Figure 5). Noteworthy, these
changes are only partially shared with PH1 and to some extent are
specifically induced by this treatment. This finding is in agreement
with the fact that PH1 is a fraction of PH, where some components
are enriched (small molecules, oligopeptides) and some other are
depleted (higher molecular weight compounds).

In general, regardless the molecular mechanisms involved, small
peptides have been confirmed as potentially important signaling
compounds, as previously postulated for the product used in this
work (Colla et al., 2014). Indeed, they could regulate various aspects
of developmental processes in plants (Oh et al., 2018). Concerning
root development, peptide hormones have been proposed as a key
mechanism for cell–cell interactions in plants (Yamada and Sawa,
2013). These signaling peptides coordinate both development and
responses to environment (Toyokura et al., 2019); despite their
mechanism of action in the shoot is well known, their role in the
root is relatively uncharacterized (Yamada and Sawa, 2013).
CONCLUSIONS

A combination of molecular fractionation by dialysis, in vivo
bioassay for hormone-like activity, and metabolomics, has been
successfully tested to identify the most active fraction of a vegetal
derived-PH. Auxin-like activity was tested through a rooting
Frontiers in Plant Science | www.frontiersin.org 9
assay, to preliminary screen the PH and its fractions, in
comparison to the auxin IBA (positive control). This rooting
experiment allowed identifying the fraction (PH1) having the
highest auxin-like activity, to be tested further, in combination
with MS-based metabolomics, to shed light onto the biochemical
processes underlying the activity observed. The combination of
fractionation (effective in reducing the complexity of a
chemically diverse matrix like PH) with metabolomics was
effective to depict the changes induced by the tested fraction at
biochemical level. Such complementary contributions are
effective to investigate the possible mode of action and the
most bioactive components of a biostimulant product.

The smallest fraction of PH containing small molecules and
oligopeptides (molecular weight < 1 kDa) was the most active in
promoting the rooting of tomato cuttings. Moreover, metabolomics
allowed to identify the mode of action of PH and its fraction
(PH1) in comparison with the exogenously applied IBA. PH1 and
IBA-treated cuttings showed a similar metabolomic signature
(mainly affecting secondary metabolism and phytohormone
profiles), thereby corroborating the auxin-like activity. Notably, in
vivo bioassays were consistent with metabolomics, considering
that PH1 was actually effective in promoting the growth of
adventitious roots.

Therefore, provided that our work focused on auxin-like activity,
PH1 was identified as the most active fraction of the PH. The results
suggested that this approach is suitable to understand the biological
activity retained by the different fractions in a complex biostimulant
product. Noteworthy, the unfractionated PH was not devoid of
biostimulant properties, suggesting that the choice of the best
fraction(s) depends on the desired activity. Although the present
work focused on auxin-like activity, it worth to consider that the
fractions other than PH1 might be of interest, when different aims
are to be targeted. The comprehension of active fractions can assist
the manufacture of more effective biostimulants, where the yield of
the desired fraction/s is optimized during the production process.
With this regard, the present approach represents a good solution
that can be applied in all cases where biostimulants are based on
complex mixtures of bioactive substances differing in molecular
weight, like for HS, PH, and/or algal extracts. Finally, future studies
should also address the role of mineral nutrients in the biostimulant
activity of PHs.
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SUPPLEMENTARY FIGURE 1 | Phytohormone biosynthesis processes
involved in plant response to foliar application of a protein hydrolysate (PH) or its
fraction (MWCO < 0.5–1 kDa) (Exp. 2). The metabolomic dataset produced through
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UHPLC-ESI/QTOF-MS was subjected to volcano plot analysis (P<0.05, fold-
change > 1.5) and differential metabolites loaded into PlantCyc Pathway Tool
(https://www.plantcyc.org/). Indole-butyric acid (IBA) and water were used as
positive and negative control, respectively. The x-axis represents each set of
subcategories while the y-axis corresponds to the cumulative fold-change.

SUPPLEMENTARY TABLE 1 | Whole dataset produced from untargeted
metabolomics carried out in tomato cuttings treated with either a protein
hydrolysate (PH) or its fraction PH1 (Exp. 2). Compounds are presented with
individual intensities, annotations and composite mass spectra (mass abundance
combinations).

SUPPLEMENTARY TABLE 2 | VIP discriminant compounds as identified from
OPLS-DA discriminant analysis of tomato cutting metabolomic profiles following
either a protein hydrolysate (PH), PH1 or indole-3-butyric acid application (Exp. 2).

SUPPLEMENTARY TABLE 3 | Differential metabolites as derived from Volcano
analysis (P-value<0.05, Bonferroni multiple testing correction; FC>1.5) in tomato
cutting metabolomic profiles following either a protein hydrolysate (PH), PH1 or
indole-3-butyric acid application (Exp. 2).
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