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Despite the high economic importance of cacao beans, few RNA-based studies have
been conducted on this plant material and hence no optimal RNA-extraction has been
reported. Moreover, extraction of high-quality RNA from recalcitrant cacao bean tissue
has shown many difficulties and requires optimization. Furthermore, cacao beans are
mostly found at remote and under-resourced locations, which pressures the outsourcing
of such analysis and thereby demands RNA-stable preservation and transportation of
cacao beans. This study aims to select an appropriate RNA extraction and preservation/
transportation method for cacao beans. For this purpose, three sample homogenization
and five extraction protocols on cacao beans were compared. In addition, 13 preservation
conditions—differing in tissue crushing degree, preservation method, duration, and
temperature—were compared and evaluated. A comparative analysis revealed that
CTAB-based homogenization and extraction outcompeted all tested commercial
protocols in RNA yield and integrity, respectively. Preservation at −80°C affected RNA
quality the least, whereas freeze-drying was most suitable for transportation at room
temperature for maximum 1 week. The cacao bean RNA obtained from the selected
methods were compatible for downstream applications. The results of this study will
facilitate on-field sampling and transportation of genetically sensitive cacao material prior
to cacao bean transcriptomic studies. In addition, valuable insights on sample
homogenization, extraction, preservation, and transportation have been provided,
which is of interest to every plant geneticist.
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INTRODUCTION

The beans of the cacao tree (Theobroma cacao L.) are of high
economic importance since they are the raw material for cacao
liquor and chocolate (Guiltinan et al., 2008). Few transcriptomic-
based studies have been conducted on the cacao beans, although
these could help to unravel the genetic background underlying its
highly desired flavor (Argout et al., 2008; Argout et al., 2011). A
prerequisite to conduct such research is to obtain high-quality
RNA (Bustin et al., 2009; Gallego Romero et al., 2014). Since
RNA is highly sensitive to degradation, special attention should
be paid to preservation and transportation of the cacao beans and
the efficiency of the used extraction methods at the level of yield,
quality, and integrity (Sangha et al., 2010; Fabre et al., 2014;
Gallego Romero et al., 2014).

The isolation of sufficient high-quality RNA from cacao
material and other plant-related tissues has shown
complicated, due to the presence of interfering metabolites
(Gesteira et al., 2003; Rodrigues et al., 2007; Varma et al., 2007;
Pereira et al., 2017). Further, a well-defined, cross-tissue
compatible RNA extraction protocol is not yet available and
several attempts to extract high-quality and intact RNA from
complex plant tissues have failed when using standard extraction
protocols and kits (Sangha et al., 2010; Fabre et al., 2014; Royaert
et al., 2016; Silva et al., 2016). Hence, every plant geneticist
should optimize a suitable RNA-extraction protocol specific for
the tissue under study. To date, a wide variety of strategies to
optimize the maceration, preparation, and extraction of high-
quality RNA from difficult plant tissues has been reported.
Examples include varying extraction conditions (kits versus
manual protocols) and sample homogenization procedures
(chemical versus mechanical) (Portillo et al., 2006; Rodrigues
et al., 2007; Vomelová et al., 2009; Gudenschwager et al., 2012;
Kalinowska et al., 2012).

Current cacao-related extraction workflows mostly focus on
leaf RNA (Gesteira et al., 2003; Leal et al., 2007; Bailey et al., 2014;
Legavre et al., 2015; Fister et al., 2016), using either 3% CTAB
based protocols or commercially available RNAqueous (Bertolde
et al., 2014) and RNeasy® Plant Mini (Gesteira et al., 2007) kits.
The first RNA extraction from cacao beans was described in 1991
(Spencer and Hodge, 1991) and was successfully applied in 1992
for the identification of certain polypeptides (Spencer and
Hodge, 1992). In 2002, Jones et al. extracted total RNA from
cacao beans using two kit-independent protocols. However, to
the best of our knowledge, no state-of-the-art comparison of
different cacao bean RNA extraction techniques—focused on
RNA quality and quantity—has been reported so far.

Cacao is mainly cultivated in developing countries with
limited resources for optimal RNA extraction and analysis.
Therefore, RNA extraction and analyses—following (overseas)
shipment—is often the only feasible option. Consequently,
preserva t ion methods compat ib l e wi th long- te rm
transportation should be considered. The gold standard for
RNA preservation recommends cryopreservation of the tissue
at −80°C or in liquid nitrogen (Burden, 2008; Garcıá-baldenegro
et al., 2015). Unfortunately, transporting samples at ultra-low
preservation temperatures has been shown difficult as most
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shipping companies (especially air-based) reject samples stored
on dry ice or in liquid nitrogen (Hernandez et al., 2009; Garcıá-
baldenegro et al., 2015). Therefore, alternative preservation
methods for cacao beans should be evaluated. The samples
could be transported at suboptimal cooling conditions, such as
−20 or 4°C. Although this is highly discouraged as freeze-thaw
cycles promote degradation of the RNA, the effects of suboptimal
cooling on in-tissue preserved RNA have not yet been
equivocally established. An alternative is freeze drying (FD),
which has been considered as a cost-effective method for
temporary RNA preservation and short-term shipment of
genetic sensitive samples at room temperature (RT). This
method has already been successfully applied on, for instance,
grapes (Garcıá-baldenegro et al., 2015), bananas (Lassois et al.,
2009), and tea leaves (Jaiprakash et al., 2003).

This work is divided into three phases and offers a detailed
comparison of several sample homogenization, extraction, and
preservation methods compatible with overseas transportation
and wet-lab processing specifically on cacao beans, but of interest
to every plant geneticist. For this purpose, three homogenization
workflows and five RNA extraction protocols have been
evaluated on cacao beans in phases 1 and 2, respectively
(Figure 1). The most efficient RNA extraction method in
terms of ease-of-use, RNA quality and quantity in phase 2, was
selected to assess the impact of various preservation/
transportation conditions on RNA quantity and integrity in
phase 3. Finally, the quality of the obtained cacao bean RNA
from the most suitable extraction and preservation workflow was
evaluated independently with RT-qPCR.
METHODS

Plant Material
Five mature cacao pods from the R1/257 cultivar were sampled at
the Cocoa Research Institute Ghana (CRIG) and transported in a
cardboard box to Belgium with DHL. Ten days after collection,
pods arrived in-house and were immediately opened. Seeds were
removed from the pulp and their seed coat. The beans were
partially preserved as a whole (W), while the remainder was
cryogenically crushed (C) using a precooled mortar and pestle.
Both tissue forms were preserved in sealed eppendorfs or bags at
−80°C prior to extraction.

For independent validation of the selected extraction and
preservation method with RT-qPCR, six cacao beans from the
CCN 51 variety were sampled on-field in Ecuador (Joya de los
Sachas). A mature pod was harvested, opened, and beans were
preserved according to optimized methods (see Method
Validation With RT-qPCR).

Phase 1: Sample Homogenization
Workflows
Three homogenization workflows, based on three different lysis
buffers, were compared in combination with the RNeasy® Plant
Mini Kit (Qiagen, Inc., Chatsworth, CA). The used buffers were
either (A) kit-included (RTL), (B) guanidine thiocyanate-based
June 2020 | Volume 11 | Article 992
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FIGURE 1 | Schematic overview towards an efficient sample homogenization, RNA extraction, and preservation method for cacao bean tissu
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(MacKenzie et al., 1997), or (C) CTAB-based (Sangha et al.,
2010) (Figure 1). The latter two will be referred to as MacKenzie
and Sangha buffer, respectively. To increase extraction efficiency,
stainless steel beads were used during each homogenization.

The first homogenization workflow (A) was performed as
described by the manufacturer (Qiagen, Inc., Chatsworth, CA).
In the second workflow (B), 500 µl of MacKenzie buffer, i.e. [4M
guanidine thiocyanate, 0.2 M sodium acetate (pH 5.0), 25 mM
ethylenediaminetetraacetic acid (EDTA), 2.5% (w/v) poly-vinyl
pyrrolidone (PVP), and 1% (v/v) b-mercaptoethanol], was added
to 100 mg of crushed cacao beans. The material was mixed
vigorously (30 s to 1 min) prior to addition of 300 µl extraction
buffer and 60 µl 20% sodium lauroyl sarcosinate (pH 5.0).
Afterwards the solution was mixed again. The mixture (~860
µl) was transferred to a 2 ml collection tube, stripped from the
stainless steel beads, and incubated for 10 min at RT (without
shaking). The entire volume was then added to the first RNeasy
fi l ter and the protocol was continued according to
manufacturer’s instructions. In the third workflow (C), 1 ml of
preheated (65°C) Sangha buffer, i.e. [2% (w/v) CTAB, 2% (w/v)
PVP, 100 mM Tris HCl (pH 8.0), 25 mM EDTA, 2 M NaCl, 0.1%
spermidine, and 2% b-mercaptoethanol], was added to 100 mg of
crushed cacao beans. Following 30 min incubation at 65°C (with
continuous or frequent shaking), an equal volume of chloroform:
isoamylalcohol (24:1) was added and mixed for 30 s.
Subsequently, the mixture was centrifuged for 20 min at 10,000
g (4°C). Next, the supernatant was transferred to a new tube and
the chloroform:isoamylalcohol step was repeated. Then, the
mixture was centrifuged for 10 min at 10,000 g (4°C). Finally,
the supernatant was transferred to the first RNeasy filter and the
protocol was continued according to manufacturer ’s
instructions. Comparative analysis was based on the resulting
RNA yield and integrity retrieved from cryogenically crushed
cacao bean samples.

Phase 2: RNA Extraction Protocols
Five RNA extraction protocols were compared, namely (A)
RNeasy® Plant Mini Kit (Qiagen, Inc., Chatsworth, CA), (B)
Spectrum™ Plant Total RNA Kit (Sigma Aldrich, St. Louis, MO,
USA), (C) InviTrap® Spin Plant Mini Kit (Stratec Molecular,
Birkenfeld, Berlin), (D) Reliaprep™ RNA cell Miniprep System
(Promega, Madison, WI, USA), and (E) a manual 3% CTAB-
based RNA extraction protocol (Luypaert et al., 2017). Prior to
each kit-based extraction, a Sangha homogenization workflow
was executed as selected in phase 1. Subsequently, RNA
extraction kit protocols were continued according to the
manufacturer’s instructions. Comparative analysis was based
on the resulting RNA yield, purity, and integrity. Extractions
were executed in triplicate.

Phase 3: RNA Preservation Conditions
In total, 13 preservation conditions differing in tissue crushing
degree, preservation method, duration, and temperature were
evaluated in triplicate (Table 1). Five of these preservation
conditions were applied on both crushed and whole preserved
bean samples, namely (A) 1 week at −80°C (gold standard), (B) 1
Frontiers in Plant Science | www.frontiersin.org 4
week at −20°C, (C) 3 days at 4°C, (D) 1 week of FD samples at
RT, and (E) 5 weeks of FD samples at RT to assess the effect of
different preservation conditions at the level of method, crushing
degree, temperature, and duration. Two conditions were tested
only on crushed samples: (F) 1 week at −80°C with daily shifts to
−20°C and (G) 1 week at −80°C with daily shifts to 4°C to
simulate temperature shifts and freeze-thaw cycles during
preservation/transportation, respectively. One condition was
tested on only whole bean samples: (H) 3 weeks at RT with
weekly shifts to −80°C to simulate a transportation of FD
samples at RT to a lab which allowed preservation at −80°C.
FD was executed by freezing the material for at least 15 min at
−80°C and drying them in a Alpha 1-2 LD plus freeze dryer
(Christ, Osterode, Germany) (−40°C, 0.25 bar, 24 h).
Comparative analysis was based on the resulting RNA yield
and integrity retrieved from cryogenically crushed samples by
the selected 3% CTAB-based RNA extraction protocol in
phase 2.

RNA Quantity, Quality, and Integrity
Following extraction, RNA quantity was measured by the Qubit
RNA HS assay kit and the Qubit® 2.0 Fluorometer (Invitrogen,
Carlsbad, CA). RNA quality was measured by A260/280 (protein
contamination) and A260/230 (polyphenol and polysaccharide
contamination) using the NanoDrop (ND) 1000 UV-Vis
Spectrophotometer (NanoDrop Technologies, USA). RNA
integrity was verified using the fragment analyzer™ according
to the guidelines detailed in the sensitivity RNA analysis Kit,
DNF-472-0500 (Advanced analytical technologies). The
generated data was analyzed using PROsize 2.0® (Agilent),
which resulted in RNA quality numbers (RQN). The retrieved
June 2020 | Volume 11 | Article 992
TABLE 1 | Code names and detailed description of preservation conditions
tested.

Tpreservation tpreservation Nomenclature 1 Tissue form Nomenclature 2

−80°C 1 w −80°C C C −80°C
W W −80°C

−20°C 1 w −20°C C C −20°C
W W −20°C

4°C 3 days 4°C C C 4°C
W W 4°C

RT 1 w FD RT 1w C C FD RT 1w
W W FD RT 1w

5 w FD RT 5w C C FD RT 5w
W W FD RT 5w

−80°C/
−20°C

Shifts every
day for 1
week

−80°C/−20°C C

−80°C/4°C Shifts every
day for 1
week

−80°C/4°C C

RT/−80°C Shifts every
week for 3
weeks

FD RT/−80°C W
Nomenclature 1 is independent from tissue form. Nomenclature 2 is dependent from
tissue form.
T, temperature; t, time; FD, freeze-dried; RT, room temperature; C, crushed bean; W,
whole bean; w, week.
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chromatograms were in addition scored visually from A to F
(Supplementary Figure S1).

Method Validation With RT-qPCR
Reverse transcriptase quantitative PCR (RT-qPCR) was used to
validate independently the suitability of the extracted RNA from
the most optimal extraction and preservation method proposed
by this study. For this purpose, six cacao beans from the CCN 51
variety were sampled on-field in Ecuador and preserved at
−80°C. These were freeze dried prior to express transportation
(within 4 days) to Belgium and kept at −80°C until further notice.

In-house, RNA was extracted with the selected 3% CTAB
extraction protocol. The obtained RNA was DNase treated using
the RapidOut DNA Removal kit (ThermoFisher Scientific,
Waltham, MA, USA) according to manufacturer’s protocol.
The iScript™ Advanced cDNA Synthesis kit (BioRad,
Richmond, CA, USA) was used to synthesize cDNA by means
of 500 ng RNA input.

Five cacao specific reference genes (Supplementary Table S1)
(Pinheiro et al., 2011; Liu et al., 2013) were analyzed in duplicate.
For qPCR, a Tecan Freedom EVO® robot was used to distribute
a 1:3 cDNA : SsoAdvanced™ Universal SYBR® Green Supermix
(BioRad, Richmond, CA, USA) mixture and primermixes (1.25
µM) in each well of a Hard-Shell® 384-well PCR plate (BioRad,
Richmond, CA, USA). Amplification was performed by a
LightCycler® 480 System (Roche, Basel, Switzerland) by means
of the following thermal cycling conditions: incubation at 95°C
for 2 min, 40 cycles of 95°C for 5 s; 60°C for 30 s, and 72°C for 1 s.
Melting curves for each amplicon were determined between 65
and 95°C, followed by a cooling step to 4°C. Experiments
included a negative control (no template), a no reverse-
transcriptase (noRTs) control, and a positive control (1 ng
cacao leaf DNA and DNA specific primers in a similar setup).

Statistical Analysis
The mean RNA quantities and integrities resulting from different
extraction conditions were compared between and within groups
by Welch corrected t-tests, one-way and two-way ANOVA test
us ing Tukey post hoc procedures . Normal i ty and
homoscedasticity assumptions were verified visually by means
of diagnostic plots of the residuals. In case assumption of
homoscedasticity was violated, a Welch corrected one-way
ANOVA test was performed with Dunett’s T3 post hoc tests.
The significance level was set at 0.05. Statistical analysis was
performed using IBM-SPSS version 22.
RESULTS

Impact of Sample Homogenization on RNA
Extraction Efficiency
In the first phase (Figure 1), three sample homogenization
procedures were compared. The commercially available
RNeasy® plant mini kit (Qiagen) was used for extraction.
Frontiers in Plant Science | www.frontiersin.org 5
Pulverization was increased using stainless steel beads. Three
chemical homogenization buffers were tested, namely: (A)
RLT buffer (Qiagen), (B) guanidine thiocyanate-based
MacKenzie buffer (MacKenzie et al., 1997), and (C) CTAB-
based Sangha buffer (Sangha et al., 2010). No significant
differences could be observed at the level of RNA quantity and
quality between the MacKenzie and Sangha protocols
(Supplementary Table S2), though the Sangha buffer
consistently generated higher yields. Remarkably, the
unmodified protocol using the RLT buffer resulted in
insufficient RNA yields and was therefore excluded from
further statistical analysis. The RNA quantity ranged from 6.43
(MacKenzie) to 15.5 ng/µl (Sangha). A260/280-based quality ratios
ranged from 1.48 (MacKenzie) to 2.08 (Sangha), while A260/230

values ranged from 1.14 (Sangha) to 1.89 (MacKenzie). Overall,
both buffers resulted in acceptable purity extracts. However, the
Sangha buffer showed higher protein removing reproducibility
(A260/280), whereas MacKenzie was more consistent in removing
polysaccharide contaminants (A260/230). Overall, the RNA
extraction efficiency of the RNeasy® Plant Mini Kit was most
improved when using the CTAB-based Sangha buffer.

Comparison of RNA Extraction Protocols
In the second phase (Figure 1), we compared four commercially
available kits (the RNeasy Plant Mini Kit, Spectrum Plant Total
RNA Kit, InviTrap Spin Plant Mini Kit, and the Reliaprep RNA
cel l Miniprep System) combined with the Sangha
homogenization workflow described above. A manual 3%
CTAB-based extraction protocol was assessed as well (Luypaert
et al., 2017). All protocols were evaluated at the level of yield,
quality, and integrity. A one-way analysis of variance (ANOVA)
demonstrated significant differences between the methods in the
context of RNA quantity, quality, and integrity (Supplementary
Tables S3 and S4, Figure 2). Measured RNA yields ranged on
average between 15.5 (RNeasy) and 113.13 ng/µl (Reliaprep).
Although an overall significant effect of the extraction protocol
has been detected (p = 0.007), post hoc testing could not reveal
which protocol was causing this. Polyphenol and polysaccharide
removal efficiencies (A260/230) ranged between 1.15 (RNeasy) and
2.23 (Reliaprep), and showed great consistency within each
protocol. The Reliaprep resulted in significant higher
polysaccharide removal efficiencies in contrast to the other kits
(p < 0.05), with exception of the Spectrum protocol (p = 0.061).
Protein removal efficiencies (A260/280), on the other hand, were
very similar for all protocols with values ranging from 1.96
(Spectrum) to 2.10 (3% CTAB), reaching optimal removal
efficiencies (A260/280 = 2). The measured RNA integrity was
overall low ranging from 2.3 (InviTrap) to 4.2 (3% CTAB),
with the 3% CTAB protocol showing significant higher integrity
(p < 0.03) relative to all other workflows (Supplementary Table
S4). Overall, the 3% CTAB protocol (Luypaert et al., 2017)
resulted in RNA with significantly higher integrities. In
addition, the method is more straight-forward and more cost-
efficient compared to the other commercial kits tested.
June 2020 | Volume 11 | Article 992
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Effect of Tissue Form, Preservation
Method, and Temperature
Since on-site wet-lab analyses are (mostly) unfeasible in cacao-
producing countries, we aimed to optimize preservation
conditions compatible with prolonged shipping procedures. In
phase 3 (Figure 1), the impact of tissue form (crushed vs whole),
FD treatment, temperature, and temperature shifts was assessed
on RNA integrity and extraction yield. All raw data and statistical
studies are documented in Supplementary Tables S5 and S6,
respectively. An overview of extraction yield and integrity is
depictured in Figures 3 and 4, respectively. The code names
(abbreviations) of each tested preservation condition are listed in
methodology (Table 1).

For evaluation, the 3% CTAB protocol was used due to its
higher integrity values upon extraction. Here, we mainly focused
on RNA yield and integrity, as purity seemed to be less
influenced by preservation conditions and rather extraction
method-dependent (as indicated by the greater purity
consistency stated within an extraction method). Besides, the
RNA, together with its impurities, is typically diluted to a
workable concentration prior to downstream processing.
Frontiers in Plant Science | www.frontiersin.org 6
Moreover, the UV spectroscopy based purity measurements
lack accuracy and their relevance should be considered
carefully. In general, A260/280 and A260/230 values ranged from
1.91 to 2.15, and 0.96 to 2.11, respectively (Supplementary Table
S5). For a more balanced assessment of RNA integrity,
evaluations were based on a combined analysis of RQN values
and visual scoring (from A to F) of electropherogram peak
shapes generated by the fragment analyzer™ (Advanced
analytical technologies, Supplementary Figure S1).

The effect of tissue form—crushed versus whole beans—on
RNA quantity and integrity was assessed independently from
temperature as depictured in Figures 3 and 4B, respectively. In
general, crushed samples resulted in consistently higher RNA
yields relative to whole beans, although no statistical difference
could be observed (p = 0.557). Only for the non-FD −20°C
condition, the crushed sample showed significant higher yields in
comparison to the whole bean (p = 0.006, column “C vs W” in
Supplementary Table S5). RNA integrity, on the other hand,
was significantly higher for the whole preserved bean samples in
comparison to the corresponding crushed samples (p < 0.001).
This was especially the case for FD samples stored at RT during
A B

C D

FIGURE 2 | The comparison of RNA extraction protocols (n = 3) at the level of: (A) RNA integrity, (B) RNA yield (ng/µl), (C) A260/280 purity, and (D) A260/230 purity

[Error bars indicate mean (µ) ± standard error of mean (SEM)]. (1) RNeasy® Plant Mini Kit ac. Sangha, (2) Spectrum™ Plant Total RNA Kit ac. Sangha, (3) InviTrap®

Spin Plant Mini Ki ac. Sangha, (4) Reliaprep™ RNA cell Miniprep System ac. Sangha, and (5) 3% CTAB protocol (Luypaert et al., 2017). *p < 0.05, **p <0.01, ***p <
0.001. More details on significance can be found in Supplementary Table S4.
June 2020 | Volume 11 | Article 992
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five weeks (FD RT 5w; p = 0.015) and non-FD samples
continuously stored at 4°C (p = 0.040, column “C vs W” in
Supplementary Table S5).
Frontiers in Plant Science | www.frontiersin.org 7
Since FD transport of samples at RT is generally considered as
a good alternative for the more complex and costly shipments at
−80°C, we assessed the impact of FD samples stored for 1 (FD RT
1w) and 5 weeks (FD RT 5w) at RT on RNA extraction
charac te r i s t i c s ( independent ly f rom t i s sue form)
(Supplementary Tables S5 and S6A, Figures 3 and 4B). In
general, prolonged preservation of FD samples at RT resulted in
higher extraction yields (96.57 ng/µl for FD 1w versus 342.07 ng/
µl for FD 5w, Supplementary Table S5). For both FD conditions
higher RNA quantities could be observed in comparison to the
−80°C reference sample. However, only between the FD 1w and
FD 5w samples significant differences could be observed (p =
0.05, Supplementary Table S6A, Figure 3). Longer preservation
of FD samples at RT was correlated with decreasing integrity
values. RNA integrity for both FD conditions was generally lower
than preservation at −80°C (RQN = 6.07), and differed
significantly for the FD 5w condition (p = 0.005, Figure 4B,
Supplementary Table S6A).

The impact of preservation temperatures, −80, −20, and 4°C, was
assessed independently from tissue form (Figures 3 and 4C). RNA
quantities ranged from 50.3 (4°C) to 130 ng/µl (−20°C)
(Supplementary Table S5), but no significant differences could be
observed (overall p = 0.569, Supplementary Table S6B). RNA
integrity values (overall p = 0.034, Supplementary Table S6B)
increased with decreasing preservation temperature (µ4 = 4.12,
µ-20 = 4.3, and µ-80 = 5.15, Supplementary Table S5), differing
significantly between samples stored at −80 and 4°C (p = 0.030,
Supplementary Table S6).

Temperature changes between these conditions did not seem
to have a significant effect on RNA integrity (overall p = 0.234,
Figure 4D, Supplementary Table S6C), although temporary
temperature shifts to 4°C generally resulted in lower integrity
values (Supplementary Table S5). The RNA yields did not differ
significantly between then non-FD conditions (Figure 3,
Supplementary Table S6C).

In contrast, the FD condition with temperature shifts between
RT and −80°C resulted in significantly higher RNA quantities
(p ≤ 0.019) (Figure 3, Supplementary Table S6D). When
comparing the latter condition with the other FD conditions,
significantly higher yields were obtained relative to FD RT 1w
and FD RT 5w (p = 0.008 and p = 0.025, respectively). The RNA
integrity for the FD samples undergoing weekly RT/−80°C
temperature shifts was significantly increased in comparison to
the FD RT 5w sample (p = 0.033, Figure 4E, Supplementary
Table S6D).

Compatibility of Extracted RNA With
Downstream Processing
Compatibility of the 3% CTAB-based DNase treated RNA
extracts on six independent FD RT transported CCN cacao
bean samples was assessed using RT-qPCR. All six samples
were amplifiable for every reference gene assessed with average
Cq values ranging from 26.45 ± 1.07 (GADPH) to 28.62 ± 0.85
(ACT-L) (Supplementary Table S7). This indicates the
applicability of the RNA for downstream processing. In
addition, the RNA has been used successfully in a sequencing
A B C D E

FIGURE 3 | The impact of tissue form (crushed vs whole) (n = 15), FD
treatment, temperature, and temperature shifts assessed on extraction yield (n =
3). A = C vs. W, B = FD conditions vs. gold standard (−80°C), C = suboptimal
temperature conditions (−20°C, 4°C) vs. gold standard, C = Temperature shifts
vs. gold standard, D = Changing preservation conditions vs. gold standard and E
= Comparison of all FD conditions.. Nomenclature is as described in Table 1. C,
crushed bean; W, whole bean; FD, freeze-dried; RT, room temperature; w, week
(s). (Error bars indicate µ ± SEM) *p < 0.05, **p < 0.01. Details of significance
levels between conditions can be found in Supplementary Tables S5 and S6A.
A B C D E

FIGURE 4 | The impact of tissue form (crushed vs whole) (n = 15), FD
treatment, temperature, and temperature shifts assessed on RNA integrity (n = 3).
A = C vs. W, B = FD conditions vs. gold standard (−80°C), C = suboptimal
temperature conditions (−20°C, 4°C) vs. gold standard, C = Temperature shifts
vs. gold standard, D = Changing preservation conditions vs. gold standard and E
= Comparison of all FD conditions.. Nomenclature is as described in Table 1. C,
crushed bean; W, whole bean; FD, freeze-dried; RT, room temperature; w, week
(s). (Error bars indicate mean ± standard error) *p < 0.05, **p < 0.01. Details of
significance levels between conditions can be found in Supplementary Tables
S5 and S6.
June 2020 | Volume 11 | Article 992

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


De Wever et al. Cacao Bean RNA Preservation and Extraction
set-up using the TrueSeq RNA sample preparation kit (Illumina,
San Diego, California, USA) (data not shown).
DISCUSSION

Previous studies compared different RNA extraction protocols
on plant tissues from various types and species. However, to the
best of our knowledge, no comparative evaluation of RNA
integrity, quality, and yield upon extraction from recalcitrant
cacao bean tissue has been performed. Besides, no optimal RNA-
stable preservation and transportation method for cacao beans
has been described. We will discuss the impact of (1)
homogenization, (2) extraction, and (3) preservation on the
retrieved cacao bean RNA with insights of interest to every
plant geneticist. Finally (4), we will select the most optimal cacao
bean RNA extraction and preservation workflow suitable for
overseas analyses.

The Impact of Sample Homogenization on
RNA Extraction Efficiency
All RNA extraction protocols start by homogenizing the sample
of interest. This entails mechanical (pulverization) and chemical
disruption (lysis using extraction buffers) of the tissue.
Pulverization by means of a sonicator, a mixer mill, glass and
stainless steel beads, or a mortar and pestle, divides the sample
into a multitude of smaller chunks, thereby increasing the
contact surface of the lysis buffer resulting in higher RNA
yields. This is especially important for heavily encased seeds
and tough tissues (Varma et al., 2007; Burden, 2008).

In this study, cryogenic grinding by means of mortar and
pestle was performed, followed by a stainless steel bead based
homogenization. For chemical disruption three different
chemical disruption (homogenization) buffers were compared
in the context of RNA yield and quality upon the RNeasy® plant
mini kit based extraction (Phase 1). This kit is commonly used
for plant samples, including cacao leaves (Verica et al., 2004),
and has shown to result in high yielding and high quality RNA
extraction of difficult tissues (e.g. seed and fruit tissue) (Sangha
et al., 2010; Kalinowska et al., 2012).

We demonstrated that both the guanidine thiocyanate-based
MacKenzie and the CTAB-based Sangha buffer increased cacao
bean RNA yields. Higher yields were observed for the Sangha
buffer in comparison with the MacKenzie buffer, which is
consistent with previous research (Sangha et al., 2010). The
unmodified RNeasy® protocol, making use of the RLT buffer,
seemed incompatible with the complex recalcitrant cacao bean
tissue, since it failed to generate measurable RNA quantities.
Based on these results and observation in citrus fruits, we
hypothesize that guanidine thiocyanate, present in the RLT
and MacKenzie buffers, is less efficient in lysing cacao bean
cells and is probably unable to dissociate RNA from RNA-
polysaccharide complexes (Tao et al., 2004). In contrast, PVP
and CTAB-based Sangha buffers seem to be more compatible
with cacao bean tissue and resulted in higher extraction yields,
especially when preheated as was the case in this study
Frontiers in Plant Science | www.frontiersin.org 8
(Vasanthaiah et al., 2008). Similar conclusions on CTAB-based
buffers have been drawn by previous studies on recalcitrant and/
or highly contaminated tree plant tissues (Vasanthaiah et al.,
2008; Sangha et al., 2010; Ling et al., 2013; Zhu et al., 2013;
Luypaert et al., 2017). RNA yields could further be increased by
optimizing sample input, through secondary elutions or by using
PVP during grinding (Gesteira et al., 2003; Rodrigues et al., 2007;
Vasanthaiah et al., 2008).

Also differences in RNA purities were observed between the
Sangha and the MacKenzie buffer. PVP, combined with NaCl
and CTAB (Sangha) or guanidium thiocyanate (MacKenzie),
prevents polyphenol oxidization and aids in contaminant-
removal from nucleic acid extracts (Mornkham et al., 2013;
George, 2018). Although PVP is present in both the Sangha
and the MacKenzie buffer, the A260/230 ratios were lower for the
Sangha buffer, indicating polysaccharide and polyphenol
contamination. There is, however, no consensus on the
acceptable lower limit of this ratio, nor has it been
demonstrated to significantly affect the reliability of
downstream applications (De Keyser et al., 2013). If needed,
purity may be further increased by additional extraction buffer
washing steps or extra ethanol precipitations during the
purification. A260/280 ratios—indicative for protein removal—
were sufficiently high (>1.4) for all protocols, although scores
were markedly higher for the Sangha buffer. The low protein
contamination is mainly due to the efficient protein degrading
properties of b-mercaptoethanol, the complexation by CTAB or
guanidium isothiocyanate, and the RNA specificity of the
extraction protocol. Protein removal may be further increased
by using preheated buffers and additional phenol and chloroform
purification steps. However, the latter has proven to be more
toxic, damage poly (A)+ RNA and generate lower yields (Chang
et al., 1993; Varma et al., 2007; Yockteng et al., 2013). Although
defatting cacao beans prior to RNA extraction could also further
increase purity, it may affect RNA integrity (Varma et al., 2007;
Ramos et al., 2014). Another important factor is the buffer
volume added during homogenization according to the
recommendation of the homogenization protocols (Sangha and
MacKenzie). According to MacKenzie only 300 µl of its buffer
should be added, while Sangha recommended to use 1 ml of its
buffer, possibly affecting dilution and extraction efficiency.

Altogether, these results suggest that the type of chemical
disruption and the level of pulverization during homogenization
impacts bean RNA extraction efficiencies. For cacao beans, we
recommend Sangha-based homogenization with pulverization,
but other methods might prove more efficient for other tissue
types or plants.

The Impact of the RNA Extraction
Protocol on RNA Quality
Next, we compared four commercially available RNA extraction
kits and a manual 3% CTAB protocol, supplemented with the
Sangha-based homogenization workflow (phase 2). Although
kits are time-efficient, they are not always designed for
polyphenol- and polysaccharide-rich plant tissues. Such
contaminants may result in viscous extracts blocking the silica
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columns drastically influencing extraction efficiencies
(Rodrigues et al., 2007; Varma et al., 2007; Sangha et al., 2010).
The tested protocols did not generate significantly different RNA
quantities. However, differences at the level of purity and
integrity could be observed. Since similar disruption and
extraction buffers were used in all protocols, we suspect the
differences can be attributed to differences in RNA isolation
and purification.

The commercial kits use silica gel-based filter columns to
separate the debris from the nucleic acids, while the 3% CTAB
protocol uses centrifugation and selective precipitation by LiCL.
Overall, almost no protein contamination was detected for any of
the methods. In contrast, A260/230 purities seemed compromised
(<2.00), except for the Reliaprep protocol. This suggests that
A260/230 purities are not influenced by how RNA is separated
from additional contaminants (silica gel column filters or
pelletation), but how it is homogenized. The higher purity
levels observed for the Reliaprep protocol could be attributed
to the chloroform:isoamylalcohol based purification used in this
kit, instead of the pure-chloroform workflow applied in the
others. Furthermore, the Reliaprep protocol uses an additional
isopropanol RNA precipitation step before RNA capture on
columns. Similar 3% CTAB based approaches have already
been applied successfully on cacao tissues (Argout et al., 2008).
Further increase of purities might be obtained by using poly-
vinyl-poly pyrrolidone (PVPP) or polyethylene glycol (PEG)
instead of PVP, by additional filtration, chloroform
purification, or ethanol precipitation steps, or resuspension in
ice-cold isopropanol or 3M sodium acetate (Argout et al., 2008;
Sangha et al., 2010; Gudenschwager et al., 2012; Luypaert et al.,
2017). Nevertheless, extracts from all RNA isolation kits tested
seem to be compatible with downstream analyses such as cDNA
library construction, RT-qPCR and sequencing (data not shown)
(Jones et al., 2002; Verica et al., 2004; Gesteira et al., 2007).

RNA integrity is considered as the most important RNA
extraction efficiency parameter, since low integrity can
dramatically impact downstream results (Fleige and Pfaffl,
2006; Pinheiro et al., 2011; Die and Román, 2012; Johnson
et al., 2012). However, this is often neglected in biological
studies, violating the MIQE-guidelines (Bustin et al., 2009).
RNA integrity is most accurately determined by capillary
electrophoresis, which allows for visual interpretation and
reports RQN- or RIN-values. In general, values greater than
eight are commonly associated with good integrity. However, for
plant samples aberrant recommendations can be found in
literature. Pereira et al. (2017) considered RIN ≥6.5 adequate
for RT-qPCR based transcriptomic studies, while Weißbecker
et al. (2017) and Fleige and Pfaffl (2006) recommended RIN
values greater than 5 and 4.5, respectively (Fleige and Pfaffl, 2006;
Pereira et al., 2017; Weißbecker et al., 2017). Furthermore,
several studies have demonstrated an overall underestimation
of RNA degradation and integrity when relying solely on RIN
quality values in plants (Johnson et al., 2012; De Keyser et al.,
2013; Garcıá-baldenegro et al., 2015). To compensate for this, we
adopted a visual scoring (from A to F) of the electropherograms
generated by the fragment Analyzer™ (Advanced analytical
Frontiers in Plant Science | www.frontiersin.org 9
technologies) in addition to RQN scores. The latter is in
concordance with the opinion of Die and Román (2012). The
highest RQN values and clearest plots were observed for the 3%
CTAB protocol, all other protocols showed low or sometimes
unmeasurable integrity scores. The rather low measured integrity
values could be attributed to the prolonged and uncontrolled in-
pod transportation of the beans. Nevertheless, even samples
having RQN lower than four could be successfully processed
downstream (data not shown). Although the Reliaprep protocol
generated the highest RNA yields and purities on cacao bean
tissue, we opted for the 3% CTAB workflow due to its
significantly higher RNA integrity levels.

The Importance of Preservation
and Transportation
RNA stability highly depends on the type of preservation in
addition to sample collection, harvesting, handling,
transportation, and the used extraction protocol. The gold
standard for RNA preservation is immediate liquid nitrogen
based cryopreservation (−80°C) after flash freezing (Auer et al.,
2014). However, this is most of the time unfeasible on-site at
farms in the cacao-producing countries. Since higher-
temperature shipping (−20°C or above) of whole-tissue
samples could result in a reduction of RNA quality and
integrity, as ribonucleases activity has still been observed at
−20°C and even at −70°C (Fabre et al., 2014). Therefore
alternative shipping and preservation workflows needed to be
considered (phase 3). Shipping at −20°C is feasible and seems to
result in adequate qualities and integrities. However, has the
potential to result in lower RNA integrities if freeze-thaw cycles
occur (4 or −80°C/4°C) (Hernandez et al., 2009; Garcıá-
baldenegro et al., 2015), when suffering from shipment delays
or suboptimal packaging (Varma et al., 2007; Hernandez
et al., 2009).

As alternative, we assessed the compatibility of FD with
overseas shipment. FD is used for a wide range of applications
within the food industry, pharmacy, and biotechnology. It has
been used successfully for RNA preservation in grapevine buds
(Garcıá-baldenegro et al., 2015), banana tissue (Lassois et al.,
2009), and tea leaves (Jaiprakash et al., 2003). However, complete
RNA degradation has been observed in FD cotton, indicating the
tissue- and species-specificity of the technique (Pearson et al.,
2006). In comparison to the other preservation conditions,
significantly higher yields could be obtained through FD. RNA
integrity levels were relatively low for FD samples kept at RT.
This was unexpected since the decreased water content should
inactivate proteolytic enzymes and nucleases, thereby reducing
cellular component degradation (Santos et al., 2014; Garcıá-
baldenegro et al., 2015). We assume that this could originate
from suboptimal drying and inadequate closing of the sample
vials, resulting in the uptake of water from the humid air during
transport (Garcıá-baldenegro et al., 2015). Furthermore, integrity
of FD samples showed inversely proportional with duration of
the preservation at RT.

Tissue form, i.e. whole or crushed, will most likely also have
an impact during transport or preservation (Johnson et al., 2012;
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George, 2018). We observed that (both FD and non-FD) crushed
samples resulted in higher RNA yields in comparison to whole
bean preservation. This could be attributed to increased cell lysis
during the crushing and preservation of pulverized samples,
whereas whole beans were better protected. In contrast, the
integrity was consistently higher for whole bean preserved
samples. This is probably due to the release of RNases during
crushing and the increased surface area exposed, prior to
preservation. For whole bean samples, extraction buffer is
added immediately after crushing (homogenization), allowing
the chemical agents to quickly inhibit ribonuclease activity
(Claros and Cánovas, 1999).

The Most Suitable RNA Preservation and
Extraction Protocol for Gene Expression
Analysis
When considering all results, and taking into account that RNA
integrity potentially has the largest impact on downstream
processing, we believe that FD whole beans (with in-house
preservation at −80°C upon arrival) combined with 3% CTAB
extraction protocol is the optimal setup to obtain high-quality RNA
extracts from cacao beans sampled in countries with limited
resources. This procedure is furthermore perfectly compatible
with overseas shipping and gene expression analysis. With these
findings the complexity of performing genetic studies on cacao
beans from foreign countries is reduced. The findings will
contribute to cacao bean transcriptome-based studies conducted
worldwide, as long as dry ice (−80°C) and a freeze dryer is available
and the transportation at RT within a week to a resource-full lab is
guaranteed. Moreover, this study provides insights on the
importance of RNA extraction and preservation conditions on
RNA integrity relevant to the entire plant science society, such as
crushing degree, homogenization, extraction method, freeze-drying,
preservation time, freezing conditions, and freeze-thaw cycles.
Overall, an outline for studies, experiencing troubles with RNA
extraction, preservation, and/or transportation, is provided.
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