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The microbial communities associated with plants (the plant microbiome) play critical roles
in regulating plant health and productivity. Because of this, in recent years, there have
been significant increase in studies targeting the plant microbiome. Amplicon sequencing
is widely used to investigate the plant microbiome and to develop sustainable microbial
agricultural tools. However, performing large microbiome surveys at the regional and
global scales pose several logistic challenges. One of these challenges is related with the
preservation of plant materials for sequencing aiming to maintain the integrity of the
original diversity and community composition of the plant microbiome. Another significant
challenge involves the existence of multiple primer sets used in amplicon sequencing that,
especially for bacterial communities, hampers the comparability of datasets across
studies. Here, we aimed to examine the effect of different preservation approaches
(snap freezing, fresh and kept on ice, and air drying) on the bacterial and fungal
diversity and community composition on plant leaves, stems and roots from seven
plant species from contrasting functional groups (e.g. C3, C4, N-Fixers, etc.). Another
major challenge comes when comparing plant to soil microbiomes, as different primers
sets are often used for plant vs. soil microbiomes. Thus, we also investigated if widely
used 16S rRNA primer set (779F/1193R) for plant microbiome studies provides
comparable data to those often used for soil microbiomes (341F/805R) using 86 soil
samples. We found that the community composition and diversity of bacteria or fungi were
robust to contrasting preservation methods. The primer sets often used for plants
provided similar results to those often used for soil studies suggesting that
simultaneous studies on plant and soil microbiomes are possible. Our findings provide
novel evidence that preservation approaches do not significantly impact plant microbiome
.org July 2020 | Volume 11 | Article 9931
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data interpretation and primer differences do not impact the treatment effect, which has
significant implication for future large-scale and global surveys of plant microbiomes.
Keywords: plant microbiome, sampling, preservation methods, amplicon sequencing, soil, sequencing primers
INTRODUCTION

The microbial communities associated with different plants
compartments, from roots to leaves (the plant microbiome),
play a crucial role in plant health and productivity (Köberl et al.,
2013; Andreote et al., 2014; Berg et al., 2016; Rosier et al., 2016;
Colla et al., 2017; Qiu et al., 2019). The plant microbiome can
perform key functions in supplying nutrients and helping to
control pathogens (Schmalenberger et al., 2008; Compant et al.,
2010; Suárez-Moreno et al., 2012; Sessitsch and Mitter, 2015).
Because of this, harnessing beneficial microbes associated with
plants is considered a promising emerging tool to improve
agricultural productivity and sustainability. Understanding the
plant microbiome assembly mechanisms and how these
microbiomes interact with their hosts is a fundamental first
step to achieve this goal. Over the last few years, there has
been an increasing number of studies using next generation
sequencing to unveil the plant microbiome structure and
dynamics (Berg et al., 2014; Agler et al., 2016; Hamonts et al.,
2018). Particularly, amplicon sequencing has been widely used to
discover the fundamental process of microbial assembly in plant
germination, growth, metabolism and defence (Mayak et al.,
2004; Weyens et al., 2009; Schmidt et al., 2014).

Despite the importance and potential opportunities offered by the
plant microbiome, there are still multiple challenges that need to be
addressed to advance our knowledge including lack of large-scale
study to identify the processes that govern assembly and function of
plant microbiomes. Large-scale studies in plant microbiomes is
constraints by logistic issues including plant preservation after
samples collection, and its important role in maintaining the
original microbial community intact. For example, the snap
freezing (in liquid nitrogen) preservation method for sampling and
transporting to laboratory is considered the gold standard method
for field surveys, as samples are immediately placed at −20°C or
below after collection in situ to minimise the disruptions of the
plant tissue and its microbiome (Agler et al., 2016; Timm et al.,
2016; Hamonts et al., 2018). However, in some circumstances,
snap freezing is impractical due to logistic and financial
difficulties, especially when large number of samples are
required from remote areas, or in global and regional studies.
This has led to the development of alternative approaches for
storing samples, which have also proven effective on non-plant
samples, including the use of FTA cards (Song et al., 2016),
ethanol (Estes et al., 2013; Koch et al., 2013), CTAB (Hammer
et al., 2015) and RNAlater (Campbell et al., 2004; Sanders et al.,
2014). However, most of these methods are not applicable for
plant microbiome due to the requirement of the tissue integrity
for downstream analysis. In plant microbiome studies, snap
freezing is still the most common method for preserving plant
materials (Agler et al., 2016; Deyett and Rolshausen, 2020), but in
.org 2
suboptimal conditions, air-dry with silica gel (Bazzicalupo et al.,
2013) ice incubation or fridging (−4°C to 4°C, Kaushal et al.,
2020) have also been used for sample preservation, but the effect
of this approach on microbiome integrity has not been fully
tested compared to snap freezing method. With the increasing
interests of harnessing plant microbiome to sustainably promote
crop productivity, more initiatives and projects aimed to unfold
the plant microbiome from regional to global scales have been
launched recently. Therefore, finding practical and cost-effective
preservation approaches is critical to accommodate the ever-
increasing number of samples for sequencing, and ultimately
harnessing microbial-based knowledge for the development of
sustainable agricultural technologies.

Another major challenge is associated with the fact that plant
bacterial microbiomes are often assessed with different primer sets
(e.g. 799F-1193R) than those used for soils (e.g. 341F-805R, 515F-
806R). This is not an issue for fungi as plant and soil studies can
sequence the same fungal ITS region without getting huge variance.
In the case of bacteria, plant microbiome studies often use 16S
rRNA gene primers (799F-1193R) targeting the V5–V7 region of
the gene (Bai et al., 2015; Liu et al., 2017). Unlike for the primer sets
most used for soils (e.g. 341F-805R; region V3–V4, Delgado-
Baquerizo et al., 2016; Feng et al., 2016; 515F-806R; region V4,
Caporaso et al., 2011; Caporaso et al., 2012; Walters et al., 2016),
these plant microbiome primer sets minimise the sequencing of
chloroplast andmitochondrial 16S rRNA gene (Beckers et al., 2016).
Although alternative approaches are available such as using PNA
blockers (Fitzpatrick et al., 2018), the efficiency to reduce the
amplification of plant material was still far from ideal (Hamonts
et al., 2018). This poses an important challenge, as the lack of
demonstration that the primer set (799F-1193R) is valid for soils,
and yields similar results to those from 341F-805R, limiting any
attempt to compare both soil and plant microbiomes. Because of
this, it is critical that we investigate whether the typical primer set
used for plant microbiomes is also valid for soil, and provides
comparable data to commonly used soil primer sets.

Here, we aim to 1) examine the effect of different preservation
approaches on plant microbiome analysis and to identify the best
preservation method to maintain sample integrity, and 2) to
evaluate whether the plant primer pair targeting V5–V7 regions is
valid for soil microbiomes, and provide similar results in this
environment than those primers that target the V3–V4 region. To
assess the effect of plant preservation methods, we implemented
three preservation approaches commonly used in plant microbiome
studies: a) silica gel desiccation, with samples incubated at room
temperature until fully dehydrated; b) incubation on ice for 24 h;
and c) snap freezing in liquid nitrogen immediately after sample
collection and then transfer to −80°C. To further evaluate the
variability of microbiome and distinct difference of the leaf traits
that could potentially affect plant microbiome across species, we
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selected five plant species from contrasting functional groups,
including C3 (wallaby grass Austrodanthonia caespitosa) and C4
(kangaroo grass Themeda triandra and rhodes Chloris gayana)
grasses, the nitrogen fixing legume lucerne (Medicago sativa), as
well as an economically important crop (the cotton plantGossypium
hirsutum) for amplicon sequencing targeting both bacterial 16S
rRNA gene and fungal ITS region, in order to compare the
microbial communities under different preservation methods. For
primer pairs comparisons, we used the 341F-805R and 799F-1193R
primers on the same soil samples.
MATERIAL AND METHODS

Plant Preservation Approaches
Plant leaves from A. caespitosa,M. sativa, T. triandra and C. gayana,
were collected from Pastures And Climate Extremes (PACE) Facility,
Western Sydney University, Richmond, Australia. Briefly, each plant
species was collected from control monoculture blocks by cutting the
leaves with a sterilised scissors before being aseptically transferred into
a clear zip lock bag. For the snap freezing and ice incubationmethods,
plant leaves from each plant species were subsampled into a clean zip
lock bag (n = 6 for each treatment) before immediately being stored
in liquid nitrogen and on ice, respectively. For air dry method, plant
leaf from each plant species were subsampled into a paper bag (n = 6)
before being stored in a desiccator filled with silica gel at bottom.
Samples were incubated for approximately two days at room
temperature until complete dehydration.

Plant leaves, stems and roots from cotton (G. hirsutum, genotype
Sicot 71BRF) were collected from two-week old cotton plants (10–
15 cm tall) grown in a glasshouse with daytime temperature of 32°C
and night-time temperature of 25°C. Cotton leaves (top two leaves)
and stems (0–5 cm above soil surface) were cut with a sterilised
scissors before being transferred into clear zip lock bags (n = 6)
while cotton roots were cut and simply washed with distilled water
before transferred into a clear zip lock bag. Preservation treatments
were conducted as described above.

A total number of 126 frozen plant tissues (~15 mg dry weight,
finely cut into ~2 mm × 2 mm pieces) were weighed and DNA was
extracted using DNeasy PowerSoil Pro Kit (Qiagen, Hilden,
Germany), following the manufacturer’s instructions. Extracted
DNA was quality checked by NanoDrop 2000 (Thermo Fisher
Scientific, Waltham, Massachusetts, US), quantity checked by Qubit
Fluorometer (Thermo Fisher Scientific) and PCR checked to
confirm the amplifiability.

Amplicons using 799F/1193R targeting 16S rRNA gene targeting
V5-V7 region for bacterial communities to reduce chloroplast
sequences from the plant tissue (Chelius and Triplett, 2001), and
ITS2 region (FITS7-ITS4R, Ihrmark et al., 2012) for fungal
communities were obtained via PCR.

Plant-Based Primer Set Applicability to
Soil Samples
We used 86 soil samples from to compare how different primers
affect the community determination. These samples were obtained
Frontiers in Plant Science | www.frontiersin.org 3
from a glass-house experiment that aimed to evaluate how different
verities of rice, soil types, and salinity impact soil microbiomes
(unpublished data). DNA for soil samples was extracted after plant
harvest as explained above for plants (250 mg of soil was used in the
extraction). Each soil sample was collected in a cryogenic tube from
the greenhouse and kept under −80°C before DNA extraction.
Primer pairs 341F-805R (Herlemann et al., 2011) and 799F-1193R
(Chelius and Triplett, 2001) were used to amplify the 16S rRNA
gene from all soil samples. Two PCR were performed as: initial
denaturation at 95°C for 3 min, followed by 25 cycles consisting of
denaturation (95°C for 30 s), annealing (95°C for 30 s) and
extension (72°C for 30 s) and a final extension at 72°C for 5 min
before merging the samples for downstream process. All sequencing
(plant and soil) were performed at Western Sydney University Next
Generation Sequencing (NGS) facility (Sydney, Australia) using
Illumina MiSeq 2 × 300 bp paired end chemistry. A mock community
consists strains belong to order Bacillales, Lactobacillales,
Enterobacteriales Pseudomonadales in the following proportion: 47,
28.3, 20.5, and 4.2%, was sequenced with both primers to evaluate the
validity of primer comparison. All raw sequence data related to this
study are available in the European Nucleotide Archive (The European
Bioinformatics Institute, EMBL-EBI) database (Accession
No. PRJEB38041).

Microbial Community Analysis
Raw data obtained from NGS facility were processed using Mothur
standard operating procedure (Schloss et al., 2009). Briefly, forward
and reverse sequences were merged into contigs. Sequences that
contained unidentified bases or had greater than eight homopolymers
were filtered out. For bacterial sequences, an additional step
aligning sequences against Silva 16S rRNA gene database version
132 (Pruesse et al., 2007) was applied, and unaligned sequences
were removed. Refined sequences were pre-clustered (diffs = 1)
and chimera checked using UCHIME (Edgar et al., 2011) and
singleton was removed to reduce error (Reeder and Knight,
2009). Bacterial and fungal sequences were then taxonomically
classified according to the Silva database version 132 and UNITE
database version 8, respectively, with 60% cut-off confidence and
sequences that match cotton mitochondria, chloroplast, archaea
(bacteria) and host ITS regions (fungi) were removed. Remaining
sequences were clustered into Operational Taxonomic Units
(OTUs) at 100% identity where taxonomy was assigned
to, generating 80,617 and 25,577 bacterial and fungal
OTUs, respectively.

For plant preservation approaches, the OTU matrices were
rarefied to 808 bacterial and 6736 fungal sequences per sample,
respectively (Figures S2A, B). Rare OTUs (contributed less than
0.1% of total abundances) were removed from the OTU matrices,
resulted in 8,218 bacterial OTUs and 3,255 fungal OTUs for
downstream analyses. Datasets were analysed using permutational
multivariate analysis of variance (Anderson, 2001a) in PRIMER v. 6
(PRIMER-E, UK) to compare bacterial and fungal communities
under different preservation methods (snap frozen, ice incubation
and air dry). Block effects driving microbial difference were not
considered because we only compare difference between
preservation treatments. Similarity matrices were calculated based
July 2020 | Volume 11 | Article 993
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on Bray-Curtis distances on square-root transformed abundance
data to compare the composition and abundances of community
structure, and on Jaccard distances to compare the presence/absence
of the community members in PRIMER. Analyses used 9,999
permutations of residuals under a reduced model (Anderson,
2001b). Pair-wise analyses were performed to compare the
differences between preservation methods, and p-values were
adjusted following Holm’s method (Holm, 1979) to reduce the
bias generated in statistical analysis. Permutational multivariate
dispersion (PERMDISP) analysis was used to test for homogeneity
of multivariate dispersion within groups in PRIMER (Anderson,
2006). Alpha and beta diversity were analysed using R package
“phyloseq”. Data visualisation including Principal Coordinates
Analysis (PCoA) plots were generated based on Bray–Curtis and
Jaccard distance, and taxonomic analysis based on the Bray–
Curtis dissimilarity matrix with heatmap were performed using
R packages “phyloseq”, “dplyr” and “ggplot2” (Lozupone
et al., 2012).

To identify the influence of preservation methods on
dominant and rare microbial taxa, we followed the definition
from Soliveres et al. (2016) to extract dominant communities
(the top 10% of OTUs in terms of abundance) and rare
communities (the bottom 10% OTUs) from the OTU tables
generated with Mothur, respectively. PERMANOVA, alpha and
beta diversity analyses were applied following the methods
described above.

To compare the two datasets using different primer pairs on
soil bacterial communities, both datasets using two sets of
primers (341F/805R and 799F/1193R) with 12,199 and 16,229
bacterial raw OTUs, respectively, were rarefied to 8,000
sequences per sample (Figures S2C, D) with 9,317 and 13,737
OTUs, respectively. Alpha diversity analysis and correlation
between two datasets, as well as mantel test based on Bray–
Curtis measures estimating the beta diversity correlation between
two datasets were conducted in R. Microbial composition was
also analysed with R package “phyloseq”.
RESULTS

Effect of Preservation Methods on Plant
Microbiomes
In leaf preservation approach, a total number of 8,218 bacterial and
3,215 fungal OTUs were analysed in the preservation experiment.
Five plant DNA samples were dropped due to low DNA quality and
poor sequencing reads, which end up with 121 samples in total.
Generally, there were no significant difference of species richness
and evenness among the different preservation treatment observed
from the alpha indices (Chao1, Shannon and Simpson, Figure 1;
P >0.05) with a few exceptions due to low diversities (In bacterial
communities, Shannon index –Dry ≠ Ice in cotton leaf, Dry ≠ Fro =
Ice in cotton stem, Dry = Fro ≠ Ice in lucerne leaf; Simpson index –
Dry ≠ Ice in cotton leaf, Dry ≠ Fro = Ice in cotton stem, Fro ≠ Ice in
lucerne leaf. In fungal communities, Chao1 index – Fro ≠ Ice = Dry
in cotton stem; Shannon index – Dry = Fro ≠ Ice in kangaroo leaf;
Frontiers in Plant Science | www.frontiersin.org 4
Simpson index – Fro ≠ Ice in kangaroo leaf, P <0.05). When
comparing the bacterial structure (Bray–Curtis dissimilarity)
between sample groups and preservation treatments from
PERMANOVA tests (Table 1), no significant differences
(P >0.05) were found between preservation treatments except for
lucerne leaves wherein we found some small differences for ice
incubation and frozen, ice incubation and air-dry treatments
(P <0.05), respectively, and for cotton roots between ice
incubation and air dry treatments (P <0.05). PERMDISP tests
indicated that differences in lucerne leaves (F = 5.128, df1 = 2,
df2 = 15, P = 0.058) and cotton roots (F = 1.167, df1 = 2, df2 = 13,
P = 0.643) were likely driven by preservation methods. For bacterial
identity (presence/absence, Jaccard dissimilarity), no significant
difference was found between preservation treatments (Table 1A).
PCoA plots showed difference of bacterial abundances and identities
assembled on different plant species and tissue (Figure 2A), but
differences between preservation methods within each plant species
and tissue were found matching the PERMANOVA test (Figure
3A). In the subset of dominant bacterial communities, no significant
difference was found in Bray–Curtis dissimilarity except in lucerne
leaves between ice incubation and air-dry preservation methods,
and no significant difference was found across all samples in Jaccard
dissimilarity (Table 2A). In the subset of rare microbial
communities, no significant difference was found across all
samples in either Bray–Curtis or Jaccard dissimilarities (Table
2A). In bacterial structure and composition, no clear patterns can
be found between preservation methods at the phylum level
(Figure 4A).

In fungal community, no significant difference was found in
either fungal community structure based on Bray–Curtis
dissimilarity or composition based on Jaccard dissimilarity
(Table 1B). PCoA plots showed similar fungal abundances and
identities across all plant species except cotton (Figure 2B), but
differences between preservation methods within each plant
species and tissue were found matching the PERMANOVA
test (Figure 3B). Regardless of the plant species and tissue,
different preservation methods did not influence the microbial
communities. In the subset of dominant and rare fungal
communities, no significant difference was found in either
Bray–Curtis or Jaccard dissimilarities across all dominant and
rare fungal communities (Table 2B). In fungal structure and
composition, no clear pattern can be found between preservation
methods under phylum level (Figure 4B).

Assessing the Utility of Plant-Based
Bacterial Primer Pairs for Soil Samples
Our results indicate that both primer sets provide similar results, and
that overall community compositional data from the plant-based
primer set (799F/1193R) were directly comparable to that obtained
from the 341F/805R primer set (soil primer sets). In general, the
799F/1193R primer generated higher alpha diversity than 341F/805R
(Table 3), but the variation trends were similar (Figure S1). All the
diversity metrics, including Shannon diversity, richness (Chao1) and
Faith’s phylogenetic diversity were highly correlated between the two
primer sets (Figure S1). The two primer pairs generated the same
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abundant phylum (top 12), and these phyla accounted for 97.5% of
the total bacterial abundance in both datasets (Figure 5). The ranking
order of the abundant phylum were similar for both primer pairs
except for two bacterial phyla (Chloroflexi and Cyanobacteria)
with photosynthesis abilities. At the OTU level, the community
compositions were highly correlated between the two datasets, and
different primer pairs did not affect the treatment effect on
bacterial community composition (Figure 6). In the result of
mock community amplification, primer pair 341F/805R resulted
in 51.5% Bacillales, 19.4% Lactobacillales, 24.7% Enterobacteriales
and 4.4% Pseudomonadales, while primer pair 799F/1193R
Frontiers in Plant Science | www.frontiersin.org 5
resulted in 42.5% Bacillales, 25.1% Lactobacillales, 25.6%
Enterobacteriales and 6.8% Pseudomonadales (Figure S3). The
result of bacterial community using two primer sets showed
similar proportions compare to standard mock community,
indicating the validity of the result.
DISCUSSION

Our study provides strong evidence that preservation strategies have
minor, if any impact on the plant leaves, stems and roots
A B 

FIGURE 1 | Alpha diversity (Chao1, Shannon and Simpson) indices of bacterial (A) and fungal (B) communities under different preservation methods. Dry = air-dry
(red), Fro = snap freezing (green), Ice = ice incubation (blue). CoL = cotton leaf, CoR = cotton root, CoS = cotton stem, KanL = kangaroo leaf, LucL = lucerne leaf,
RhoL = rhodes leaf, WalL = wallaby leaf.
July 2020 | Volume 11 | Article 993
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microbiomes for multiple plant species belonging to contrasting
functional groups (e.g. C3, C4, N-Fixers, etc.). Moreover, we found
that plant and soil microbiomes might be directly comparable in
future studies as widely used plant-based primer set (799F/1193R)
produced similar results to those from the primer set used widely in
soil microbiome studies (341F/805R) in terms of diversity and
community composition across contrasting soil types. These
findings imply that multiple approaches are available to
accommodate different research logistics and needs without
Frontiers in Plant Science | www.frontiersin.org 6
compromising the reliability of findings. This information is
critical to overcome some of the critical logistics challenges
associated with large-scale studies on the plant microbiome at the
regional and global scales, and also indicate that amplicon
sequencing for bacterial communities are robust to primer set bias.

Contrasting Preservation Methods Do Not
Alter the Plant Microbiome Structure
Microbiomes associated with plant tissue are variable and could
be impacted by multiple factors such as environmental changes,
plant-microbe interactions and microbe-microbe interactions
(Singh and Trivedi, 2017; Hamonts et al., 2018). Major
concerns with sample preservation are mainly associated with
increased in temperature (above −20°C) because of the leaf
disintegration under high temperature, commonly reported in
leaf litter (Dilly et al., 2001; Vorı̌śǩová and Baldrian, 2013; Shay,
2016). The preservation methods implemented in this study
tested a range of preservation temperatures, which overall did
not affect the bacterial and fungal communities (except for
bacterial community of lucerne leaf and cotton root) associated
with different parts of plants, suggesting reliable data could be
obtained from all preservation methods used in this study.

In addition to the overall communities, we also investigated
the dominant and rare communities separately to avoid
TABLE 1 | Pairwise PERMANOVA analyses of bacterial (A) and fungal (B)
communities based on Bray–Curtis and Jaccard measures of square-root
transformed relative abundances of plant bacterial communities under different
treatments (snap frozen, ice incubation and air dry)..

(A) Bacterial Community (B) Fungal Community

Bray-Curtis Jaccard Bray-Curtis Jaccard

Kangaroo Leaf NSD NSD NSD NSD
Rhodes Leaf NSD NSD NSD NSD
Wallaby Leaf NSD NSD NSD NSD
Lucerne Leaf Fro ≠ Ice, Ice ≠ Dry NSD NSD NSD
Cotton Leaf NSD NSD NSD NSD
Cotton Stem NSD NSD NSD NSD
Cotton Root Ice ≠ Dry NSD NSD NSD
NSD, no significant difference Significant results (P < 0.05) highlighted with bold.
A B 

FIGURE 2 | Principal Coordinates Analysis (PCoA) plot using Bray–Curtis and Jaccard distance matrix on bacterial (A) and fungal (B) communities under different
preservation methods. Dry = air-dry (red), Fro = snap freezing (green), Ice = ice incubation (blue). CoL = cotton leaf (solid square), CoS = cotton stem (solid circle), CoR =
cotton root (solid triangle), KanL = kangaroo leaf (open square), WalL = wallaby leaf (cross), RhoL = rhodes leaf (open triangle), LucL = lucerne leaf (open circle).
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omissions of potential microbial variation from less abundant
microbes, given the potential functional role of microbial
communities in the ecosystem (Nazaries et al., 2013; Soliveres
et al., 2016). Consistent with the overall community patterns, in
dominant communities remain unchanged except for bacterial
structure of lucerne leaves (P <0.05, Table S1B). In contrast, in
rare communities, no significant difference was found between
preservation methods across all plant species and tissue.
Collectively, the small changes in microbiome of lucerne leaves
Frontiers in Plant Science | www.frontiersin.org 7
were present only in dominant bacterial communities but not
rare communities, indicating that difference observed was mainly
driven by shifts in the most abundant species rather than the
rare ones.

In microbial composition, variation could be observed between
samples, but no significant pattern was found between preservation
methods. This result was consistent for both bacterial and fungal
communities (Figure 4). Our findings are supported from those of
other similar studies on different biological materials such as feces,
A B 

FIGURE 3 | Individual Principal Coordinates Analysis (PCoA) plot using Bray–Curtis and Jaccard distance matrix on bacterial (A) and fungal (B) communities under
different preservation methods.
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soil and insects, which also reported little effect of temperature,
storage method and duration on microbial communities (Lauber
et al., 2010; Dominianni et al., 2014; Hammer et al., 2015).
Therefore, the preservation methods in this study have provided a
new perspective to overcome the difficulties of bulk sampling in
regional or remote areas.

Plant-Based Primer Sets Are Comparable
to Those From Soil Surveys
Primer selection is one of the key factors in microbiome analyses.
Primer pairs 341F/805R and 515F/806R are widely accepted for
bacterial community analysis from human, insects, soil, plant
and marine species (Caporaso et al., 2011; Caporaso et al., 2012;
Jakobsson et al., 2014; Delgado-Baquerizo et al., 2016; Walters
et al., 2016; Gomez-Polo et al., 2017; Hamonts et al., 2018;
Clerissi et al., 2020), while primer pair 799F/1193R has a two-
Frontiers in Plant Science | www.frontiersin.org 8
base pair mismatch for chloroplast (Chelius and Triplett, 2001),
which is more suitable for plant microbiome analysis.

However, plant microbiome studies usually require both soil and
plant microbiome profiles to connect underground and aboveground
microbial communities (Liu et al., 2017; Hamonts et al., 2018),
which essentially need consistency with primer selections.
Therefore, to priorly remove the contamination of chloroplast
from plant tissue, primer pair 799F/1193R is preferred in the
plant microbiome analyses.

In our study, the two primer pairs showed similar patterns of
relative abundance and composition of bacterial communities the
soil samples (Figures 5 and 6). A lower Cyanobacteria abundance
were found in the bacterial community using primer pair 799F/
1193R because of the chloroplast mismatch, which was evidenced in
previous studies (Beckers et al., 2016; Thijs et al., 2017). Despite the
minor variation of a few bacterial phyla between the communities
TABLE 2 | Pairwise PERMANOVA analyses of dominant and rare bacterial (A) and fungal (B) communities based on Bray–Curtis and Jaccard measures of square-root
transformed relative abundances of plant bacterial communities under different treatments (snap frozen, ice incubation and air dry).

(A) Bacterial Community (B) Fungal Community

Dom.bray Dom.jac Rare.bray Rare.jac Dom.bray Dom.jac Rare.bray Rare.jac

Kangaroo Leaf NSD NSD NSD NSD NSD NSD NSD NSD
Rhodes Leaf NSD NSD NSD NSD NSD NSD NSD NSD
Wallaby Leaf NSD NSD NSD NSD NSD NSD NSD NSD
Lucerne Leaf Ice ≠ Dry NSD NSD NSD NSD NSD NSD NSD
Cotton Leaf NSD NSD NSD NSD NSD NSD NSD NSD
Cotton Stem NSD NSD NSD NSD NSD NSD NSD NSD
Cotton Root NSD NSD NSD NSD NSD NSD NSD NSD
July 20
20 | Volume 11 | A
Dom, Dominant; Bray, Bray–Curtis; Jac, Jaccard; NSD, no significant difference. Significant results (P < 0.05) highlighted with bold.
A

B

FIGURE 4 | Heatmap indicating relative abundance of bacterial (A) and fungal (B) phyla across all samples. Dry = air-dry (red), Fro = snap freezing (green), Ice = ice
incubation (blue).
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using two different primer sets, the overall bacterial structures were
highly correlated (R2 = 0.94, P < 0.01, Figure 6), which enhanced
the previous finding of higher coverage using primers targeting V3–
V4 and V5–V7 hypervariable regions (Thijs et al., 2017). This result
suggests that datasets using these two primer pairs on microbiome
studies are comparable, and primer pair 799F/1193R use for soil
microbiome studies is valid.
CONCLUSION

In this study, we 1) sampled multiple plant species with different
functional pathways and leaf architectures to identify the impact
of different preservation method on plant microbiome, and 2)
evaluated the validity using plant specific primer pair 799F/
1193R on soil microbiome approach. The preservation methods
used in this study did not impact either the bacterial community
or the fungal community, and this pattern was consistent across
most of the plant species. While more robust preservation
methods to be implemented in the future is possible, the result
from this study could significantly help large-scale sampling at
regional and global scales, particularly in remote areas, with air-
dry or ice incubation method.
Frontiers in Plant Science | www.frontiersin.org 9
The two different pairs of primers on bacterial plant
microbiome analysis resulted in similar bacterial abundance
and composition, indicating that the mismatch primer pair
799F/1193R designed for plant microbiome analysis, could also
be used on other non-plant samples when Cyanobacteria was
not considered. Our result facilitated the sampling on global-
TABLE 3 | Alpha diversity measure (Mean ± SD) of soil bacterial communities
using two different primer pairs.

Primer pair Shannon Faith’s PD Chao1

341F/805R 9.03 ± 0.41 121.2 ± 15.3 2357.0 ± 300.4
799F/1193R 9.66 ± 0.40 136.6 ± 14.4 4162.5 ± 377.5
FIGURE 5 | Ranked relative abundant of the top-12 dominant bacterial phyla as determined by the primer pairs 799F/1193F and 341F/805R, respectively. The
same phylum amplified by the two primer pairs are linked by line.
FIGURE 6 | Relationship between the community composition as
determined by the primer pairs 799F/1193F and 341F/805R. Mantel
correlation was performed on the Bray–Curtis matrix at the OTU level.
July 2020 | Volume 11 | Article 993
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scaled plant microbiome studies and enables researchers to
perform combined soil and plant microbiome analyses.
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