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Longan (Dimocarpus longan) is a typical southern subtropical fruit tree species that is
sensitive to cold stress. C-repeat binding factors (CBFs), as transcription factors, are
crucial components involved in the molecular regulation of the plant response to cold
stress. However, the role of CBF homologs in the cold response regulation of longan
remains largely unknown. Here, three novel CBF genes, DlCBF1, DlCBF2, and DlCBF3,
were cloned from longan. DlCBF1 and DlCBF2 contain an AP2 domain and PKKPAGR
and DSAWR CBF signature motifs, while DlCBF3 has mutations within these conserved
signature motifs. DlCBF1/2/3 were mainly localized in the nucleus and specifically bound
to CRT/DRE cis-elements, resulting in strong transcriptional activation. DlCBF1/2
exhibited tissue expression specificity, and their expression was induced by low
temperature, while DlCBF3 had no tissue specificity and barely responded to low
temperature. DlCBF1, DlCBF2, and DlCBF3 overexpression in Arabidopsis-enhanced
cold tolerance by increasing proline accumulation and reducing reactive oxygen species
(ROS) content, accompanied by upregulated expression of cold-responsive genes
(AtRD29A, AtCOR15A, AtCOR47, and AtKIN1) in the CBF cold stress response
signaling pathway. In conclusion, the biological functions of DlCBF1/2/3 were
somewhat conserved, but slow expression of DlCBF1/2 and low expression of DlCBF3
may partly cause the cold sensitivity of longan. Collectively, these results indicated that
differences exist in the expression and function of CBF orthologs in the cold-sensitive plant
species longan, and these findings may help to improve the understanding of the cold
response regulation mechanism and provide important theoretical support for cold-
tolerant breeding of longan.
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INTRODUCTION

Cold stress is an adverse abiotic factor that restricts the
geographical distribution of plants and influences crop growth
and development, resulting in decreased productivity and
quality of many important crop species (Pearce, 2001). To
cope with cold environments and survive, plants have evolved
sophisticated physiological, biochemical, and molecular
regulatory mechanisms to increase their cold tolerance
(Thomashow, 1999; Kaplan et al., 2007). Accumulating
evidence has revealed that C-repeat binding factor (CBF)
transcription factors (TFs) play important roles in the stress
response and in plant growth and development. Therefore,
plants form a series of precise positive and negative regulatory
networks to regulate the expression of CBF genes to maintain the
dynamic balance between plant growth and environmental
adaptation (Liu et al., 2018). Cold-induced CBF genes
specifically recognize and bind to the conserved C-repeat/
dehydration response motif (CRT/DRE, CCGAC), which is
present in the promoters of genes, thereby inducing the
expression of cold-regulated (COR) genes (Stockinger et al.,
1997; Medina et al., 2011). COR genes encode cryoprotective
proteins and some key enzymes involved in the accumulation of
metabolites (osmolytes) that enhance the cold tolerance of plants
(Ding et al., 2019).

CBFs are typical APETALA 2/Ethylene Responsive Factor (AP2/
ERF) TFs. CBF proteins contain an AP2/ERF domain and
PKKPAGR (PKKP/RAGRxKFxETRHP) and DSAWR CBF
signature motifs (Jaglo et al., 2001). The expression of CBFs in
many plant species can be induced by low temperature. In
Arabidopsis, AtCBF1/2/3 (DREB1C/DREB1B/DREB1A) genes are
cold-induced CBF genes. The expression of these AtCBF1/2/3 genes
is specifically induced within 15 min and peaks within 3 h after cold
treatment (Gilmour et al., 1998; Novillo et al., 2004; Medina et al.,
2011). AtCBF1/2/3 overexpression can promote COR expression
and enhance the cold tolerance of transgenic Arabidopsis (Jaglo
et al., 1998). Recent reports have revealed that cbfs triple mutants are
remarkably sensitive to freezing temperature after cold acclimation;
consistently, the expression of 10% to 20% of COR genes decreased
in cbfs triple mutants under freezing stress (Jia et al., 2016; Zhao
et al., 2016). These results indicated that the CBF-COR regulatory
pathway is a core component involved in the molecular regulation
of the cold response in plants.

CBF homologous genes have been characterized in various
plant species, including Zea mays (Qin et al., 2004), Oryza sativa
(Dubouzet et al., 2003; Ito et al., 2006), poplar (Benedict et al.,
2006), citrus (Champ et al., 2007), and apple (Feng et al., 2012).
Heterologous expression of AtCBF1 in tomato enhances
tolerance to cold and oxidative stresses (Hsieh et al., 2002).
AtCBF3 overexpression in cassava was shown to improve the
cold and drought resistance of transgenic plants (An et al., 2016),
and heterologous expression of Vitis VvCBF1/4 and sweet cherry
PaCBF in Arabidopsis promotes freezing tolerance in transgenic
plants (Siddiqua and Nassuth, 2011). Overall, these studies
indicate that the functions of CBFs are highly conserved in the
regulation of cold responses among different plant species.
Frontiers in Plant Science | www.frontiersin.org 2
Accumulating studies on Arabidopsis indicate that the
expression of CBF genes is regulated by the circadian clock
and light signals. Circadian Clock-associated 1 (CCA1), Late
Elongated Hypocotyl (LHY), and Pseudo Response Regulators
(PRRs) are the core components of the circadian clock.
Among of them, CCA1 and LHY active CBF expression and
the downstream COR genes to positively regulate freezing
tolerance, but PRR5/7/9 repress CBF expression and negatively
regulates freezing tolerance (Nakamichi et al., 2009; Dong et al.,
2011). Emerging evidence has shown that phytochrome-
interacting factor 4/7 (PIF4/7) TFs repress CBF expression
under long day (LD) conditions (Kidokoro et al., 2009; Lee
and Thomashow, 2012). PIF3 repress CBF expression and
negatively regulates freezing tolerance in dark conditions (Jiang
et al., 2017) but interacts with CBF proteins and enhances
freezing tolerance by stabilizing phytochrome B (phyB) in light
conditions under cold stress (Jiang et al., 2020). In addition, the
expression and function of CBF orthologs is different in some
cold-sensitive plant species, such as Oryza sativa and tomato.
OsDREB1A/B was induced and peaked within 5 to 10 h after cold
treatment (Dubouzet et al., 2003). Tomato contains three CBF
genes, LeCBF1/2/3, of which only LeCBF1 was induced by cold
stress, and LeCBF1 overexpression increased the freezing
resistance of tomato. Fewer CBF-regulated proteins are present
in tomato than in Arabidopsis (Zhang et al., 2004). These studies
revealed that the function of CBFs in cold response regulation
was specific in different species.

Longan (Dimocarpus longan Lour.) is an important evergreen
fruit tree species in the Sapindaceae family. Longan subtropical
fruit are not only delicious but also an essential source of
traditional Chinese medicines because of their rich contents of
secondary metabolites such as phenols. As a commercial fruit crop
species, longan is widely cultivated in tropical and subtropical
regions of China and Southeast Asian countries (Mei et al., 2014).
Nevertheless, longan, which originated in South China or
Southeast Asia (Lin et al., 2017), is sensitive to cold. In recent
years, unpredictable frost-inducing weather has been frequently
occurring in southern China; consequently, longan fruit
production and quality have been significantly affected by the
chilling (0–5°C) temperature, and trees have even died in freezing
(<0°C) climate conditions, resulting in severe economic losses in
the longan industry. The effective solution is to develop cold-
tolerant longan cultivars to reduce damage caused by cold stress.
However, due to the high degree of genome heterozygosity and
long juvenile period, little progress has been made in breeding
cold-tolerant longan. Therefore, there is an urgent need to
investigate the molecular response mechanisms to cold stress
and promote the breeding of cold-resistant longan.

To date, few studies have examined the molecular mechanisms
of the longan response to cold stress. In this study, three longan
CBF genes,DlCBF1, DlCBF2, andDlCBF3,were isolated, and their
biological functions in the cold stress response were characterized.
The results revealed that the biological functions of DlCBF1/2/3 in
the longan response to cold stress are conserved to some extent but
that the expression was insufficient, especially for DlCBF3, which
might partly result in longan cold sensitivity.
July 2020 | Volume 11 | Article 1026
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MATERIALS AND METHODS

Plant Materials and Treatments
The main longan (D. longan Lour.) cultivar “Shixia”was used as the
material in this study. The tested 5-year-old trees were cultivated in
the longan germplasm resource nursery of South China Agricultural
University, Guangzhou (23.12°N, 113.35°E), China. During late
December of 2016, the seasonal temperature decreased to 10°C/5°C
(daytime/night). At 9:00 AM on the coldest day of this year (24/12/
2016, 7°C/2°C) (Supplementary Figure 1), samples of different
tissues, including apical buds, young red leaves, mature autumn
leaves, young annual stems, and petioles, were collected for tissue-
specific expression analysis of DlCBFs. To reduce environmental and
physiological influences, 2-year-old “Shixia” longan grafted plants
were incubated in 25°C growth chambers for one month with a 16-h
light/8-h dark photoperiod, 100mmol/ms2 illumination intensity, and
60% relative humidity and then transferred to 4°C growth chambers
with same illumination conditions at 9:00 AM for cold treatment
(Peng et al., 2016). The leaves were sampled at 0, 1, 3, 6, 12, and 24 h
after treatment to analyze the expression of DlCBFs in response to
cold stress. Shoots incubated in normal conditions (25°C) were used
as controls. All samples were frozen immediately in liquid nitrogen
and stored at −80°C for further analysis.

The wild-type (WT) Arabidopsis thaliana ecotype Columbia
(Col-0) was used for genetic transformation in this study.
Transgenic lines and WT plants were grown in pots filled with
a 3:1 mixture of soil and vermiculite at 22°C in a greenhouse
under a normal 16-h light/8-h dark photoperiod, 100 mmol/ms2

light intensity, and 60% relative humidity (Shi et al., 2012). To
assess the freezing tolerance of the transgenic lines, 3-week-old
T3 homozygous and WT seedlings were transferred to 4°C
growth chambers with same ambient conditions for 48 h and
then were exposed to −4°C for 6 h, followed by 12 h of darkness
at 4°C, after which they were returned to normal conditions for
recovery for 6 days. The plant survival rates and phenotypes were
recorded. The rosette leaves were sampled at 9:00 AM on the day
of the 4°C cold treatment initiation for physiological indexes and
for cold-responsive gene expression analysis.

Gene Cloning and Sequence Analysis
Total RNA was extracted using an RNAprep Pure Plant Kit
(Tiangen, China), and first-strand cDNA was synthesized using
a PrimeScript™ II 1st Strand cDNA Synthesis Kit (Takara, Japan)
according to the manufacturers' instructions. The putative DlCBF
genes were obtained by BLAST analysis using TBtools (Chen et al.,
2020) in conjunction with the longan genome database (Lin et al.,
2017). The specific primers used for gene amplification are listed
in Supplementary Table 1. Bioinformatic analysis of DlCBFs and
multiple alignment of deduced amino acid sequences were
conducted using ClustalX and GeneDoc software, respectively
(Wang et al., 2018). A phylogenetic tree was constructed with
MEGA 7.0 using the neighbor-joining (NJ) method, and bootstrap
values with 1,000 replicates were used (Kumar et al., 2016).

Gene Expression Analysis
Gene transcript levels were evaluated using real-time quantitative
PCR (RT-qPCR) with an ABI 7500 Real-time PCR System (Life
Frontiers in Plant Science | www.frontiersin.org 3
Technologies Corporation, Beverly, MA, USA) together with 2×
SYBR Green Real MasterMix (SYBR Green, Applied Biosystems)
according to the manufacturer's instructions. The 2−DDCt method
was used to calculate the relative expression of the target genes
between samples (Livak and Schmittgen, 2001). Expression of
DlCBFs and the typical COR genes in the CBF cold signaling
pathway such as AtRD29A, AtCOR15A, AtCOR47, and AtKIN1
(Stockinger et al., 1997) were detected by RT-qPCR. Longan b-
actin and AtACTIN2 (AT1G13320) were used as internal
controls for longan and Arabidopsis, respectively (Ding et al.,
2015; Wu et al., 2016). The RT-qPCR primers used in this study
are listed in Supplementary Table 1.

Vector Construction
The DlCBF open reading frames (ORFs) without their stop
codons were subcloned into pGreen-35S-GFP vectors for
subcellular localization analysis (Jiang et al., 2019). The full-
length coding regions of the DlCBFs were cloned into pGBKT7
and pPZP6k90 vectors for transcriptional activation assays and
for Arabidopsis transformation, respectively (Yang et al., 2019).
To test the CRT/DRE-binding specificity of the DlCBFs, full-
length DlCBF sequences were inserted into pGreen II 62-SK
vectors as effectors. The longan CRT/DRE motif repeats (3×
GCCGACAGG, 3× DlCRT/DRE) or mutant CRT/DRE sequence
repeats (3× GAATCAAGG, 3× DlCRT/DREmt) (Liu et al., 1998)
were inserted into a pGreen II 0800-LUC vector as reporters.
Fusion plasmids were constructed using an In-Fusion™ PCR
Cloning Kit (Clontech, USA) and verified by sequencing. The
primers and restriction sites used for vector construction are
listed in Supplementary Table 2.

Subcellular Localization, Transcriptional
Activation, and CRT/DRE−Binding Activity
Assay of DlCBFs
The 35S:DlCBFs-GFP and 35S: GFP fusion plasmids the empty
vector were introduced into Agrobacterium tumefaciens strain
GV3101 (psoup-p19), which were subsequently infiltrated into
the abaxial surfaces of Nicotiana benthamiana leaves for
transient transformation (Sparkes et al., 2006). The GFP
fluorescence signals of leaf protoplasts were detected with a
fluorescence microscope (Olympus BX53) after incubation
with 0.1 mg/ml 4′,6-diamidino-2-phenylindole (DAPI) for 15
min. The pGBKT7-DlCBFs and pGBKT7-p53 constructed
plasmids and pGBKT7 empty plasmids were transferred into a
Y2HGold yeast strain independently using the lithium acetate
method (PT1172-1, Clontech). The transformed yeast cells were
cultured on plates containing SD/-Trp and SD/-Trp-His-Ade
media. The yeast cell growth status and the activity of a-
galactosidase were observed after incubation with 20 mg/ml X-
a-gal for 10 to 30 min. For CRT/DRE-binding specificity of
DlCBF analysis, the pGreenII 62-SK-DlCBF, pGreenII 0800-
3DlCRT-LUC and pGreenII 0800-3DlCRTmt-LUC fusion
construct plasmids were transformed into A. tumefaciens strain
GV3101 (psoup-p19). The effector and reporter were mixed at a
volumetric ratio of 9:1 and then infiltrated into the abaxial
surfaces of N. benthamiana leaves for transient transformation.
After inoculation for 48 to 72 h, LUC and REN luciferase
July 2020 | Volume 11 | Article 1026
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activities were measured using a Dual-Luciferase Reporter Assay
System (E1910, Promega) as described previously (Fan et al.,
2016). The CRT/DRE-binding activity of the DlCBFs was
calculated by the ratio of LUC to REN. At least six
independent replicates were included for each pair.

Arabidopsis Transformation
The pPZP6k90-DlCBF recombinant constructs containing the
coding regions for longan CBF1, CBF2, and CBF3 were
introduced into A. tumefaciens strain GV3101 and transformed
intoWT Arabidopsis Col-0 by the floral dip method (Clough and
Bent, 1998). Independent transgenic lines were screened on
Murashige and Skoog (MS) media supplemented with
kanamycin (100 mg/L) and further verified by genomic PCR
using the gene-specific primers for the DlCBFs listed in
Supplementary Table 1. T3 homozygous transgenic lines were
used for cold tolerance assessments and physiological
index measurements.

Measurements of Ion Leakage, Proline,
Malondialdehyde, and Reactive Oxygen
Species Contents
Ion leakage was determined as described previously (Ding et al.,
2015). Proline accumulation was measured by the sulfosalicylic
acid-ninhydrin method as described by (Shi et al., 2012), and
malondialdehyde (MDA) contents were measured using the
thiobarbituric acid method, as described previously (Guo and
Crawford, 2005). Hydrogen peroxide (H2O2) and superoxide
(O2

.−) contents were quantified using specific detection kits
(Suzhou Comin Biotechnology, China) according to the
manufacturer's instructions. Details of the methods are
available in the study by Yang et al. (2019).

Data Analysis
Each experiment included three biological replicates. The data
represent the means ± SDs, and significant differences between
experimental data were evaluated by Duncan's multiple
comparison tests.
RESULTS

Cloning and Identification of DlCBF1/2/3
Genes
Three homologous longan CBF genes named DlCBF1, DlCBF2,
and DlCBF3 were isolated from the longan genome. The
DlCBF1/2/3 genes were located on three different scaffolds and
had no introns within coding regions of longan genomic DNA.
The full-length coding DNA sequences (CDSs) of the DlCBF1/2/
3 genes were 687, 726, and 636 bp, encoding 228, 241, and 211
deduced amino acids with molecular weights of 25.13, 26.77, and
23.71 kDa and pIs of 5.21, 6.24, and 5.60, respectively. The details
have been deposited in the GenBank database (GenBank
accession nos. MN504651, MN504652, and MN504653) and
are listed in Supplementary Table 3. Sequence comparison
revealed that the similarity coefficient between the three CBFs
ranged from 58.88% to 38.59% (Supplementary Table 4).
Frontiers in Plant Science | www.frontiersin.org 4
Multiple sequence alignments showed that both DlCBF1 and
DlCBF2 are typical CBF TFs in longan and contained an AP2/
ERF domain and the nuclear localization signal (NLS, PKKP/
RAGRxKFxETRHP) and DSAWR CBF signature sequences
(Jaglo et al., 2001), as well as the LWSN conserved sequence
within the C-terminus. However, the DlCBF3 amino acid
sequences of the PKKP/R and DSAWR conserved domains
were mutated to QKRK and EAASA, respectively (Figures
1A, B). Phylogenetic analysis showed that CBF proteins widely
exist in dicotyledonous and monocotyledonous plants and are
highly conserved in different plant species. DlCBF1/2/3 proteins
are most closely related to the CtCBF protein of Citrus trifoliata,
the PtCBF protein of Populus trichocarpa and the VrCBF protein
of Vitis riparia (Figure 2A). CtCBF, PtCBF, and VrCBF have
been reported to be involved in signal transduction as part of the
response to cold (Benedict et al., 2006; Champ et al., 2007;
Siddiqua and Nassuth, 2011). Therefore, it was speculated that
DlCBF1/2/3 might play a similar role in the response to low
temperature in longan.

Tissue-Specific and Cold-Inducible
Expression of DlCBF1/2/3
To understand the potential function of DlCBF1/2/3 in the cold
response of longan, we performed RT-qPCR to examine the
expression patterns of DlCBF1/2/3 in various tissues of Shixia
during winter, including young leaves, mature leaves, apical
buds, young stems, and petioles (Figure 2B). The DlCBF1/2
genes were expressed the most in the young leaves and lowest in
the apical buds, while the expression of DlCBF3 was low in all the
tested tissues. When the mature autumn leaves were treated with
4°C, the expression of DlCBF1/2 was significantly induced at 3 h,
gradually increased to the peak value at 9 h, and then decreased.
However, the expression ofDlCBF3 was consistently low, and the
expression trend did not change significantly (Figure 2C). These
results suggested that the expression modes of the three CBFs
were different and that the gene expression of DlCBF1/2 was
induced by a cold signal in longan, whereas that of DlCBF3
was not.

Subcellular Localization of Longan
CBF Proteins
Sequence analysis showed that all DlCBF1/2/3 contained an NLS
region. To verify the subcellular localization of DlCBF1/2/3, a
35S:DlCBF1/2/3-GFP fusion construct and 35S: GFP empty
vector were transiently expressed in leaf epidermal cells of N.
benthamiana. In the leaf protoplasts, the fluorescence signals of
35S:DlCBF2/3-GFP were detected exclusively in the nucleus,
coincident with the fluorescence signal of DAPI staining in the
nucleus. The fluorescence signal of 35S:DlCBF1-GFP was
detected in the nucleus as well as in the cytoplasm (Figure 3A
and Supplementary Figure 2).

Transcriptional Activation of DlCBF1/2/3
in Yeast
Transcriptional activation is a basic function of TFs. In this
study, the Y2H Gold yeast system was used to analyze the
July 2020 | Volume 11 | Article 1026
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transcriptional activation activity of DlCBF1/2/3. All the Y2H
Gold yeast strains transfected with pGBKT7-DlCBF1/2/3, the
pGBKT7-53+pGADT7-T positive control, or the pGBKT7
negative control grew normally on SD/-Trp media, indicating
that the exogenous plasmids were successfully transferred into
yeast strains. Furthermore, the yeast cells containing pGBKT7-
DlCBF1/2/3 and the positive control grew well on SD/-Leu/-
Trp/-Ade media and presented strong a-galactosidase activity,
whereas the negative control did not grow on SD/-Leu/-Trp/-
Ade media (Figure 3B). These results imply that DlCBFs have
transcriptional activity in yeast.
Frontiers in Plant Science | www.frontiersin.org 5
Specificity Binding Analysis of DlCBF1/2/3
With the CRT/DRE Motif
The CRT/DRE-binding specificity of DlCBFs was analyzed using
a dual-luciferase reporter system. The ratio of LUC to REN of the
pGreenII 62-SK empty vector was used as a negative control (the
value was set as 1). When the effector containing DlCBFs
interacted with the reporter harboring 3× DlCRT/DRE
sequences, the ratio of LUC to REN was significantly higher
than that of the negative control. When the effector containing
DlCBFs interacted with the reporter harboring 3× DlCRT/
DREmt sequences, the ratio of LUC to REN was not
A

B

FIGURE 1 | Amino acid sequence analysis of DlCBF1/2/3. (A) Multiple alignment of DlCBF1/2/3 and other CBF family proteins, including those of D. longan
(DlCBF1/2/3, MN504651/MN504652/MN504653), Arabidopsis (AtCBF1/2/3, NP_567721.1/ABV27106.1/ABV27138.1), Malus domestica (MdCBF1/2/3, Z20446.1/
AGM16327.1/AGL07697.1) and V. riparia (VrCBF1/2/3/4, R28671/R28674/R28675/W58104). The highly conserved amino acid residues are shaded black and grey.
The predicted conserved motifs of the CBF proteins are labeled as an NLS domain (PKK/RPAGRxKFxETRHP), a DSAWR domain, an AP2 DNA-binding domain and
an LWSY/F domain. The conserved sites are indicated by asterisks. (B) Sequence alignment of DlCBF1/2/3 conserved regions. Identical and similar amino acid
residues are represented by black and gray shading, respectively. Conserved regions of the CBF proteins are labeled as an AP2 domain and as “CBF signature”
(NLS and DSAWR) conserved sequences. The conserved amino acid sites are indicated by black asterisks.
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significantly different from that of the negative control (Figure
3C). These results indicate that DlCBF1/2/3 TFs could bind
specifically to the longan CRT/DRE motif to activate the
expression of the LUC reporter but could not bind to the
mutant CRT/DRE motif.

Overexpression of DlCBF1/2/3 Enhances
the Freezing Tolerance of Transgenic
Arabidopsis
To further investigate the biological function of DlCBF1/2/3 in
cold tolerance, WT Arabidopsis Col-0 was transformed with
plasmids harboring the DlCBF1-, DlCBF2- or DlCBF3-coding
regions. Independent transgenic lines (T1 generation) were
obtained based on kanamycin resistance selection and genomic
PCR verification. Homozygous T3 lines were obtained on the
basis of 3:1 segregation for kanamycin resistance. RT-qPCR was
used to further determine the expression levels of the target genes
in the homozygous transgenic lines. Three T3 transgenic lines
presenting high expression of DlCBF1 (F1-2, F1-3, and F1-6),
Frontiers in Plant Science | www.frontiersin.org 6
DlCBF2 (F2-2, F2-5, and F2-7) and DlCBF3 (F3-2, F3-3, and F3-
5) were ultimately selected for subsequently cold tolerance
experiments (Figure 4A).

Compared with the WT plants, the transgenic Arabidopsis
plants exhibited dwarf phenotypes, and the latter presented
smaller, thicker, darker leaves; greater numbers of rosette
leaves; shorter stems and inflorescences; and a later flowering
time (Supplementary Figure 3). These phenotypes indicate that
DlCBF1/2/3 affects the growth and development of
Arabidopsis plants.

The transgenic lines and WT plants were subjected to a
freezing treatment to determine the effects of DlCBF1, DlCBF2,
and DlCBF3 on freezing tolerance. For the freezing treatment,
transgenic lines and WT plants displaying normal growth were
selected for treatment of −4°C for 6 h, after which they were
allowed to recover for 6 days. After the freezing stress, almost all
WT plants died, while most of transgenic plants were still alive
and resumed growing (Figure 4B). The survival rates of the
DlCBF1-OE, DlCBF2-OE, and DlCBF3-OE transgenic lines were
A B

C

FIGURE 2 | Phylogenetic and expression analyses of DlCBF1/2/3. (A) Phylogenetic analysis of DlCBF1/2/3 and homologs from different plant species. Accession
IDs are as follows: CbCBF25, R35030; CpDREBP1D, XP_021903812; CpDREBP1D, XP_021903812; CtCBF, ABH08745.1; CaDREBP1D, AKF15923.1;
DzDREBP1A, XP_022736454; FaCBF1/4, ABV65907.2/AEK94313; HbDREBP1A, XP_021649059.1; HvCBF1/3, AAL84170.1/AAX23692.1; HvCBF, AAG59618.1;
JcDREBP1A, XP_012090326.1; JsDREBP1D, XP_018830708; MdCBF4, AGL07696.1; MiCBF, AIY26287.1; MeCBF1/2, AFA50331.1/AFA50332.1; NtDREB1A,
ABD65969; OsDREB1A/1B/1D, AAN02486.1/AAX28958/AAX23721; PsCBF4, AIU92948.1; PtCBF1/2, ABO48363/ABC79627.1; PaDREBP1A, XP_021826871;
PpDREB1, AEG64738; TcDREBP1D, XP_017973052; TcDREBP1D, XP_017973052; VrCBF1/2/3/4, R28671/R28674/R28675/W58104; ZmDR1B1A, AAN76804.1;
and ZjDREBP1A, XP_015867545. (B, C) Tissue-specific expression and time course expression patterns of DlCBF1/2/3 in response to cold stress. The relative
expression of DlCBF1 in apical buds and under normal temperature was used as a control. DlACTIN was used as an internal standard. The error bars indicate
standard deviations (SDs) from three biological replicates. The different letters above bars indicate significant differences at the P < 0.05 level according to Duncan's
multiple comparison tests.
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63.3% to 80.2%, 61.7% to 79.8%, and 38.3% to 60%, respectively,
which were significantly higher than those of the WT plants
(17.5-19.3%). The survival rate of the DlCBF3-OE lines was lower
than that of the DlCBF1-OE and DlCBF2-OE lines after freezing
treatment, indicating that the freezing tolerance of the DlCBF3-
OE lines was weaker than that of the DlCBF1-OE and DlCBF2-
OE transgenic lines (Figure 4C). These results indicated that
overexpression of DlCBF1, DlCBF2, and DlCBF3 could improve
the freezing resistance of plants. Moreover, compared with the
DlCBF3 gene, the DlCBF1 and DlCBF2 genes might play more
important roles in regulating the cold resistance of longan.
Overexpression of DlCBF1/2/3 Alters
Ion Leakage, Proline, MDA, and
Reactive Oxygen Species Contents
During Cold Stress
Physiological indexes such as ion leakage, proline levels, and
MDA and reactive oxygen species (ROS) accumulation are used
to assess the stress tolerance of plants in response to abiotic stress
(Xu et al., 2014; Lu et al., 2017; Yuan et al., 2017). Ion leakage is a
representative indicator of cell membrane damage during the
Frontiers in Plant Science | www.frontiersin.org 7
plant response to abiotic stress. Proline enhances plant stress
resistance by maintaining cellular osmotic balance and
promoting normal membrane and protein biological functions.
ROS, including H2O2, O2

.- and hydroxyl radicals (OH-), are
considered to be inevitable products produced during plant
responses to environmental stress (Tyystjarvi, 2013). Stress-
induced ROS further break down polyunsaturated lipids,
resulting in the production of MDA.

Under normal ambient temperature, there were no significant
differences in the above physiological indexes between the
DlCBF1/2/3-OE lines and the WT plants. After cold treatment,
ion leakage, proline levels, and MDA and ROS contents gradually
increased in both the transgenic lines and WT plants. Among
these parameters, the ion leakage and MDA and ROS contents in
the transgenic lines were distinctly lower than those in the WT
plants at the peak value. In contrast, the proline level in the
transgenic lines was significantly higher than that in theWT plants
(Figures 5A–E). These results demonstrated that overexpression
of DlCBF1/2/3 could enhance the cold resistance by increasing
proline accumulation, reducing ion leakage, and decreasing ROS
and MDA production of transgenic plants under low-
temperature stress.
A B

C

FIGURE 3 | Subcellular localization and transactivation assay of DlCBF1/2/3. (A) Subcellular localization of 35S:DlCBF1/2/3-GFP in N. benthamiana protoplasts.
35S: GFP was used as a negative control. BF, bright-field; GFP, GFP fluorescence; DAPI, nuclear localization (pseudo-color, blue); Merged, merged images of GFP
and DAPI. Scale bar, 10 mm. (B) Transactivation assay of DlCBF1/2/3 in yeast cells. pGBKT7-DlCBF1/2/3 fusion plasmids, pGBKT7-p53 (positive control) and
pGBKT7 (negative control) were transformed into the Y2HGold yeast strain and cultured on SD/-Trp and SD/-Trp-His-Ade selective media. The yeast cells plated on
SD/-Trp-His-Ade were then stained with X-a-gal. (C) CRT/DRE-binding specificity assay of DlCBFs. The effector of the dual-luciferase reporter system contained
DlCBFs, the reporter harboring 3× DlCRT/DRE sequences (GCCGACAGG) or 3× DlCRT/DRE mutant sequences (GAATCAAGG). Effector and reporter
cotransformation of N. benthamiana leaves for transient transformation. LUC and REN luciferase activities in leaves were measured, and the CRT/DRE-binding
activities of DlCBFs were calculated by the ratio of LUC to REN. The error bars indicate the SDs from six biological replicates. The different letters above the bars
indicate significant differences at the P < 0.05 level according to Duncan's multiple comparison tests.
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Overexpression of DlCBF1/2/3 Affects the
Expression of Endogenous Cold-
Responsive Genes Under Cold Stress
To further clarify the molecular mechanism of the cold response
of the DlCBF1/2/3-OE transgenic lines, qRT-PCR was used to
analyze the expression changes of cold-responsive genes in both
Frontiers in Plant Science | www.frontiersin.org 8
the transgenic lines and WT plants under low-temperature
stress. Previous reports have indicated that the promoters of
cold-responsive genes contain one or more conserved CRT/DRE
cis-elements, such as AtRD29A, AtCOR47, AtCOR15A, and
AtKIN1, which are representative target genes regulated by
CBF (Stockinger et al., 1997). Under normal growth
A

B C

FIGURE 4 | Overexpression of DlCBF1/2/3 in Arabidopsis enhanced cold tolerance. (A) Confirmation of DlCBF1/2/3 transcript levels in transgenic lines and WT
plants. AtACTIN2 was used as an internal control. (B) Phenotypes and (C) survival rates of the transgenic lines and WT plants after freezing. Three-week-old pot-
grown Arabidopsis plants were treated with −4°C for 6 h, after which they were allowed to recover for 6 days; 20 seedlings per line were included in each freezing
treatment. The error bars indicate the SDs from three biological replicates. The different letters above bars indicate significant differences at the P < 0.05 level
according to Duncan's multiple comparison tests.
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conditions, the expression of COR genes in the transgenic
lines and WT plants was relatively low. However, after 24 h
of cold stress, the expression of the COR genes gradually
increased to a peak value in both the transgenic lines and WT
plants. Furthermore, the peak expression of COR genes in the
transgenic lines was significantly higher than that in the WT
plants (Figures 6A–D). The above results showed that
overexpression of DlCBF1/2/3 could positively regulate the
expression of endogenous CBF downstream COR genes
under cold stress, thus enhancing the cold resistance of
transgenic plants.
DISCUSSION

As a southern subtropical fruit tree species, longan is highly
sensitive to cold. Cold stress is one of the most important
influencing factors restricting longan production in South
China. However, little is known about the molecular mechanism
Frontiers in Plant Science | www.frontiersin.org 9
underlying the response to cold stress in D. longan. Previous
studies have revealed that CBF TFs play crucial roles in plant
responses to cold stress (Liu et al., 2018). However, the function of
CBF genes has not been studied in longan. Therefore, research on
the CBF-dependent cold stress response signaling pathway in
longan can provide new insight for breeding cold-resistant plants.

In this study, three CBF homologs named DlCBF1/2/3 were
identified from longan, in which DlCBF1 and DlCBF2 contain a
typical AP2 domain and two CBF characteristic conserved
sequences, PKKP/PKKPAGR and DSAWR (Jaglo et al., 2001),
which is similar to CBF proteins in Arabidopsis and in other
plant species. Nevertheless, the CBF signature domains of
DlCBF3 were not conserved, but these sequence differences
had no significant impact on the subcellular localization, the
specific binding to the CRT/DRE motif or the transcriptional
activation of the DlCBF3 protein.

Genetic transformation analysis revealed that DlCBF1/2/3
overexpression in Arabidopsis enhanced cold tolerance by
regulating ion leakage and MDA and ROS accumulation and
A

B

D
E

C

FIGURE 5 | Change trends of physiological parameters of transgenic lines and WT plants under cold stress. (A–E) Ion leakage, proline, MDA, H2O2, and O2
.−

contents were measured in 3-week-old transgenic lines and WT plants under cold stress. The error bars indicate the SDs from three biological replicates. The
different letters above bars indicate significant differences at the P < 0.05 level according to Duncan's multiple comparison tests.
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increased the expression of cold-responsive genes involved in the
CBF cold response signaling pathway. The biological function of
DlCBF1/2 is similar to that of CBF orthologs from other plants
species bearing fruit. Heterologous overexpression of the
sweet cherry PaCBF and Vitis VvCBF1/4 genes in Arabidopsis
promotes cold tolerance in transgenic plants (Kitashiba et al.,
2004; Siddiqua and Nassuth, 2011). Peach PpCBF1
overexpressed in apple induced the expression of MdCBF1/2,
which increased the anthocyanin content, thereby enhancing the
cryotolerance of transgenic apple plants (Wisniewski et al.,
2011). Additionally, overexpression of DlCBF1/2/3 resulted in
plant dwarfing and late flowering in transgenic Arabidopsis.
Similar slow-development phenotypes were observed in
response to overexpression of AtCBF1 and orthologous genes
from other woody plant species, such as CsCBF from tea plant
(Camellia sinensis) and PmhCBFc from mei (Prunus mume) in
Arabidopsis (Peng et al., 2016; Yin et al., 2016). These results
imply that the biological functions of DlCBF1/2/3 are conserved
to some extent and are involved in the positive regulation of cold
resistance in longan.

Intriguingly, expression analysis revealed that DlCBF1/2 were
expressed at relatively low levels in the apical buds and that their
expression was induced by cold after 3 h and then peaked at 9 h
after cold stress, which was consistent with the expression
pattern of MeCBF1 in cassava, a tropical crop species. MeCBF1
was expressed at low levels in the apical buds, and the apical bud
tissue of cassava was consistently more sensitive to cold stress
Frontiers in Plant Science | www.frontiersin.org 10
(An et al., 2012). The expression of MeCBF1 was induced after
4 h and peaked at 9 h under cold treatment (An et al., 2017).
Similarly, expression of HbCBF1 in rubber tree (Hevea
brasiliensis), a tropical industrial plant species, was detected at
4 h and peaked at 8 h after cold stress (Cheng et al., 2015).
However, cold-induced AtCBFs were expressed within 15 min,
and their expression peaked within 3 h under cold treatment
(Gilmour et al., 1998; Novillo et al., 2007). In addition,
comparison of the 1-kb promoter sequences indicated that the
DlCBF1/2 promoter fragments contain multiple low temperature
response cis-elements (LTR, CCGAAA) and MYC (CAACTG,
CACATG, CACATG), while the DlCBF3 promoter fragment
does not contain LTR cis-elements but contains multiple MYB
(TAACTG) cis-elements, which are related to drought and the
heat stress response (Urao et al., 1996) (Supplementary Table
5). The results of our study are similar to those of a MeCBF1
promoter analysis in cassava (An et al., 2017). The differences in
these promoter elements may be responsible for the differences
in the expression patterns of CBF genes of longan, but further
study is required.

The expression of the DlCBF3 gene was not induced by low
temperature and was expressed at low levels in the tissues tested
in this study, and the survival rate of the DlCBF3-OE lines was
lower than that of the DlCBF1-OE and DlCBF2-OE lines after
freezing treatment. These results indicated that DlCBF1/2 might
play a more important role than DlCBF3 in the cold resistance of
longan. Previous reports have shown that mutations in the
A B

DC

FIGURE 6 | Expression levels of cold-responsive genes of transgenic lines and WT plants under cold treatment. (A–D) Changes in the expression of cold-
responsive genes (AtRD29A, AtCOR15A, AtCOR47. and AtKIN1) were determined by qRT-PCR. Three-week-old transgenic lines and WT plants were treated with
4°C for 0, 6, 12, and 24 h. AtACTIN2 was used as an internal control. The error bars indicate the SDs from three biological replicates. The different letters above the
bars indicate significant differences at the P < 0.05 level according to Duncan's multiple comparison tests.
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PKKP/RAGR sequences with in the NLS motif influence the
ability of AtCBF1 to bind to the promoter of the COR15A gene
and reduce its expression under cold conditions (Canella et al.,
2010). In Arabidopsis populations growing in warm climatic
zones, a base mutation in AtCBF2 inhibits the transcriptional
activation of the AtCBF2 protein, thus attenuating COR gene
expression (Kang et al., 2013; Gehan et al., 2015). Whether the
sequence disparities of DlCBF3 affect its ability to regulate the
expression of downstream genes and reduce the cold resistance
of longan warrants further in-depth study. In addition, longan is
a cold-sensitive fruit tree species, and the reasons for the delayed
expression of DlCBF1/2 and the low induction of DlCBF3
expression in response to cold stress remain unclear. Several
fragment insertions are present within the AtCBF3 promoter,
leading to a decrease in AtCBF3 expression to acclimate to warm
temperatures (Kang et al., 2013; Gehan et al., 2015). ICE1 is one
of the most important upstream regulators of CBF genes, and its
homologue in longan, DlICE1, was verified to act as a positive
regulator in the longan response to cold stress (Yang et al., 2019).
Therefore, the characteristics of the promoters of DlCBF1/2/3
and the mechanism by which DlICE1 regulates DlCBF1/2/3
transcription need further study. Moreover, the upstream
regulatory factors of DlCBF1/2/3, especially the negative
regulatory factors, warrant further attention.

In summary, three novel CBF orthologs, DlCBF1/2/3, were
identified from the subtropical fruit tree species D. longan.
DlCBF1/2/3 are mainly localized in the nucleus and specifically
bind to the CRT/DRE motif. Although overexpression of
DlCBF1/2/3 in Arabidopsis enhanced the cold tolerance of
transgenic plants, the expression of DlCBF1/2 was low and
slowed in the apical buds during cold stress, while DlCBF3
barely responded to cold signals. Therefore, it is proposed that
insufficient expression of DlCBF1/2/3 during the longan cold
stress response might be partially responsible for the cold
sensitivity of longan.
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