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Combining information of plant physiological processes with climate control systems can
improve control accuracy in controlled environments as greenhouses and plant factories.
Through that, resource optimization can be achieved. To predict the plant physiological
processes and implement them in control actions of interest, a reliable monitoring system
and a capable control system are needed. In this paper, we focused on the option to use
real-time crop monitoring for precision climate control in greenhouses. For that, we
studied the processes and external factors influencing leaf net CO2 assimilation rate (AL,
µmol CO2 m

-2 s-1) as possible variables of a plant performance indicator. While measured
greenhouse environmental variables such as light, temperature, or humidity showed a
direct relation between AL and light-quantum yield of photosystem II (F2), we defined three
objectives: (1) to explore the relationship between climate variables and AL, as well as F2;
(2) create a simple and reliable method for real‐time prediction of AL with continuously F2

measurements; and (3) calibrate parameters to predict chloroplast electron transport rate
as input in AL modelling. Due to practical obstacles in measuring CO2 gas-exchange in
commercial production, we explored a method to predict AL by measuring F2 of leaves in
a commercial hydroponic greenhouse tomato crop (“Pureza”). We calculated AL with two
different approaches based on either the negative exponential response model with
simplified biochemical equations (marked as Model I) or the non-rectangular hyperbola full
biochemical photosynthetic models (marked as Model II). Using Model I can only be used
to predict ALwith large uncertainty (R

2 0.64; RMSE 2.21), while usingF2 as input to Model
II could be used to improve the prediction accuracy of AL (R2 0.71; RMSE 1.98). Our
results suggests that (1) F2 light signals can be used to predict net photosynthesis rate
with high accuracy; (2) a parameterized photosynthetic electron transport rate model is
suitable predicting measured electron transport rate (J) and AL. The system can be used
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as decision support system (DSS) for plant and crop performance monitoring when leaf-
dynamics are up-scaled to the plant or crop level.
Keywords: biochemical photosynthesis model, chlorophyll fluorescence, CO2 gas exchange, electron transport
rate, photosynthesis, photosynthesis modelling, quantum yield
INTRODUCTION

In modern greenhouses and plant factories plant cultivation is
usually done with computerized environmental climate control.
To achieve the desired climate, a great variety of controllers and
actuators are used (Körner and Van Straten, 2008; Rytter et al.,
2012; Shamshiri et al., 2017; Gurban and Andreescu, 2018;
Ramin et al., 2018), often supported by model-based decision
support systems (DSS) (e.g. Körner, 2019). Although sensor-
based monitoring and real-time model predictions strongly
improved early warning and greenhouse climate control
(Körner and Hansen, 2012; Mahlein, 2015; Körner, 2019), real-
time crop monitoring still suffers from inadequate equipment
and/or insufficiently model quality. The realization of soft-
sensors (i.e. mathematical models using real-time sensor data)
(De Koning, 2006) with deterministic explanatory models in
greenhouse cultivation monitoring is still under development. In
here, robust and simple sensors combined with models calibrated
with data from laboratory experiments would be the most
suitable approach to implement physiological based automatic
control system in the greenhouse (Janka et al., 2013; Körner,
2019). To achieve that, a reliable system with both measured and
modelled plant physiological parameters is needed.

Plant photosynthesis is a physiological process suitable to be
used in DSS-development with monitoring and assessment tools.
A monitoring system, initially based on measuring leaf net CO2

exchange (AL), was used as starting point in this study
(BERMONIS, Steinbeis GmbH & Co. KG for Technology
Transfer, Berlin, Germany). BERMONIS is real time
photosynthesis monitoring system developed for long-time
continuously measurement leaf gas exchange (Schmidt, 1998;
Schmidt, 2005). The system can be used to up-scale multiple
measured single leaf AL to crop photosynthesis (Acrop, μmol CO2

m-2 s-1) by considering the variations of both light distribution
and specific leaf photosynthetic capacity within the plants'
canopy; e.g. Huber (2011) used BERMONIS in combination
with psychrometric charts to detect and follow the “comfort
zone” for an adult tomato crop in real-time.

Another widely used and accepted approach to measure plant
photosynthetic productivity is chlorophyll fluorescence analysis
(CFA). With the pulse amplitude modulation method of CFA
(PAM), the light beams are modulated and the system detects
fluorescence excited by the measuring light in the presence of
background illumination (Schreiber, 1986; Schreiber et al., 1986;
Govindjee, 1995; Schreiber, 2004; Baker, 2008; Tschiersch et al.,
2017). Its small size, ease to transfer, and high sensitivity havemade
PAM-CFA a widely accepted method for plant stress detection
(Lawlor, 1995; Cornic and Massacci, 1996; Flexas et al., 1998;
Flexas et al., 2000; Lawlor and Cornic, 2002). In comparison to the
gas exchange method used for plant photosynthetic productivity
.org 2
measurements, CFA is more sensitive to plant water deficit: Water
deficit leads to closed stomata that limits CO2 uptake, followed by
reduced energy use and excessive light energy absorption. This
results in an activated protection mechanism and increase of non-
photochemical quenching (NPQ), which is one of the main
variables used in CFA. This process is commonly faster than gas
exchange (Herppich et al., 1996; Herppich and Peckmann, 1997;
Herppich and Peckmann, 2000). Therefore, it is of great practical
significance to apply CFA parameters to simulate the CO2

assimilation of plant leaves (Krall and Edwards, 1992; Edwards
and Baker, 1993; Von Caemmerer, 2013). In addition, CFA can
solve the problem of inconvenient operation of leaf gas-exchange
measurement in production, for example, the installation of leaf
chambers (e.g. BERMONIS) and the inspection of their air
tightness (the main obstacles of leaf gas exchange in commercial
greenhouse production). While both methods are suitable to
measure plant photosynthetic productivity (each with pros and
cons), the cuvette based leaf gas exchange measuring method
delivers direct measurement response, while CFA is an indirect
procedure but with a faster response in some situations.

With the underlying physiological process of plant photosynthesis,
CFA provides insights into the relationship between chloroplast
electron transport rates and carbon metabolism. Some scholars
reported that CFA parameters could be used to indirect predict
AL by measuring the electron transport rateof PSII (Jf) as under
some conditions a linear relationship between AL and Jf exists
(Krall and Edwards, 1992; Herppich and Peckmann, 2000; Yin
and Struik, 2009). In addition, quantum yield of PSII (F2) shows
linear correlated with quantum yield of CO2 fixation (Edwards
and Baker, 1993). These results are often obtained under
favorable experimental conditions, e.g. when light radiation (I,
μmol m-2 s-1) linearly increases during controlled light response
curve measurements.

This study provides a valuable data set of photosynthetic
physiological responses of plants in a dynamic production
environment. Furthermore, it provides a method for estimating
AL by using the chlorophyll fluorescence parameters, and
provides an approach for maximizing photosynthesis by
manipulating the environmental conditions with real-time
detection of limiting factors of leaf photosynthesis in
greenhouse environments.
MATERIALS AND METHODS

Model Background
Around four decades ago a nowadays widely used biochemical
photosynthesis model was proposed (Farquhar et al., 1980)
(hereafter “FvCB model”). This model estimates AL as
July 2020 | Volume 11 | Article 1038
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minimum of the Rubisco limited rate (Ac, μmol CO2 m
-2 s-1), the

electron (e-) transport limited rate (Aj, μmol CO2 m
-2 s-1), and

the triose phosphate utilization limited rate (Ap, μmol CO2 m
-2 s-1)

of CO2 assimilation (Eqn. 1). Abbreviations for parameters are
defined in Table 1.

AL = min(Ac, Aj, Ap) (1)

The value of Rubisco limited rate (Ac) is calculated as a
function of the maximum carboxylation rate (VCmax)

Ac =
（Cc − G *）VCmax

Cc + KmC 1 + O=KmOð Þ − Rd (2)

where Cc is the CO2 partial pressure at the carboxylation sites of
Rubisco, KmC and KmO are Michaelis-Menten constants of
Rubisco for CO2 and O2, respectively (Farquhar et al., 1980).
Rd is the mitochondrial respiration of leaves.

According to the usage of energy suppliers NADPH and ATP,
two similar equations with different parameter values (Eqns. 3
and 4) were used to estimate the RuBP-regeneration limitation,
which is a function of the electron (e-) transport J:

Aj =
(CC − G*)J
4CC + 8G *

− Rd (3)

Aj =
(CC − G*)J

4:5CC + 10:5G *
− Rd (4)

Theoretically, J can be assessed by CFA (then J becomes Jf). Jf
is given by:
Frontiers in Plant Science | www.frontiersin.org 3
Jf  = Iinc � abs � r2 �F2 (5)

where abs is the proportion of incident light that is absorbed by
the leaf. It is frequently assumed to be 0.84 (Maxwell and
Johnson, 2000) or 0.85 (Von Caemmerer, 2000); r2, is the
fraction of absorbed light transported to PSII (frequently
assumed to be 0.48; Von Caemmerer, 2000).

Jf is assumed equal to the rate of e- transport through PSII (J2),
while J2 is the rate of e

- transport through PSI. The rate of cyclic
e- transport Jcyc is fcyc·J1, where fcyc is a fraction of e- follows the
cyclic path (see Figure 1). This leads to the following balance as
proposed by Yin et al. (2004).

J2 + fcyc · J1 = J1 (5� 1)

We define all electron transport through PSI reaction center
as 1, as well as the fractions e- for the cyclic and pseudocyclic
paths (fcyc or fpseudo, respectively). The remaining fraction (1– fcyc
– fpsedo) is transferred to NADP+. The electron transport for
NADP+ reduction (JNADP+ ) can thus be formulated as:

JNADP+ = 1 − fcyc − fpseudo
� �

· J1 (5� 2)

Combining Eqn. (5-1) and Eqn. (5-2), Eqn. (5-3) can be
derived.

JNADP+ = 1 − fcyc − fpseudo
� �

·
J2

1 − fcyc
� � (5� 3)

We assume the environment is steady state, the pseudocyclic
path, which may occur at high light condition to produce oxygen
FIGURE 1 | Electron transport chain on thylakoid membrane and related metabolisms. Three electron transport paths on thylakoid membrane: Linear electron
transport (LET) (marked with blue line) is the electron (e-) flow transferred to NADP+, the end acceptor of LET for generating NADPH for CO2 reduction or
photorespiration. Cyclic electron transport (CET) (marked with red dashed line) is the e- flow transferred alone PSI, cytochrome b6f, plastocyanin back to PSI.
Pseudocyclic electron transport (PET) (marked with purple dashed line) functions similar to LET, while the final e- acceptor is O2. ATP and NADPH (originating from e-

transport), are used to drive CO2 assimilation in the Calvin Cycle (green line), photorespiration (dark red line) and NO3 assimilation (pink line). Notations: DT,
Dicarboxylic acid transporter; Fd, Ferredoxin; FNR, Ferredoxin reduction system; Glu, glucose; RuBP, Mal, malic; MDH, Malate dehydrogenase; NIR, Nitrite
reductase; NR, nitrate reductase; OAA, oxalocetate; PC, plastocyanin; PG, phosphoglycolate; PGA, phosphoglyceric acid; Pi, inorganic phosphate; PQ,
plastoquinone; Ribulose-1,5-bisphosphate.
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radicals O −
2 () is not considered, in this study (fpseudo = 0), means

that:

JNADP+ = J2 = Jf (5� 4)

Finally, at high CO2 partial pressure (particularly in
combination with high radiation) the rate of AL is sometimes
limited by the release of inorganic phosphate (Pi). Starch and
sucrose synthesis may become inadequate to recycle the Pi
sequestered in the production of triose phosphates, in which
case Pi may become limiting (Woodrow and Berry, 1988; Harley
and Sharkey, 1991; Lombardozzi et al., 2018). The Pi limited part
of AL (Ap) is calculated as:

Ap =
3  Tp(CC − G*)

CC − 1   +   3ag

� �
G *

− Rd (6)

Where Tp is the triose-phosphate use (TPU) rate and ag is the
non-returned fraction of glycolate.

In Eqns. 2 to 4 and Eqn. 6, the CO2 concentration on the
chloroplast side (Cc, μmol mol-1) is calculated from the pathway
of ambient CO2 (Ca, μmol mol-1) through leaf surface (Cs, μmol
mol-1) and intercellular air spaces (Ci, μmol mol-1) to the
chloroplast (Flexas et al., 2008; Flexas et al., 2012).

The leaf conductances to CO2, i.e. boundary layer
conductance (gb, mmol CO2 m

-2 s-1), stomatal conductance (gs,
mmol CO2 m

-2 s-1) and mesophyll conductance (gm, mmol CO2

m-2 s-1) are factors influencing Cc. (Yin et al., 2009a) Due to the
complicated leaf gas-exchange measurements for gm estimation,
intercellular CO2 concentration is commonly assumed as: Ci = Cc

(Farquhar et al., 1980; Ethier and Livingston, 2004; Manter and
Kerrigan, 2004; Sun et al., 2014). However, as gm is a major
variable in photosynthesis, neglecting gm will result in inaccurate
prediction of AL (Nobel, 1977; Nobel, 1983; Warren, 2006; Pons
et al., 2009; Yin and Struik, 2009; Yin et al., 2009a; Yin and
Struik, 2012). The influence of this potential error in prediction
AL has been considered and discussed in this study.
Frontiers in Plant Science | www.frontiersin.org 4
Two equations (Eqns. 3 and 4) were used to simulate electron
transport limitation. The detailed derivation process is well
described by Von Caemmerer (2000) and Yin et al. (2004). To
simplify, in the production of NADPH and ATP, electron
transport and the concomitant proton transfer in the
chloroplast thylakoids are central processes. Carboxylation and
oxygenation in C3 metabolic reactions requires NADPH and
ATP. Farquhar proposed that each carboxylation requires 2
NADPH and 3 ATP, and each oxygenation requires 2 NADPH
and 3.5 ATP. In Eqn. 3, the regeneration of RuBP is assumed
restricted by NADPH, the rate of whole chain electron transport
required to support NADPH consumption by the photosynthetic
carbon reduction (PCR) and photorespiratory carbon oxidation
(PCO) cycles during CO2 fixation (Von Caemmerer and
Farquhar, 1981; Dubois et al., 2007; Sharkey et al., 2007).
Therefore, oxygenation to carboxylation ratio is given by 2 Г*/
Ci (Farquhar and von Caemmerer, 1982). The rate of NADPH
consumption can be expressed as (2 + 4Г*/Ci)Vc, where Vc is the
rate of carboxylation. Since the reduction of one NADP+ to
NADPH requires two e-, the rate of e- transport for satisfying the
NADPH requirement is (4 + 8Г*/Ci) Vc (Figure 2).

In Eqn. 4, the regeneration of RuBP is not only limited by
NADPH, but also by ATP (Von Caemmerer and Farquhar, 1981;
Bernacchi et al., 2003; Long and Bernacchi, 2003; Yin and Struik,
2009). The rate of ATP consumption in C3 reaction is (3 + 7Г*/
Ci) Vc. The FvCB model assumes that 3 H+ are required for the
photophosphorylation of 1 ADP to 1 ATP. Therefore, the flow of
one e- via the linear chain produces 2/3 ATP. Assuming ATP is
produced by the linear e- transport alone, the required rate of the
linear e- flow is (4.5 + 10.5Г*/Ci) Vc (Figure 2) (Yin et al., 2004).

One key point of this study is the use of CFA to predict AL.
Foyer and Noctor, 2002 Since the Mehler reaction (Mehler, 1951)
is not subject to this study, we solely use the linear electron
transport of steady state photosynthesis in Eqns. 3 and 4. ATP and
NADPH are used to drive the CO2 assimilation, photorespiration
and NO−

3 assimilation (see Figure 1) (Robinson, 1987; Noctor and
A B

FIGURE 2 | CO2 assimilation (A) as a function of chloroplast partial pressure of CO2 (CC) according to the FvCB model. With increasing Cc, AL is limited by
ribulose-1, 5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) marked with green, RuBP marked with red in A and orange in B; triose-phosphate utilization
(TPU) marked with blue, respectively. Rubisco kinetics parameters were using values of Table 1 in Sharkey et al. (2007): KC = 27.24 Pa, KO = 16.58 kPa, O = 21
kPa, G* = 3.74 Pa. Other parameters: Rd = 1.0 mmol·m–2·s–1, VCmax = 97.0 mmol·m–2·s–1, Jmax = 144.0 mmol·m–2·s–1, Tp = 7.1 mmol·m–2·s–1, ag = 0.15 mmol CO2

m-2s-1. Abbreviations for parameters are defined in Table 1. The RuBP limitation is calculated with Eqn. 3 (A) and Eqn. 4 (B).
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Foyer, 1998; Foyer and Noctor, 2002; Allen, 2003). In that, the
assimilation of NO−

3 has a lower requirement of ATP/NADPH,
and furthermore, the reducing power for NO−

3 assimilation may
not directly originate from the chloroplast (Miflin, 1974; Yin et al.,
2006; Walker et al., 2014). Meanwhile, whether the reductants and
energy is come from linear electron transport is still unclear. The
ferredoxin, NADPH, and ATP may partly be produced by cyclic
or pseudocyclic electron flow. And the fraction for nitrate
reduction is not a constant. It may depend on species,
nutrient supply and growth stage (Yin et al., 2006). Due to the
difficult endeavor of quantifying the proportion of electron flow
for nitrate reduction in real time and the small proportion of it,
the electron flow for NO−

3 assimilation was not considered in
this study.

Plant Material, Growth Conditions
One hundred and forty-four tomato plants (cv. “Pureza”) were
cultivated in February 2016 in a 62.6 m2 Venlo-type greenhouse
at a commercial grower in Abtshagen, Germany (52°31'12.025''
N; 13°24'17.834'' E). The greenhouse had a side wall height of 4.2
m, equipped with double glass and single glass in the roof. The
internal construction consisted of two double gutters in the
middle and two single gutters beside the walls. Plants were
planted in rock wools slabs with a common drip irrigation
system. Seed was placed on rock-wall cubes on January 23rd
2016 and young plants were placed on the rock wools slabs two
weeks after. Three weeks after transplanting, the measurements
started. Temperature and humidity were controlled with pipe
heating and passive roof ventilation. Set points for heating
system were defined as 22 and 18°C for day and night,
respectively; ventilation set point was 21°C day and night
between April and October and 26°C for the rest of the year.
The energy screen was unfolded one hour before sunrise and
folded one hour after sunset. Between 7 a.m. and 8 p.m.
supplementary light (high-pressure sodium lamps, HPSL)
started when global radiations outside the greenhouse was
below 20 W m-2. Water and nutrients were adequately
supplied to the needs of the crop. Nutrient solution was
adjusted with mineral fertilizer to an electric conductivity (EC)
of 1.8 dS m−1 and a pH of 6.5. The nutrient concentration was
used according to Lattauschke (2004) (Table 2).

Environment and Plant Photosynthesis
Monitoring
The environmental variables air temperature, relative humidity,
light, and CO2 concentration (Ta, RH, I, and [CO2], respectively)
were recorded by a commercial greenhouse monitoring system
(Growwatch, Fytagoras BV, Leiden, The Netherlands). In this
system, plant photosynthetic active radiation (PAR) was
measured (Li-190R, LICOR, Lincoln, Nebraska, USA) as
photosynthetically photon flux density (PPFD, μmol m-2 s-1).
The monitoring system was placed on an uncovered area (right
next to the plant) at the height of the seventh unfolded leaf
(calculated from the top, the fifth leaf was usually the first mature
leaf). Ta and RH were measured by a commercial sensor for
TABLE 1 | Abbreviation used in this study.

Abb. Definition Unit

AL Net photosynthesis rate mmol CO2 m-2s-1

Ac Rubisco activity limited net photosynthesis rate mmol CO2 m-2s-1

Agl Gross leaf assimilation rate mmol CO2 m-2s-1

Aglmax Maximum gross assimilation rate mmol CO2 m-2s-1

Aj Electron transport limited net photosynthesis
rate

mmol CO2 m-2s-1

Ap Triose phosphate utilization limited net
photosynthesis rate

mmol CO2 m-2s-1

Ca Ambient air CO2 partial pressure or
concentration

mbar

Cc Chloroplast CO2 partial pressure mbar
Ci Intercellular CO2 partial pressure mbar
F Leaf chlorophyll fluorescence yield of light

acclimated state
–

Fm' maximal fluorescence yield of the light
acclimated state

–

fOC Ration of maximum oxygenation rate to
maximum carboxylation rate

–

fcyc A fraction of e- follows the cyclic mode around
PS I

–

fpseudo A fraction of e- follows the pseudocyclic mode
for O2 reduction.

–

gb Boundary layer conductance mol m-2s-1

gm Mesophyll diffusion conductance mol m-2s-1

gs Stomatal conductance mol m-2s-1

I Solar radiation mmol [photon] m-2s-1

Iabs Photon flux density absorbed by leaf
photosynthetic pigments

mmol [photon] m-2s-1

Iinc Photon flux density incident to leaves mmol [photon] m-2s-1

J1 e- transport rate through PSI mmol [e-] m-2s-1

J2 e- transport rate through PSI mmol [e-] m-2s-1

Jf Rate of e- transport calculated from the
chlorophyll fluorescence measurement

mmol [e-] m-2s-1

JNADP+ The electron transport for the NADP+ reduction mmol [e-] m-2s-1

Jmax Maximum value of J under saturated light mmol [e-] m-2s-1

KC Michaelis–Menten constant of Rubisco for CO2 mbar
KO KmO Michaelis–Menten constant of Rubisco for

O2

mbar

MCO2 Molar mass of CO2 kg mol-1

O Oxygen partial pressure mbar
P Pressure Pa
PAR Photosynthetically active radiation mmol m-2s-1

Pi inorganic phosphate
R Gas constant J kg-1 K
rb_co2 Boundary layer resistance to CO2 diffusion s m-1

rC_co2 Carboxylation resistance to CO2 diffusion s m-1

rs_co2 Stomatal resistance to CO2 diffusion s m-1

Rd Day respiration (respiratory CO2 release other
than by photorespiration)

mmol [CO2] m
-2s-1

Ta Air temperature K
Tl Leaf temperature K
VCmax Maximum rate of Rubisco activity-limited

carboxylation
mmol [CO2] m

-2s-1

VPD Vapour-pressure deficit between leaf and air kPa
Г* Cc-based CO2 compensation point in the

absence of Rd
mbar

qJ Factor for the degree of curvature –

r2 Proportion of Iabs partitioned to PSII –

a(LL) Initial quantum yield mol [e-] (mol photon)
ag Nonreturned fraction of glycolate mmol CO2 m-2s-1

ϵ Light use efficiency by photorespiration mg CO2J
-1

F2 Quantum efficiency of PSII e- flow on PSII-
absorbed light basis, usually assessed from the
chlorophyll fluorescence measurements

–
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volume applications (HMP60, VAISALA, Helsinki, Finland).
Leaf temperature (Tl) of each seventh leaf of four plants was
measured with an infrared radiation thermometer (CT11,
HEITRONICS Infrarot Messtechnik, Wiesbaden, Germany).
All variables were continuously measured and averaged over 5
min and stored on a central server. Outliers were detected
according to Tukey (1977), i.e. an outlier is defined as a value
that is smaller than the lower quartile minus 3 times the
interquartile range, or larger than the upper quartile plus 3
times the interquartile range. Outliers and invalid measurements
due to sensor calibration or failure were removed from the original
data-set (Grubbs, 1950; Aggarwal and Yu, 2005). Scattered data
outliers within PAR measurements as artifact based on sudden
shade incidences hitting the PAR point-sensors during direct
sunlight conditions (due to shade-spots of the greenhouse
construction) were filtered with Savitzky-Golay filter (with
order=3, window=21) (Orfanidis, 2006; Miranda, 2017); i.e., a
mathematical procedure for smoothing data in order to increase
data precision.

Leaf CO2 gas-exchange (GE) was recorded by the
BERMONIS system, measuring the lump-sum of CO2 gas
exchange of eight leaves and calculated to an averaged AL.
Likewise, measurements of Tl, the eight cuvettes were set at
each seventh leaf of four plants. On each plant two opposing
leaflets were used resulting in two cuvettes per plant. The fully
expanded leaves were placed into the cuvettes (acting as
Frontiers in Plant Science | www.frontiersin.org 6
transparent leaf chambers) with the leaves face-up, the metal
frame supported the cuvettes in a horizontal position. A pilot
experiment demonstrated the functionality of BERMONIS to
commercial instruments (Supplementary Material A).

Leaf chlorophyll fluorescence yield of light acclimated state
(F, -), and maximal fluorescence yield of the light acclimated
state (Fm′, -) were measured with a PAM monitor (Monitoring
PAM, Walz, Effeltrich, Germany). The sensor was likewise
BERMONIS set on the seventh leaves (on different plants). For
that, F and Fm′ were measured in the same time and quantum
efficiency of PSII e- flow on F2 of the leaf was calculated (Krause
and Weis, 1984):

F2 =
Fm

0 � F
Fm 0 (7)

The sensors were re-placed to new leaves after two weeks.
Recorded data are shown in Supplementary Material B.
Model Development
A complete data set with environmental variables (Ta, Tl, RH, I,
and [CO2]), mean AL, and F2 was established for model
validation and parameters calibration in this study and
structured as shown in Figure 3. Four models were compared
in this study: Model I, Model IIa and Model IIb, and Model IIb*
used in greenhouse leaf photosynthesis modelling (Table 3).
TABLE 2 | Nutrient concentration for greenhouse tomato used in this study.

Nutrient Abr. Amount Unit Nutrient Abr. Amount Unit

Nitrogen N 151 mg L-1 Iron Fe 2.0 mg L-1

Phosphorus P 37 mg L-1 Boron B 0.3 mg L-1

Potassium K 234 mg L-1 Copper Cu 0.2 mg L-1

Calcium Ca 128 mg L-1 Manganese Mn 1.2 mg L-1

Magnesium Mg 24 mg L-1 Molybdenum Mo 0.05 mg L-1

Sulphur S 110 mg L-1 Zinc Zn 0.4 mg L-1
July 20
20 | Volume 11 | Artic
FIGURE 3 | (1) Evaluation of two photosynthesis indicators with environmental factors; (2) Establishment of models: Model IIa and Model IIb, a coupled model with
common model (Model I) with FvCB model. In Model IIa Aj is calculated with Eqn. (3), whereas in Model IIb Aj is calculated with Eqn. (4), in both models J is
calculated by measured F2. In Model IIb* J is predicted with a non-rectangular hyperbolar curve Eqn. (10); (3) Evaluation of the three models with observed data.
le 1038

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Yu et al. Model-Sensor Based Photosynthesis Monitoring
Model I is the negative exponential light response commonly
used in greenhouse leaf photosynthesis modelling (Thornley,
1976; Gijzen, 1992; Goudriaan and Van Laar, 1994; Körner et al.,
2002; Körner, 2004). Model IIa and IIb use Model I as basis and
further employ the complete FvCB model with two different
equation to estimate Aj. In these models, J is estimated by
detected F2 (Eqn. 5). In Model IIb*, J is calculated with the
non-rectangular hyperbolar curve (Eqn. 10).

Model I
In Model I, AL is determined from gross leaf assimilation rate
(Agl, μmol CO2 m-2 s-1) minus leaf day respiration (Rd, μmol
CO2 m

-2 s-1).

AL =  Agl − Rd (8)

Agl is determined from light use efficiency ϵ and maximum
gross assimilation rate Aglmax with the negative exponential light-
response curve (Goudriaan and Van Laar, 1994) using absorbed
radiation (Iabs) as input.

Agl =  Aglmax � 1 − e
−

ϵ   Iabs
Aglmax

� �
(9)

This leaf photosynthesis light response model is commonly used
to upscale leaf photosynthesis to the crop level (Acrop) considering
light distribution with Gaussian integration over the crop depth
(Goudriaan and Van Laar, 1994). It is commonly used as basic
photosynthesis model in many crop growth models for yield
estimation (Spitters et al., 1989; Hoogenboom et al., 1990; Jones
et al., 1991; Heuvelink, 1996). The description of the biochemical
processes is simplified. The key parameters in this model could be
identified by curve fitting or converted from VCmax or Jmax. Detailed
equations are shown in Supplementary Material C.

Model IIa/IIb
The steady-state version of the FvCBmodel has had the strongest
impact and has become the standard model for photosynthesis of
C3 species (Sharkey, 1984; Sharkey, 1985; Farquhar et al., 2001;
Long and Bernacchi, 2003). The models predicts photosynthesis
as the minimum of the Ac, Aj, Ap (Eqn. 1, see Section Model
background). In both Models IIa and IIb, J is assessed by
chlorophyll fluorescence Jf. While Model IIa includes Eqn. 3,
Model IIb is using Eqn. 4 for Aj simulation.

Model IIb*
In Model IIb*, J is calculated with a non-rectangular hyperbolic
curve of incident light (Farquhar and Wong, 1984). Solely
Frontiers in Plant Science | www.frontiersin.org 7
environmental variables were used for parameter fitting of
Model IIb*.

J =  
Jmax + a LLð Þ � Iabs −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jmax + a LLð Þ � Iabs
� �2−4qJ � Jmax � a LLð Þ � Iabs

q
2qJ

(10)

where Iabs μmol [ photon ] m−2s−1 is the absorbed light; a(LL) is a
factor covert absorbed light to the useful light absorbed by PSII.
Therefore, a(LL)·Iabs represents light absorbed by PSII. qJ is a
factor for the degree of curvature, assumed as 0.85 (Ögren and
Evans, 1993; Von Caemmerer, 2000; Ethier et al., 2006).

Estimating Chloroplast CO2 Partial Pressure
CC is derived from the pathway of CO2 from ambient Ca through
leaf surface Cs and intercellular air spaces (Ci). Here, gb, gs and gm
are indicated (Flexas et al., 2008). We analyzed the predicted
results with and without calculated gm. According to Fick's first
law of diffusion for CO2 transfer along the path from Ca to Cc is
given by:

CC = Ci − AL
1
gm

� �
(11)

Ci = Ca − AL
1
gb

+
1
gs

� �
(12)

As shown in Eqns. 11 and 12, AL is required to be known a
priori. To avoid infinite circulation of variables, the initial
estimated AL rate of Model I is used as starting point for Cc

and Ci calculation.
In some calculations, Ci is treated equal to Cc (Leuning, 2010)

and it was suggested setting gm to be finite large (gm!∞)
(Björkman, 1973; Laisk et al., 2005). Then Eqn. 11 can be re-
formulated to Eqn. 12 and thus the need for gm will be redundant:

CC ≅ Ci = Ca − A
1
gb

+
1
gs

� �
                   (13)

We propose the Jarvis model as sub-model for gb and gs.

gb =
P

R � T � rb _ co2
(14)

gs =
P

R � T � rs _ co2
(15)

WhereP/RT is the coefficient used to convert the resistanceunits
(s m-1) to molar units. rb_CO2 and rs_CO2 are the boundary-layer
resistance and stomatal resistance respectively (Supplementary
Material C).

Goudriaan and Van Laar (1994) suggested an equation for
calculating carboxylation resistance (rC_CO2). In theory, rC_CO2
can be used to calculate gm as:

gm =
P

R � T � rC _ co2
(16)

Consequently, the CO2 partial pressure within the chloroplast
was calculated with and without inclusion of gm and the
TABLE 3 | A summary of model formulas.

Model Calculation equations

Model I Eqn. (8), (9) & Supplementary Material C
Model IIa Use Model I and Eqn.(11),(12) to calculate CC, Eqn.(5) to simulate

J, Eqn.(1),(2),(3),(6) to simulate AL

Model IIb Use Model I and Eqn. (11),(12) to calculate CC, Eqn.(5) to simulate
J, Eqn.(1),(2),(4),(6) to simulate AL

Model IIb* Use Model I and Eqn. (11),(12) to calculate CC, Eqn.(10) to
calculate J, Eqn.(1),(2),(4),(6) to simulate AL
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respective results were compared. In this context CC was
calculated as:

1. Without gm, assuming that gm!∞; (See Eqn. 13)
2. With gm based on the inverse rC_CO2, namely gm=f(rC_co2)

(rC_co2 see Supplementary Material C)
3. With a hypothetical value, from the perspective of optimal

fitting of the model, set gm as 0.25 mol m-2 s-1. This value (gm
= 0.25 mol m-2 s-1) is consistent with an average mesophyll
conductance of annuals herbaceous (Flexas et al., 2008; Yin et
al., 2009b).
Estimating the Rate of Photosynthetic Electron
Transport
The value of a(LL) differs among published literature in e.g. Von
Caemmerer, 2000; Niinemets et al. (2009), or Yin et al. (2009b).
Three values of a(LL) were compared: two values were reported in
literatures (Niinemets et al., 2009; Yin et al., 2009b); one value
was estimated with the parameter optimization method in this
study (a(LL) = 0.405).

Curve fitting was used for parameter estimation of gm and
a(LL). The nonlinear least squares procedure available in python
scipy.optimize tool box (function leastsq) was applied to
minimize the sum of the residuals between measured data and
predicted data (Madsen et al., 2004; Wallach et al., 2006; Salazar-
Moreno et al., 2017).

Model-Parameterization
The biochemical parameters VCmax (mmol m-2 s-1) and Jmax

(mmol m-2 s-1) were assessed with an open leaf gas exchange
measuring system (LI-6400, Li-Cor Inc., Lincoln, Nebraska,
USA). The system was used to create CO2-response curves
(commonly referred to as A-Ci curve) at a CO2 concentration
set at a course of different set points (i.e. 400, 350, 300, 250, 200,
100, 400, 450, 500, 550, 600, 800, 1,000 mmol mol-1), while
keeping PAR at 1,500 mmol m-2 s-1 PPFD. Measurements were
made at pre-set leaf temperature set points of 25°C and the
system was set such that each CO2 level was reached constant
for several seconds and the measurement was recorded at this
point. Data of the three measurements were averaged for
further calculations. The A-Ci curve fitting was carried out
using the Ethier and Livingston method (Ethier and Livingston,
2004; Ethier et al., 2006).

Statistical Analysis and Model
Performance
For all statistical analyses, the statistical software package SPSS was
used (version 23.0, UNICOM Global, CA, USA). Multiple linear
regression (MLR) was used for examining A and F2 response to
multi-environmental variables: air temperature (Ta, K), vapour
pressure deficit (VPD, kPa) and PAR. The coefficient of
determination (R2), root mean squared error (RMSE), and mean
absolute error (MAE) were used to analyze the goodness-of-fit
between the simulated value and the measured value. RMSE and
MAE were used to evaluate the model performance. The smaller
the RMSE and MAE value, the better the consistency between the
Frontiers in Plant Science | www.frontiersin.org 8
simulated and the measured value, thus the more accurate and
reliable the model prediction becomes (Chai and Draxler, 2014).
RESULTS

Evaluation of Physiological Signals
Photosynthetic signals are indicators of plant health and can be
used as variables to formulate control strategies, when compared
with the expected optimum at current environmental conditions.
For multi linear regression, the collinearity of factors needs to be
taken into account. These environmental factors meet the
collinearity diagnostics with the variance inflation factor less
than 10 (data not shown). The resulting regression equations are
presented in Table 4. The results showed that the environmental
variables can better explain the variation of AL than the variation
inF2: 61.5% of the variation of AL could be assessed by Ta, VPD,
and I, whereas only 50.2% of F2 variation can be assessed by
environmental factors Thus, in our measurements AL is a better
suited to evaluate plant responses to the environmental factors
than F2.

Model Validation and Parameters
Calibration
In the present study, the method proposed by Ethier and
Livingston (2004) was used to identify the biochemical
parameters VCmax, Jmax, Rd. With a well-fitting result (R2 =
0.99; Figure 4). VCmax25 = 71.0 mmol m-2 s-1, Jmax25 =147.7
mmol m-2 s-1, and Rd25 = -0.34 mmol m-2 s-1 were used in the
further modelling framework.
TABLE 4 | Multiple linear regression: the environmental variables explain
variance in AL andF2.

Ind. Ta VPD PAR Regression equation R2

AL 69.73 11.01 19.26 y=-12.7+0.89Ta-1.43 VPD +0.002 PAR 0.615
F2 79.90 17.18 3.34 y=1.1-0.02Ta+0.04 VPD +6.168×10-6 PAR 0.502
July 2020 | Volume 11 | Article
FIGURE 4 | Estimation of the biochemical parameters by A-Ci curve fitting
based on the Ethier-Livingston method. Data points represent the mean value
of three leaf replicates.
1038

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Yu et al. Model-Sensor Based Photosynthesis Monitoring
From Figure 5 and Table 5, it is evident that calibrated gm
improved the prediction quality with the highest coefficient of
determination (R2), and achieved the lowest RMSE. Considering
gm infinite, the simulation results are overestimated. gm, based on
optimal fitting, equal to 0.25, achieved the highest R2 and the
lowest RMSE and MAE.

Eqns. 3 and 4 are two approaches to calculate Aj (Table 7). In
Model IIb (using Eqn. 4) yielded a higher R2 and lower RMSE
compared to calculations with Model IIa (i.e. using Eqn. 3).
Using Eqn. 10 to simulate the measured Jf, a(LL) value impacted
the prediction performance of the model. Three a(LL) values were
used in this study. From Figure 6, the results show that the
calibrated parameters can largely improve the prediction quality
(Table 6). RMSE and MAE decreased after applied the calibrated
a(LL) value, which indicated that the R2 and RMSE between
predicted value and measured value decreases after changing
a(LL) and was used for Model IIb*.

Model Test
The diurnal changes of the net photosynthesis rate and three
models were illustrated in Figure 7. In contrast to Model I, the
three versions of Model II (Model IIa, Model IIb and Model IIb*)
Frontiers in Plant Science | www.frontiersin.org 9
improved the prediction of AL (i.e. higher R2, Table 7).
Implementing the predictions obtained from CFA into the
model family Model II (i.e. with Model IIb) yielded in a high
R2 of 0.71. In addition, parameterization of a(LL) as part of
calculation of J (Eqn. 10) could be used to well predict AL.
A B C

FIGURE 5 | Measured and simulated net photosynthesis rate based on different chloroplast CO2 partial pressure. Data points shown in (A) were calculated with
infinity mesophyll conductance (gm). Data points shown in (B) were calculated based on converted rC_co2. Data points shown in (C) were calculated with calibrated
gm equal to 0.25. On the top of (A–C) are sub-graphs, displaying the data distribution of each plot, on the middle layer of (A–C) displayed the distribution of
measured data.
TABLE 5 | Coefficient of determination (R2), root mean square of error (RMSE)
and mean absolute error (MAE) of the linear regression calculated between the
observations and simulations of mesophyll conductance gm.

No. gm R2 RMSE MAE

1 gm!∞ 0.57 2.39 1.61
2 gm = f(rC) 0.52 2.56 1.61
3 gm = 0.25 0.71 1.99 1.34
FIGURE 6 | Simulation of photosynthetic electron transport rate based on: A
recommended value of a from Niinemets et al. (2009), marked with red open
circles; a recommended a value from Yin et al. (2009b), marked with blue
open circles; a calibrated a value (0.405), marked with green open circles.
July 2020 | Volume 11 | Article 1038
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Model Application
During night, the ambient CO2 concentration in the greenhouse
increases due to plant respiration (Figure 8). At this time, the
limiting factor of photosynthesis is the insufficient electron
transfer efficiency of chloroplasts caused by insufficient light.
During the light period, photosynthesis consumes ambient CO2,
and without CO2-supply its concentration in the greenhouse air
Frontiers in Plant Science | www.frontiersin.org 10
rapidly decreases. Under this condition, the limiting factor of
photosynthesis is shifted to “Rubisco-limitation”, a close relation
to ambient CO2 concentration (Figure 8).

Based on our designed soft-sensor system, the CO2

concentration required by plants in the current cultivation
environment can be calculated accurately. For instance, as
illustrated in Figure 9 (before 01:00 p.m.), supplying excessive
CO2 to concentrations of 1,000 mmol mol-1 under insufficient
lighting conditions does not improve the rate of photosynthesis,
resulting in the waste of CO2 (Schmidt, 1998). Meanwhile, when
dosing extra CO2, duo to the limited inorganic phosphate (Pi)
TPU limitation is likely to occur. The soft-sensor can improve
the understanding and control of plant photosynthesis, so as to
potentially improve greenhouse climate control.
DISCUSSION

Net photosynthesis prediction in a tomato crop can be improved
significant when on-line measurements with sensor systems and
intelligent algorithms of models are combined to a so-called soft-
sensor (De Koning, 2006; Körner, 2019). Here, the combination
of real-time chlorophyll fluorescence measurements and
photosynthesis models is suggested. However, when model-
predicted rates of CO2 exchange are compared with measured
gas exchange, measuring accuracy of a gas exchange
measurement system may complicate the determination of the
TABLE 6 | Coefficient of determination (R2), root mean square of error (RMSE)
and mean absolute error (MAE) of the linear regression calculated between the
observations and simulations of electron transport rate J calculated with the three
conversion factors (a(LL)) values.

Marked color a(LL) value reference R2 RMSE MAE

blue 0.24 Yin et al., 2009b 0.85 52.76 18.4
green 0.40 Optimized 0.74 47.35 13.58
red 0.46 Niinemets et al. (2009) 0.70 47.76 16.08
A B

DC

FIGURE 7 | Diurnal dynamics of net photosynthesis rate. Data points shown in black circles are actual value measured by BERMONIS (A–D). Data points shown in
filled gray circles in (A) are net photosynthesis rate calculated with Model I. Data points shown in filled blue circles in (B) are calculated with Model IIa. Data points
shown in filled green circles in (C) are calculated with Model IIb. Data points shown in filled red circles in (D) are calculated with Model IIb*. VCmax = 71.0 mmol CO2

m-2 s-1, Jmax = 147.7 mmol [e-] m-2 s-1, Rd = -0.34 mmol CO2 m
-2 s-1, gm = 0.25 mol m-2 s-1 were applied in the Model IIa, Model IIb and Model IIb*. In Model IIb* a(LL)

=0.405 was applied in the modelling framework.
TABLE 7 | Coefficient of determination (R2), root mean square of error (RMSE) of
the linear regression calculated between the observations and Models.

Model R2 RMSE MAE

Model I 0.64 2.21 1.50
Model IIa 0.70 1.99 1.34
Model IIb 0.71 1.98 1.33
Model IIb* 0.71 1.99 1.34
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FIGURE 8 | Diurnal dynamics of net photosynthesis rate for Rubisco and electron-transport limited rates calculated with Model IIb. The Blue line represents Rubisco
carboxylation-limited assimilation rate (Ac). The yellow line represents electron transport-limited assimilation rate (Aj). The yellow area represents leaf assimilation
limited by Aj; the blue area represents leaf assimilation limited by Ac. VCmax = 71.0 mmol CO2 m

-2 s-1, Jmax = 147.7 mmol e- m-2 s-1, Rd = -0.34 mmol CO2 m
-2 s-1, gm

= 0.25 mol m-2 s-1 were applied in the Model IIb.
A

B

C

FIGURE 9 | Diurnal dynamics of net photosynthesis rate for electron-transport and carboxylation limited rates calculated with Model IIb. (A) Simulation of diurnal net
photosynthesis rate with air CO2 concentration of 600 mmol mol-1. (B) Simulation of diurnal net photosynthesis rate with air CO2 concentration of 800 mmol mol-1. (C) Simulation
of diurnal net photosynthesis rate with air CO2 concentration of 1000 mmol mol-1. The yellow line represents electron transport-limited assimilation rate (Aj). The blue dashed-line
represents rubisco carboxylation-limited assimilation rate (Ac) at the given CO2 concentration. The sky-blue line represents the TPU limited assimilation with corresponding CO2

concentration. The three colors, green, red and black represent simulations with three CO2 concentrations, i.e. 600, 800, 1000 mmol mol-1, respectively. The colored area
represents leaf assimilation rate. VCmax = 71.0 mmol CO2 m

-2 s-1, Jmax = 147.7 mmol e- m-2 s-1, Rd = -0.34 mmol CO2 m
-2 s-1, gm = 0.25 mol m-2 s-1 were applied.
Frontiers in Plant Science | www.frontiersin.org July 2020 | Volume 11 | Article 103811

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Yu et al. Model-Sensor Based Photosynthesis Monitoring
true net photosynthesis. In this study, with the BERMONIS
(Schmidt, 1998; Schmidt, 2005) a well-tested multi-leaf cuvette
system was used for gas exchange measurements (Huber, 2011;
Dannehl et al., 2014).

Another problem in designing soft-sensors often lies in the
model structures. Here the difficulty is the unsuitability of the
models for direct usage in a soft-sensor. The prediction efficiency
of the used models depend among others on the identification
and the estimation of substrate concentration, the chloroplast
CO2 partial pressure (CC), and the photosynthetic electron
transport rate (J). While (CC) can be estimated from the
calculated intercellular CO2 concentration (Ci), AL and gm
needs to be known beforehand. However, in general, Ci and AL

are also unknown at the beginning and a consequential model
nesting tends to get trapped in infinite loop in simulations.
Therefore, the key issue of using the FvCB models to
calculating the actual photosynthetic rate is to accurately
provide CC and J data, either attained through model
calculations or by measurements. To solve this problem, a
commonly used but simplified biochemical AL-model with
negative exponential light-response (Model I) was coupled
with the full biochemical model approach based on Farquhar
et al. (1980) for calculating CC, for which, in turn, gm needed to
be identified. Niinemets et al. (2009) and Flexas et al. (2012)
evaluated the importance of gm in estimation of net
photosynthesis rate. It was demonstrated that a hypothetical
situation, with gm!∞, which means there is no diffusion
restriction in the mesophyll, resulted in higher daily
photosynthesis, than any other parameterization. This is
consistent with the conclusion of this study. Due to the
assumption of a finite gm, a resistance between intercellular air
spaces and the Rubisco carboxylation-sites in chloroplasts was
used (Farquhar and Wong, 1984; Flexas et al., 2008). Results
show that this equation does not fit AL very well. However, at
daytime, the lower gm value resulted in lower CC values and led to
the underestimation of AL. Therefore, we recommend a
“universal” or cultivar dependent correction factor, or the
usage of estimating gm according to different experiments.

For AL model estimations with Model I (used by Körner,
2004), maximum carboxylation rate and maximum electron
transport rate (VCmax and Jmax) need to be known. A general
model for calculation of VCmax and Jmax was reported by
Farquhar et al. (1980). In this model, VCmax25 (i.e. VCmax at
25°C) is calculated with superficial chlorophyll density (rchl;
assumed as 0.45 g m-2), the turnover number of RuBP
(carboxylase) (kC; assumed as 2.5 s-1), and the total CO2

concentration of enzyme sites (Et; assumed as 87.0 mmol g-1.
Jmax25 was computed as 467 times rchl (Van Ooteghem, 2007).
The calculated results of VCmax25 and Jmax25 were 97.875 and
210.15 mmol m-2 s-1, which are different from our predictions.
These values lead to an overestimation of AL (Model I). This
underlines the insecure prediction quality of Model I and the
central importance of carboxylation rate and maximum electron
transport rate in photosynthesis prediction models.

For light-limited assimilation (Aj, electron transport-limited
rate of photosynthesis), there are two widely used forms of the
Frontiers in Plant Science | www.frontiersin.org 12
equations, i.e. Eqns. 3 and 4. The rate of carboxylation when
electron transport is limiting has not yet been described
unambiguously in the FvCB model. As discussed by Yin et al.
(2009b), for Eqn. 3, RuBP regeneration is assumed limited because
of insufficient NADPH. Von Caemmerer (2000) elaborated that
Eqn. 4 assumes ATP limiting: its two forms result from different
assumptions about the operation of the Q cycle and the number of
protons (H+) required for synthesizing an ATP. Yin et al. (2009b)
proposed that the stoichiometric relationship in Eqn. 4 assumes
linear electron transport limited by ATP. Our results show a
higher R2 and lower RMSE with Eqn. 4, implying that in common
production condition RuBP regeneration is likely limited by ATP.
It can be deduced that under actual production conditions, ATP
deficiency may be more related to RuBP regeneration limitation.
(Qian et al., 2012), As there are some unknown pathways that
cannot be fully represented by this model, the reverse cannot be
supported by our data. The model discussed in this study, mainly
concerns the basic circumstance (steady-state). A more robust
model in unstable conditions could be the model proposed by Yin
et al. (2004). However, with this model, constraints for the
dynamic variables are needed.

Furthermore, when using Eqn. 10 to calculate the electron
transport rate, the essential parameter is a(LL). a(LL) can be
gained by mathematical curve fitting. Therefore, once a(LL) is
known, Eqn. 10 can be used to estimate the electron transfer rate
in the absence of CFA.

In our model analysis, we have used real greenhouse data, in
order to clearly interpret that a soft-sensor system can provide
accurate information. In our simulations we used ceteris paribus
conditions, as only one variable (CO2 concentration) was changed,
while the other potentially dynamic parameters were set fixed.
However, as VCmax is an exponential function of light (Von
Caemmerer and Edmondson, 1986; Brooks et al., 1988;
Arulanantham et al., 1990; Makino et al., 1994; Qian et al., 2012;
Qian et al., 2015), it should be emphasized that light condition need
to be considered in the practical application. The next step would
therefore include a full simulation study (including sensitivity
analysis) varying all external variables. Due to the difficult
parameterization process of NO−

3 reduction and its small
contribution, the fraction of NO3-used by ATP and NADPH was
not considered in this study. However, in future investigations, this
could be explored in hydroponics nutrient composition
experiments variating NO−

3 or NH+
4 . This, nevertheless, was out

of scope for the present research.
Our results suggest that (1) the CFA parameterF2 can be used

to predict net photosynthesis rate and that (2) a parameterized
photosynthetic electron transport rate model is suitable to predict
measured electron transport rate and leaf photosynthesis. The
combination of CFA measurements and mathematical modelling
can be used for plant performance monitoring and furthermore
used as a module for a DSS. The model performance expressed as
R2 or RMSE was significantly improved with Jf.

Up-scalingAL toAcrop, i.e. from leaf to canopy photosynthesis,
will include the heterogeneity of vertical leaf differences in age and
light adaptation resulting in leaf morphological differences (e.g.
Laisk et al., 2005). For that it is necessary to estimate the model
July 2020 | Volume 11 | Article 1038
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parameters inAL -predictionswithdifferent vertical distribution in
the canopy.

To summarize, in the present paper the basis of a monitoring
system was introduced, which combines chlorophyll fluorescence
analysis and model predictions using a biochemical leaf
photosynthesis model (Model IIb). The performance of a
predictive model may be improved by combining it with the
sensor-based on-line measurement of plant physiological
parameters. The approach evaluated in this study provides
information on the relationship between rates of photosynthetic
electron transport and carbon gain. Furthermore, it could be used
as thescientificbasis forpractical applicationofCO2enrichment in
the greenhouse. The next step will be the incorporation of
morphological differences of leaves in a canopy to the proposed
soft-sensor system.
CONCLUSION

In summary, a soft-sensor, based on both sensors and models, is
suitable to predicting rates of photosynthesis at the leaf level.
However, for a well-fitting model system, a parameters
validation of the biochemical parameters is needed. For
estimating the CO2 concentration in chloroplasts, coupling of
the Jarvis model with Model I can avoid a vicious cycle of
parameters. Model IIb could reduce the effects of the errors of
the simplified model as indicated by the reduced R2 between
predicted data and measured data and the increased RMSE.
Consequently, using these models as sub-systems in the soft-
sensor approach could be a precise method for developing a
greenhouse control strategy based on the direct evaluation of
plant responses. However, differences in leaf morphology, which
could result in different VCmax and Jmax need to be exactly
parameterized for a well performing DSS.
Frontiers in Plant Science | www.frontiersin.org 13
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