
Frontiers in Plant Science | www.frontiersin

Edited by:
Seth Jon Davis,

University of York,
United Kingdom

Reviewed by:
Amanda J. Burridge,
University of Bristol,

United Kingdom
Ravi Valluru,

University of Lincoln,
United Kingdom

*Correspondence:
Dragan Perovic

dragan.perovic@julius-kuehn.de

Specialty section:
This article was submitted to

Plant Systems and Synthetic Biology,
a section of the journal

Frontiers in Plant Science

Received: 31 January 2020
Accepted: 24 June 2020
Published: 09 July 2020

Citation:
Soleimani B, Lehnert H, Keilwagen J,

Plieske J, Ordon F, Naseri Rad S,
Ganal M, Beier S and Perovic D (2020)

Comparison Between Core
Set Selection Methods Using

Different Illumina Marker Platforms:
A Case Study of Assessment of

Diversity in Wheat.
Front. Plant Sci. 11:1040.

doi: 10.3389/fpls.2020.01040

METHODS
published: 09 July 2020

doi: 10.3389/fpls.2020.01040
Comparison Between Core Set
Selection Methods Using Different
Illumina Marker Platforms: A Case
Study of Assessment of Diversity in
Wheat
Behnaz Soleimani1, Heike Lehnert2, Jens Keilwagen2, Joerg Plieske3, Frank Ordon1,
Sara Naseri Rad4, Martin Ganal3, Sebastian Beier5 and Dragan Perovic1*

1 Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn
Institute, Quedlinburg, Germany, 2 Institute for Biosafety in Plant Biotechnology, Julius Kuehn Institute, Quedlinburg,
Germany, 3 TraitGenetics GmbH, Gatersleben, Germany, 4 Department of Physiology and Cell Biology, Leibniz Institute of
Plant Genetics and Crop Plant Research (IPK), Seeland, Germany, 5 Department of Breeding Research, Leibniz Institute of
Plant Genetics and Crop Plant Research (IPK), Seeland, Germany

Collections of plant genetic resources stored in genebanks are an important source of
genetic diversity for improvement in plant breeding programs and for conservation of
natural variation. The establishment of reduced representative collections from a large set
of genotypes is a valuable tool that provides cost-effective access to the diversity present
in the whole set. Software like Core Hunter 3 is available to generate high quality core sets.
In addition, general clustering approaches, e.g., k-medoids, are available to subdivide a
large data set into small groups with maximum genetic diversity between groups.

Illumina genotyping platforms are a very efficient tool for the assessment of genetic
diversity of plant genetic resources. The accumulation of genotyping data over time using
commercial genotyping platforms raises the question of how such huge amount of
information can be efficiently used for creating core collections. In the present study,
after developing a 15K wheat Infinium array with 12,908 SNPs and genotyping a set of
479 hexaploid winter wheat lines (Triticum aestivum), a larger data set was created by
merging 411 lines previously genotyped with the 90K iSelect array. Overlaying the markers
from the 15K and 90K arrays enabled the identification of a common set of 12,806
markers, suggesting that the 15K array is a valuable and cost-effective resource for plant
breeding programs.

Finally, we selected genetically diverse core sets out of these 890 wheat genotypes
derived from five collections based on the common markers from the 15K and 90K SNP
arrays. Two different approaches, k-medoids and Core Hunter 3 were compared,and k-
medoids was identified as an efficient method for selecting small core sets out of a large
collection of genotypes while retaining the genetic diversity of the original population.
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INTRODUCTION

Germplasm collections are an important source of natural
genetic diversity and provide a source of novel traits for
sustainable crop improvement (Wang et al., 2018). However,
genebanks need to balance between storing and regenerating
large collections with limited resources with respect to storage
capacity and monetary constraints. Frankel (1984) introduced
the term core collection as a concept. A core collection is a subset
of accessions which were selected by eliminating closely related
samples while still capturing the genetic diversity of the original
set of accessions. Therefore, a core collection ideally represents
the genetic diversity of the entire collection. Providing core
collections with maximum genetic variation facilitates efficient
management and utilization of genetic diversity (Brown, 1989;
van Heerwaarden et al., 2013) and is an efficient method for
characterizing and using genetic resources of crop plants without
the need to sample the entire collection (Jeong et al., 2017).
Originally, phenotypic data containing both morphological and
agronomical traits were used to create core collections, whereas
nowadays molecular markers as neutral tools for measuring
genetic variation have become the tool of choice.

There are currently three different strategies for generating a
core collection from a large population using molecular marker
data (Odong et al., 2013). Firstly, it is possible to build up a core
collection that represents the individual accessions (CC-I), e.g., a
uniform representation of the original population. Second, it is
possible to select a core collection based on accessions that
represents the distribution of all relevant traits (CC-D), e.g., if
the majority of the original population contains allele A at a
given locus, then the core collection should imitate this behavior.
Thirdly, accessions can be selected that represent the extremes of
all relevant traits (CC-X), e.g., different entries into the core
collection should be as diverse as possible with regard to the
selected traits. Depending on which strategy is used, there are
disadvantages in terms of working with the whole population.
For example, trait customized core collections (CC-X), which
aim to maximize diversity for that particular trait, would be
better suited to finding rare alleles than a core collection that is
designed to represent the original population (CC-I). The loss of
rare alleles, especially in plant and resistance breeding, is one of
the main concerns when working with core collections (Odong
et al., 2013).

The quality of core set selection can be evaluated by using a
variety of mathematical measures. De Beukelaer et al. (2018)
explained that distance-based measures are attractive because
they are easy to understand and take into account both the
diversity within the core set and representativeness of accessions
from the entire collection. Nevertheless, pairwise distances are
required to be aggregated in suitable ways to evaluate the quality
of a selected core set. One such aggregation, which is often used,
is to calculate the average of pairwise distances to obtain an
estimate of the quality of the core set (De Beukelaer et al., 2018).
The interpretation of the result depends strongly on the defined
purpose of the core collection. While it might be advantageous
for core collections built up with the aim of conserving extremely
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rare alleles (CC-X) and therefore aiming at a maximum of the
average pairwise genetic distance, a core collection built up for a
uniform representation of the population (CC-I) would want to
minimize the average pairwise genetic distance. Odong et al.
(2013) proposed different criteria for the evaluation of core
collections. They defined a way to estimate the quality of the
core set selection process and introduced two new distance-based
metrics. These two metrics were also used in the study by De
Beukelaer et al. (2018) to evaluate the quality of core collections in
rice, coconut, maize and pea for various tools. Core Hunter 3 was
able to convince particularly through its flexibility to combine
different methods. The evaluation metrics used showed that Core
Hunter 3 core collections were always competitive with other
more specialized methods.

An increasing number of plant genetic resources (PGR) are
rapidly being molecularly characterized using various marker
systems (Larsen et al., 2018; Mascher et al., 2019; Milner et al.,
2019). In order to effectively manage and use plant genetic
resources, different methods could be employed to select a core
collection (Jeong et al., 2017). Harnessing marker information to
select core collections based on aspects of genetic diversity such
as pairwise dissimilarity, allelic richness, or heterozygosity is
feasible today (van Heerwaarden et al., 2013). Core collections
use distance metrics to quantify the similarity of two accessions,
based on genetic marker data or phenotypic traits (De Beukelaer
et al., 2018). Different distance metrics or traits can be applied to
generate core sets that are specific for a particular purpose e.g.
maximizing the genetic diversity in a trait of interest. The Core
Hunter software is a core set selection tool known for its
flexibility to sample diverse, representative subsets from large
germplasm collections with minimal redundancy (http://www.
corehunter.org). Three different main versions of Core Hunter
have been released. Core Hunter 3 was introduced by De
Beukelaer et al. (2018) as a multi-purpose tool for selecting
core subsets. For this purpose, Core Hunter 3 uses local search
algorithms to provide subsets based on several distance metrics
and allelic abundance. The software is capable of combining
distances, entry-to-nearest-entry (E-NE) and accession-to-
nearest-entry (A-NE) computations (De Beukelaer et al., 2018).
Based on genetic markers, genetic differences between genotypes
are calculated to evaluate the core subsets. Different methods for
calculating distances are implemented. The user can either
provide a genetic distance matrix which is estimated using a
suitable measure such as Modified Roger's distance (Wright,
1984). On the other hand, the user can provide phenotypic traits,
which are then evaluated with Gower's Distance to derive a
phenotypic distance matrix (Gower, 1971).

However, for the selection of core collections, there are
general clustering methods, i.e. hierarchical and partial
clustering using different subtypes and algorithms to identify
clusters (Kaski, 1997). Here, the focus is on partial clustering.
Partial clustering comprises two clustering approaches: k-means
(MacQueen, 1967) and k-medoids (Kaufman and Rousseeuw,
1987). K-medoids is known as a modified version of k-means.
Both methods minimize the distance between data points within
a cluster to the respective cluster center (Block et al., 2019). The
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main difference between methods lies in the handling of the
cluster centers: While in k-medoids the cluster center needs to be
a real object of the collection, the cluster center is an average of
all cluster members in k-means and does not need to be a real
object of the collection. To distinguish the two types of cluster
centers, they are either called medoids (k-medoids) or centroids
(k-means). Usually, k-medoids is considered the more robust
algorithm in terms of clustering, as it is less sensitive to outliers
compared to k-means (Park et al., 2006; Park and Jun, 2009). K-
medoids has been used in various applications: in genetics (Broin
et al., 2015), in geography (Bernábe-Loranca et al., 2014), in
analyses to predict the popularity of television programs (Zhu
et al., 2017), and as a decision support system in the fashion
industry (Monte et al., 2013). The availability of genotypic
information for different genotypes allows clustering the
genotypes based on similarity or dissimilarity.

High-throughput technologies, such as next generation
sequencing (NGS) or array-based technologies, offer the
possibility of generating comprehensive genotype data for entire
plant genomes in a short time and with high accuracy (Varshney
et al., 2009). Such genotype information is also frequently used to
identify marker–trait association in quantitative trait locus (QTL)
mapping and genome wide association studies (GWAS) (Wang
et al., 2014). The development of single nucleotide polymorphism
(SNP) data has significantly increased the knowledge of genome
diversity. On the other hand, advances in NGS reduced the cost of
DNA sequencing, which made genotyping-by-sequencing (GBS)
possible for species with high diversity and large genomes (He
et al., 2014).

Several genotyping array based platforms for wheat have been
published (Ganal et al., 2019). First, Cavanagh et al. (2013)
developed a 9K Illumina iSelect SNP array with 9,000 SNPs. In
2014, Wang et al. (2014) reported a 90K Illumina iSelect SNP
array based on the 9K array technology. The third array based
platform for wheat genotyping was the Affymetrix Axiom 820K
SNP array presented by Winfield et al. (2016). With this array it
was possible to genotype not only hexaploid wheat but to detect
and track introgressions from different sources. A subset of the
markers used on this 820K array were then used to develop the
Axiom 35K SNP array (Allen et al., 2017), which was specifically
targeted at the elite wheat germplasm. Here we present the 15K
array, a new and optimized platform containing a set of 12,908
optimized SNP markers mainly originating from the 90K chip
design. This subset offers a cost-effective alternative to the 90K array.

In this paper two different methods, namely k-medoids and
Core Hunter 3, were applied to select different sizes of core
collections from a large set of wheat genetic resources and were
compared to identify the most appropriate method.
MATERIAL AND METHODS

Development of the 15K Wheat Infinium
Array
The 15K wheat Infinium array has been developed mainly based
on genotyping data for more than 2,000 wheat genotypes
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consisting of European and world-wide lines, that have been
generated with the 90K wheat Infinium array (Wang et al., 2014)
at TraitGenetics. The selection steps that were applied to create
the 15K array are as follows:

1. Based on the raw genotyping data, all markers were surveyed
for marker quality during the cluster file development using
the Illumina GenomeStudio software (Illumina, San Diego,
USA). Markers with clearly differentiated clusters were
identified independently whether the markers were genome-
specific (Ganal et al., 2012).

2. Genetic mapping data (Wang et al., 2014) were used together
with additional mapping data generated from the ITMI DH
population (Sorrells et al., 2011) for selecting markers that are
evenly distributed throughout the genetic map of the three
(A, B, D) wheat genomes.

3. Using the marker order determined by the genetic mapping,
additional markers were integrated in case they were in
perfect linkage disequilibrium with at least one other
mapped marker.

4. Haplotype blocks were defined as containing markers in
perfect linkage disequilibrium over all investigated wheat
lines. From each larger haplotype block especially in the
centromeric regions, one or two markers were selected based
on the marker quality defined by Wang et al. (2014).

5. The markers from the 90K array were supplemented by 383
additional markers from an unpublished 12K wheat Infinium
array previously developed by TraitGenetics for haplotype
blocks that were not identified using the 90K markers.

6. Finally, a set of 27 public markers derived from candidate
genes for major wheat phenology traits has been added.

In total, 15,000 markers were submitted for array design to
Illumina of which 12,908 markers remained after array
manufacturing and an additional genotyping round of 384
wheat lines to identify low quality markers. These were used
for the development of a cluster file for allele calling. These
functional markers are listed in Supplementary Table S1 which
also includes information about the origin (90K or 12K or
candidate gene) and the respective context sequence.

Plant Material
In this study, a collection of 890 winter wheat genotypes was used
for the development of a small genetically diverse core collection.
The 890 genotypes were collected from five different collections,
which had been used in different studies at the Julius Kuehn
Institute, Federal Research Centre for Cultivated Plants, Institute
for Resistance Research and Stress Tolerance (JKI-RS). Ninety
two were evaluated under drought stress and well-watered
conditions in the presence and absence of mycorrhizae to
identify QTLs involved in response to mycorrhizae under
drought stress condition (collection 1) (Lehnert et al., 2018).
Babben et al. (2018) and Soleimani et al. (in preparation)
evaluated 284 genotypes to identify genome regions associated
with frost tolerance (collection 2). A set of 40 genotypes was
tested for resistance against soil borne viruses (collection 3).
These three collections were genotyped by using the 90K
July 2020 | Volume 11 | Article 1040
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Illumina iSelect array (Wang et al., 2014), with the exception of
five genotypes from collection 3, which were genotyped using the
15K Infinium array. Furthermore, 220 genotypes were evaluated
under two different nitrogen concentrations [collection 4, (Voss-
Fels et al., 2019)], and 254 genotypes were inoculated with wheat
dwarf virus to select genotypes tolerant against this virus
(collection 5), respectively. These genotypes were genotyped by
using the 15K Infinium array.

As two different platforms (15K and 90K) were used for
genotyping the wheat genotypes, only common markers
(markers which were detected by the 15K and 90K array
approach) were used for further analyses. A principal
coordinate analysis (PCoA) was conducted with the package
‘ape' (Paradis and Schliep, 2018) in the R statistical environment
based on the Modified Roger's distance (MRD) matrix to
visualize the genetic diversity in the five collections.

Placement of SNP Array Marker
Sequences Onto the Pseudomolecule
Reference Sequence
The published reference genome of the bread wheat cultivar
Chinese Spring (the IWGSC RefSeq) and the genome
annotation were downloaded (Appels et al., 2018). SNP array
marker sequences were split at the polymorphic site with a custom
awk script and turned into paired-end style sequencing reads,
effectively reverse complementing one of the reads. These artificial
paired-end reads were then mapped to the bread wheat
pseudomolecule reference sequence with BWA mem (version
0.7.13) with -M parameter for highlighting of secondary
alignments (Li and Durbin, 2009; Li, 2013). Alignments were
converted to BAM format with SAMtools (version 1.6) (Li et al.,
2009). Unmapped reads and secondary alignments were discarded
and remaining high quality alignments (MAPQ ≥ 20) were
transformed to BED format with BEDtools (version 2.8) keeping
the CIGAR string (Quinlan and Hall, 2010; Quinlan, 2014).
Filtered alignments were then checked for consistency with a
custom Java program. Briefly, reads without a mapped mate, pairs
of reads that do not map exactly one nucleotide apart, and mapped
reads where the SNP position was an unknown nucleotide (‘N')
were removed. Afterwards, all mapped markers were evaluated on
the 890 genotypes. Markers with equal or more than 30% of
missing data as well as monomorphic markers were removed from
further analysis. Duplicate markers and markers mapping to the
same physical position were removed as well and only the initial
marker was kept. The filtered marker data were used for SNP
imputation by applying the software package Beagle version 4.1
(Browning and Browning, 2007; Browning and Browning, 2009).
Imputed marker data were filtered for minor allele frequency
(MAF) ≥ 5%, and heterozygosity ≤ 12.5%, resulting in a set of
7,672 SNP markers used for subsequent analyses.

K-Medoids Clustering
Based on the Modified Roger's distance (MRD) matrix, 890
genotypes were clustered into 178 and 320 groups by using the
k-medoids clustering method (Kaufman and Rousseeuw, 1987).
K-medoids clustering was conducted by using the cluster
Frontiers in Plant Science | www.frontiersin.org 4
package (version 2.1.0) and PAM method in the R statistical
environment (Maechler et al., 2012; RDevelopment CORE
TEAM, 2015).

Core Hunter 3
Two different genetic distances, 1) MRD (Roger, 1972; Wright,
1984), 2) and Cavalli-Sforza and Edwards (CSE) distance
(Cavalli-Sforza and Edwards, 1967) were applied to calculate
different core sets. In total, 14,000 different core sets were
determined (two sizes times seven different settings times 1000
iterations in Core Hunter 3). Different approaches for calculating
core sets in Core Hunter 3 were used, i.e.:

a. Average Entry-to-Nearest-Entry distance (E-NE) (Odong
et al., 2013): This is the mean distance between all selected
accessions and their closest other selected accession.
Maximizing this measure yields high diversity in the core
collection expressed through maximum dissimilarity of
selected core accessions (De Beukelaer et al., 2018). Both
genetic distances (MRD and CSE) were applied for
calculating these core sets.

b. Average Accession-to-Nearest-Entry distance (A-NE)
(Odong et al., 2013): The A-NE considers the mean
distance between each accession in the whole collection and
the closest selected accession. Minimizing this measure yields
core collections that maximally represent all individual
accessions from the full collection (De Beukelaer et al.,
2018). Both genetic distances (MRD and CSE) were applied
for calculating these core sets.

c. Shannon's diversity index (Shannon, 1948): Shannon's
diversity index is an appropriate measure when forming
core subsets that attempt to retain as many rare alleles as
possible, regardless of their co-location within loci (Thachuk
et al., 2009). The Shannon diversity index achieves its highest
value when each allele exists only once in the whole data set
being measured.

d. Expected heterozygosity (Berg and Hamrick, 1997): The
expected proportion of heterozygous loci on the other
hand, specifically considers diversity within each locus.
Intuitively, since each locus contributes equally to the
overall value of this measure, core subsets selected using
this measure are less likely to be homozygous for a number
of different loci than core subsets selected with Shannon's
Diversity index (Thachuk et al., 2009).

e. Allele coverage: The percentage of marker alleles observed in
the full collection that are retained in the core. This is a simple
measurement, which indicates the percentage of retained
alleles in the core set relative to the whole population. This
method is particularly useful for selecting core sets to preserve
alleles in gene and seed banks (Thachuk et al., 2009).
RESULTS

The overlap between the 15K and 90K arrays resulted in 8221
SNP markers that could be mapped to unique positions in the
July 2020 | Volume 11 | Article 1040
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reference wheat genome sequence. Of these markers, the
majority (45%) mapped to sub-genome B, followed by sub-
genome A with 39%, while the lowest proportion (15%) was
located on sub-genome D. Less than 1% of markers were mapped
to sequences located to chromosome ‘unknown', an artificial
chromosome consisting of sequences that could not be assigned
to any chromosome yet. Among the chromosomes, the highest
and lowest number of mapped markers was identified on
chromosomes 5B and 4D with 595 and 62 markers respectively.
The number of mapped markers per chromosome is listed in
Table 1. To understand the effects on observed versus expected
heterozygosity based on the array system, a set of 48 wheat
accessions was analyzed by genotyping them with the 15K and
90K array. During this comparison no significant differences
between array systems was detected (Figure S1).

The quality check of the markers resulted in a set of 7,672
polymorphic, informative markers (Figure 1). These markers
were placed at unique positions on the reference genome
sequence of bread wheat (cv. Chinese Spring). This final set of
markers was used for further analyses.

Furthermore, a principal coordinate analysis (PCoA) was
performed (Figure S2). The first and the second principle
coordinates (PCs) explained 9.5 and 4.2% of the total variance
and were used to graphically display the results. The analysis
showed that most genotypes from the different collections were
not clearly separated from each other. Although clusters of
genotypes from collections can be observed, outliers from each
collection can also be found near or within clusters of other
collections. Most genotypes belong to the collections 2 and 5.

Comparing Different Core Sets
In total, 178 and 320 genotypes were selected by k-medoids
clustering and Core Hunter 3, respectively. Core Hunter 3 uses
random seeds and a non-deterministic algorithm to arrive at a
solution after a time (or alternatively step) threshold has been
reached. Similarly, the k-medoids algorithm as implemented in
the PAM function inside the R library ‘cluster' also works non-
deterministic. However, in the so-called build phase the program
chooses a good initial set of medoids. In our tests given our
population and MRD matrix, it always produced the same core
collection. Therefore, we randomly sampled initial medoids and
gave these to the PAM function as input parameters allowing to
T
s

C

1
2
3
4
5
6
7
T
U
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compare the stability of the obtained results with those from
Core Hunter 3.

Our goal was to assess the results obtained through a large
number of iterations (n = 1000) to get information on 1) the
stability of the methods, 2) the influence of the size of the core
collection size, and 3) which method performs best for the two
main objectives to form core collections: CC-I and CC-X.

For testing the stability of the different methods implemented in
Core Hunter 3 and k-medoids we performed an empirical
cumulative distribution analysis with the function ‘ecdf' in the R
statistical environment. We evaluated the resulting core sets by
looking at the composition of entries in 1,000 runs per method and
two different core set sizes (178 and 320). For the goal of observing
the gain from using any core selection program, we also constructed
1000 random sets per core set size using the R function ‘sample'. The
stability results for all testedmethods demonstrated similar behavior
for both core set sizes of 178 and 320 genotypes (Figure 2). Taking
into account the definition of stability (Higham, 2002; Atkinson and
Han, 2005; Soleimani and Weiner, 2018), a method returns stable
results if all genotypes are either never or always selected. In contrast
a method returns unstable results if all genotypes are uniformly
selected. However, stability is not a binary feature, it is much more
continuous. The stability test was characterized by the frequency of
a genotype selected by a method as an entry into a core collection.
The ecdf of a stable method should be close to the grey horizontal
dotted line, while the ecdf of an unstable method should be close to
the grey vertical dashed line. Based on the observed results,
Shannon's diversity and expected heterozygosity in all 1,000 runs
showed a high number of entries in the core sets that were common
between runs and can therefore be considered stable methods
(Figure 2). On the basis of the stability analysis we obtain a
ranking of the applied methods according to increasing stability:
A-NE, E-NE, k-medoids, Shannon's diversity and expected
heterozygosity. Both the random and allele coverage sets, on the
other hand, showed a very unstable behavior.

To evaluate the quality of selected core sets, we calculated two
average distances as proposed by Odong et al. (2013). The average
A-NE result varied between 0.25 to 0.39 and 0.17 to 0.29 for a core
set size of 178 and 320 genotypes, respectively (Figures 3A, B).
The lowest average A-NE was observed for k-medoids, and also
the average Accession-to-Nearest-Entry method (A-NE) showed
low values for average A-NE. Both Shannon's diversity (SD) and
expected heterozygosity (EH) showed high values for average A-
NE and therefore performed worse compared to the other
methods. Based on results obtained for average A-NE, the
methods k-medoids and A-NE were best suited to represent the
original population due to the smallest value for average A-NE
(Figures 3A, B) for both sizes of core sets.

Furthermore, our results for average E-NE calculation for
both sizes of core sets showed that the method based on Entry-
to-Nearest-Entry distance (E-NE) performed better to represent
extreme genotypes compared to other core sets, as the obtained
average E-NE showed the highest value among all analyzed core
sets (Figures 4A, B). The methods based on Shannon's diversity
(SD) and expected heterozygosity (EH) showed the lowest values
for the average E-NE. Therefore, based on observed results, two
ABLE 1 | Distribution of uniquely mapped markers on the reference genome
equence from the 15K SNP array.

hromosome Wheat genome Total

A B D

451 580 270 1,301
480 710 289 1,479
415 556 142 1,113
287 258 62 607
508 595 186 1,289
485 530 169 1,184
546 485 144 1,175

otal 3,172 3,714 1,262 8,148
nknown 73 8,221
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core set methods (SD and EH) indicate an insufficient
representation of the extreme genotypes from the original
population in both sizes of core sets.

The two genetic distance metrics, MRD and CSE, that were
used for the two core selection methods A-NE and E-NE
produced very similar results throughout the different
evaluations (Figure 5) and for the sake of simplicity only the
results obtained by using MRD are shown in Figures 2–4.
DISCUSSION

The development and use of molecular markers has expanded
our knowledge to better understand cereal genetics. High-
throughput SNP array genotyping allows genotyping
thousands of markers in parallel. This technique has been
applied in recent years for small grain cereals such as barley,
wheat, rye, and oats (Ganal et al., 2019). The 90K Illumina
Infinium array is currently the most widely used genotyping
array in wheat. However, this genotyping array is quite expensive
on a price per sample base and creates a large set of redundant
data (Ganal et al., 2019). Subsequently, the Affymetrix Axiom
Frontiers in Plant Science | www.frontiersin.org 6
820K SNP array was developed to genotype wheat and to detect
and track introgressions. Later, this technology was used for the
development of the Axiom 35K SNP array. In this study, we also
used the new 15K Illumina Infinium array with 12,908 functional
markers that contains mainly high quality and informative
markers. The overlap between the two array platforms (15K
and 90K) is 12,806 markers. The 15K genotyping array with a
lower number of markers is a cost-effective option for genotyping
experiments that still provides high resolution data.

Breeders seek to improve yield performance by exploiting
favorable traits associated with tolerance against biotic and
abiotic stress (Pandey et al., 2017). Germplasm collections
from major crops have increased in size and number
worldwide (Brown et al., 1997). Genebanks play an important
role in securing genetic diversity for future use. They are
distributed around the world and preserve the genetic diversity
in crop species (Shands, 1990; Fowler and Hodgkin, 2004).

The increase in the size of germplasm collections leads to
problems and complications in the characterization, evaluation,
utilization and maintenance of germplasm. The first approach to
reduce the size of large collections and to select core sets of these
collections was defined by Frankel (1984). Core collections
became important due to the demand for more efficiency in
the characterization and utilization of collections stored in
genebanks (Odong et al., 2013). Different methods are available
to create core collections for varying purposes with respect to
phenotypic and genotypic data. These methods could be used to
select genetically diverse genotypes for carrying out different
scientific research before a large number of genotypes are
phenotyped, thus excluding genotypes that would show the
same behavior. Therefore, by eliminating the need for an
additional phenotyping step, these approaches could accelerate
research experiments and breeding programs. Molecular
markers are widely used to unlock the genetic diversity of
germplasm collections. Odong et al. (2013) pointed out the
role of genetic differentiation in marker data, which has a
significant impact on core selection methods.

Different algorithms are known for the generation of core
sets, and comparisons between different algorithms have been
made in previous studies. For example, Thachuk et al. (2009)
compared three different algorithms (D-method, MSTRAT and
PowerCore) with Core Hunter to select core sets in a maize
population. The comparisons confirmed that Core Hunter
performed better than other methods in creating core sets with
higher genetic diversity. Also, Core Hunter was able to select
significantly smaller core subgroups that retained all unique
alleles from an original collection than the other algorithms. In
our study, we used the same genetic distance and genetic
diversity indices as Thachuk et al. (2009) to compare k-
medoids and Core Hunter 3 for core collection selection.

In the present study, we conducted a stability test for six
methods comprising allele coverage (AC), expected
heterozygosity (EH), Shannon's diversity (SD), A-NE, E-NE
and k-medoids to analyze their reproducibility. Based on the
definition of Higham (2002) and Atkinson and Han (2005), SD
and EH, were more stable than other methods. A-NE and E-NE
FIGURE 1 | Data pre-processing finally yields a set of 7,672 markers.
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methods provided by Core Hunter 3 as well as k-medoids can be
classified as stable methods for the selection of core collections.
AC showed a highly unstable performance when selecting core
sets and should be avoided when core sets should be reproducible
(as it also highly resembled the random selected sets).

In the present study, two genetic metrics were applied to
assess the quality of different core set selection methods (Odong
et al., 2013). For the evaluation of CC-I core sets, the calculation
of the average A-NE is a suitable method. For such an objective
Frontiers in Plant Science | www.frontiersin.org 7
the average A-NE value should be as small as possible. An
average A-NE value equal to zero indicates a minimal distance
between genotypes and thus the maximum representation of the
genotype in the core collection. Based on this definition, the k-
medoids and A-NE derived core sets did the best job to achieve
maximum genetic diversity of genotypes with the lowest average
value of A-NE observed. On the other hand, a good criterion for
the evaluation of CC-X core sets is to maximize the average E-
NE. The E-NE method describes how genetically diverse the
A B

FIGURE 2 | Comparison of stability test with 1,000 runs between k-medoids derived core set, seven core sets derived by Core Hunter 3 and randomly selected
core sets. (A) depicts the stability results for the core set containing 178 genotypes, while (B) depicts the stability results for the core set containing 320 genotypes.
Methods with a low gradient are considered to be stable; large gradients, on the other hand, show a high degree of variability. Two gray helper lines have been
added for easier visual interpretation of results. The dotted horizontal line indicates stable results, while the dashed vertical lines shows instability.
A B

FIGURE 3 | Quality of core collections. Displayed are the average distances between each of the 890 accessions to the nearest entry of the respective core set (A-
NE) for core collections of different sizes. (A) shows core sets of size 178, while (B) shows core sets of size 320. A low average distance is favorable to obtain a
good representation of the original collection.
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entries into the core set are to each other. Therefore, the best
possible core set for CC-X strategy has the highest average E-NE.
In our tests, the average Entry-to-Nearest-Entry (E-NE) core
collections compared to other core set methods performed best
in this category. However, it is not surprising that A-NE derived
core collections yield good results for CC-I and E-NE derived
core collections yield good results for CC-X.

For a final assessment of core selection methods, we evaluated
and combined the results of the stability test and the quality of
Frontiers in Plant Science | www.frontiersin.org 8
core selection on the basis of average A-NE/E-NE. Based on the
stability tests, the most stable core selection methods are
Shannon's diversity (SD) and expected heterozygosity (EH).
While these two core selection methods showed less good
results for the average A-NE and the average E-NE for
different purposes (CC-I and CC-X) of core collections, they
should therefore not be considered superior to the other core
selection methods. Although k-medoids is a general clustering
method and is not specifically designed for creating core
A B

FIGURE 5 | Scatterplots showing both average A-NE and average E-NE for the observed core collections for different sizes. (A) shows core collections of size 178,
while (B) shows core collections of size 320. As already indicated by the stability test (Figure 2), the core collections from the type allele coverage show a large
variance in their distribution. The Shannon diversity and expected heterozygosity methods seem to produce core collections of similar quality. The same seems to be
true for k-medoids and A-NE methods. A theoretically optimal core collection would be located in the upper left corner of the plot.
A B

FIGURE 4 | Quality of the core sets. Displayed are the average distances between each of the entries to the nearest entry of the respective core set (E-NE) for core
sets of different sizes. (A) shows core sets of size 178, while (B) shows core sets of size 320. A high average distance is favorable to obtain a good representation of
the extreme genotypes of the original collection.
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collections, it proved to be one of the better methods for creating
CC-I core sets due to its small average A-NE value. Based on our
results from the evaluation with average E-NE, k-medoids also
proved to be an adequate method for the generation of CC-X
core sets. Interestingly, the A-NE based core selection methods
showed very similar profiles to the k-medoids method in both
average A-NE and average E-NE evaluation, but were somewhat
more unstable in the stability test (Figures 3–5).
CONCLUSION

In the present study, we used the wheat 90K Infinium array
together with an optimized 15K Infinium array with 12,908
informative markers. Compared to the 90K array, the 15K array
is a cost-effective platform for research and plant breeding
programs that generates high quality data. We selected core
collections of 178 and 320 genotypes from a collection of 890
wheat genotypes using k-medoids and Core Hunter 3. Two
genetic distances and three indices of genetic diversity were
used to establish core collections and the results were
compared to determine the best approach for a large
population of diverse genotypes. Our results support the
conclusion that choosing either MRD or CSE as genetic
distance has little to no observable effect on the selection of
core collections using A-NE and E-NE in Core Hunter 3. In
addition, k-medoids and Accession-to-Nearest-Entry (A-NE) are
appropriate methods to select a uniform representation of the
original population (CC-I). However, if the purpose of
generating a core collection is to construct a core set based on
the extremes of the relevant traits (CC-X), the method Entry-to-
Nearest-Entry (E-NE) showed the best results. Furthermore,
both k-medoids and A-NE methods seem to be a good
compromise when trying to combine the goals of CC-I and
CC-X (Figure 5). Finally, A-NE, E-NE and k-medoids yield
stable results if started multiple times independently.
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FIGURE S1 | Comparison of the effect of the choice of the array system on the
observed and expected heterozygosity. A set of 48 wheat accessions was
genotyped on both 15K and 90K Illumina Infinium arrays and both observed and
expected heterozygosity were calculated. Panel (A) shows the observed
heterozygosity (Ho) on 15K and 90K arrays, panel (B) shows the expected
heterozygosity (He) on 15K and 90K arrays. The relative frequency of observed
heterozygosity (Ho) is shown in panels (C) (90K array) and (D) (15K array), while the
relative frequency of expected heterozygosity (He) is shown in panels (E) (90K array)
and (F) (15K array).

FIGURE S2 | Principal coordinate analysis (PCoA) indicating genetic diversity over
five different collections for a total population of 890 wheat genotypes.
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