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Random mutagenesis was applied to produce a new wheat mutant (RYNO3926) with
superior characteristics regarding tolerance to water deficit stress induced at late booting
stage. The mutant also displays rapid recovery from water stress conditions. Under water
stress conditions mutant plants reached maturity faster and produced more seeds than its
wild type wheat progenitor. Wild-type Tugela DN plants died within 7 days after induction
of water stress induced at late booting stage, while mutant plants survived by maintaining
a higher relative moisture content (RMC), increased total chlorophyll, and a higher
photosynthesis rate and stomatal conductance. Analysis of the proteome of mutant
plants revealed that they better regulate post-translational modification (SUMOylation) and
have increased expression of ribulose-1,5-bisphosphate carboxylase/oxygenase
(RuBisCO) proteins. Mutant plants also expressed unique proteins associated with
dehydration tolerance including abscisic stress-ripening protein, cold induced protein,
cold-responsive protein, dehydrin, Group 3 late embryogenesis, and a lipoprotein (LAlv9)
belonging to the family of lipocalins. Overall, our results suggest that our new mutant
RYNO3936 has a potential for inclusion in future breeding programs to improve drought
tolerance under dryland conditions.

Keywords: random mutagenesis, mutant wheat, drought, photosynthesis, chlorophyll fluorescence, RuBisCO,
LC-MS/MS
INTRODUCTION

Water deficit caused by drought conditions is a worldwide concern drastically reducing crop yield
(Altieri and Nicholls, 2017). This is exacerbated by the increased vulnerability of water deficit-
stressed plants to pests resulting in even greater yield loss (Botha et al., 2019). Water deficit stress
was proposed as the most important abiotic factor affecting crops, because of its negative effects on
both vegetative and reproductive development (Hura et al., 2010; Farooq et al., 2012; Shavrukov
et al., 2017). Meteorological literature further suggests that frequency, intensity, and duration of
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drought periods will increase in the coming years (Dai, 2011;
Schubert et al., 2016; Spinoni et al., 2017; Botha et al., 2019, and
references within) and new biotechnological advances are one of
the tools required to increase crop productivity (Botha et al.,
2019 and references within; Wulff and Dhugga, 2019).

Mutational breeding is a long-known and well-tested technology
that increases genetic diversity in a relatively short time span
(Muller, 1927; Pacher and Puchta, 2017). Mutagenesis can be
induced through exposure to chemicals (e.g., sodium azide,
ethylmethanesulfonate [EMS], etc.) or irradiation with X-rays and
gamma rays. Effective mutational breeding to select plants for
drought tolerance is difficult, as it is a polygenic controlled trait
that is heavily regulated by genotype and environment interactions
(Vassileva et al., 2011; Simova-Stoilova et al., 2016). In recent years,
over 1,500 commercially available cereal varieties are the product of
mutagenesis, with most varieties available from rice (828), barley
(312) and wheat (282) (FAO/IAEA Mutant Varieties Database,
2018; https://www.iaea.org/resources/databases/mutant-varieties-
database). A good example of such a wheat mutant is tasg1,
developed through EMS, and expressing a “stay-green” phenotype
(Tian et al., 2012). The tasg1 mutant exhibited a distinct delayed
senescence under both normal and drought stress conditions, as
indicated by slower degradation of chlorophyll and decrease in net
photosynthetic rate when compared to its wild type (WT)
progenitor. The tasg1 mutants maintained more integrated
chloroplasts and thylakoid ultrastructure than did WT plants
under drought stress. The authors suggested that a lower
malondialdehyde content and higher antioxidative enzyme
activities (ascorbate peroxidase, catalase, peroxidase) in tasg1 was
the casual factor that allowed the plants to perform better under
drought stress. However, despite these suggestions, supporting
evidence was limited as the observations were mostly based on
measuring chlorophyll fluorescence, selected enzymatic activities,
and chlorophyll structure using microscopy.

Plants respond to water deficit stress following any
combination of four strategies, namely drought avoidance
(Franks, 2011); drought tolerance; drought escape and drought
recovery. Of particular interest is drought recovery, which
defines the plant's ability to recover from dehydration and loss
of turgor pressure as a result of the induced water deficit stress,
thereby resuming growth and eventually producing seed (Luo,
2010; Fang and Xiong, 2014).

Photosynthetic activity in plants has been shown to be a trait that
is highly responsive to water deficit stress (Singh et al., 2014; Serba
and Yadav, 2016; Perdomo et al., 2017). In wheat, a direct
correlation exists between imposed water-deficit stress and
decreases in photosynthetic rate, leading to changes in
intercellular CO2 concentration, stomatal conductance, and
transpiration rate (Subrahmanyam et al., 2006; Balla et al., 2014;
Sharifi and Mohammadkhani, 2016; Perdomo et al., 2017; Senapati
et al., 2018).Water deficit stress negatively affects maximal quantum
yield of PSII photochemistry (Fv/Fm) (Tian et al., 2017), and
damages the oxygen-evolving complex of PSII and its reaction
centers (Aro, 2004; Murata et al., 2007; Tian et al., 2017). Damage to
PSII centers are often due to impairment in ATP synthesis as a
consequence of a decline in electron transport rate, which leads to a
Frontiers in Plant Science | www.frontiersin.org 2
reduction in ATP availability and thus to a concomitant reduction
in ribulose-1,5-bisphosphate (RuBP) regeneration (Lawlor and
Cornic, 2002; Ma et al., 2006; Perdomo et al., 2017).

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)
is the main protein involved in CO2 assimilation. Reports vary
from no changes in the protein (Panković et al., 1999; Pelloux
et al., 2001), to significant declines in the enzyme due to water
deficit caused by drought conditions (Zhou et al., 2007; Galmés
et al., 2011). Collectively, data suggest that RuBisCO levels and
activity are influenced by the extent of water deficit stress and
appears to be highly species-specific (Tezara, 2002; Bota et al.,
2004). Water deficit stress decreased the amount of RuBisCO in
maize and rice, but not in wheat (Perdomo et al., 2017). This
decline in RuBisCO content subsequently led to a decline in
carbon assimilation and an imbalance between photosynthesis
and electron availability, with the resultant accumulation of
reactive oxygen species (ROS), primarily hydrogen peroxide
(Reddy et al., 2004).

Accumulation of ROS due to disturbance of cellular
homeostasis can be countered through a unique set of
biochemical mechanisms that detoxify ROS (Abid et al., 2016;
Foyer et al., 2017; Foyer, 2018; Foyer et al., 2018; Noctor et al.,
2018). High concentration of ROS is deemed extremely toxic to
cells leading to oxidative bursts and potential cell death
(Demidchik, 2015). Proteins involved in oxidative stress are
peroxidases (POX), Glutathione S-transferases (GST),
ascorbate peroxidases (APX), thylakoidal ascorbate peroxidase
(tAPX), copper‐zinc superoxide dismutases (SOD), catalases
(CAT), and glutathione peroxidases (GPX). These enzymes are
often referred to as ROS-scavenging enzymes (Sairam et al.,
2005; Asensi-Fabado and Munné-Bosch, 2010). Increase in
oxidative signals from photosynthesis and associated redox-
sensitive proteome, provide cells with capacity to monitor
photosynthetic electron flow and counteract over-reduction or
over-oxidation. It further also produces redox regulatory
networks that facilitate sensing and response to changes in
environmental conditions (Martin and Sies, 2017; Foyer, 2018).

Water deficit stress alters the plants' metabolome (i.e., due to the
production of newly synthesized metabolites), which may modify
cellular structure, change the plant's metabolism and phenotype
(Kosová et al., 2015). Michaletti et al. (2018) demonstrated the
fluctuation of major metabolites in two wheat varieties that differ in
their sensitivity to water deficit stress. They found that amino acid
metabolism correlates to water deficit stress sensitivity after studying
nine metabolic pathways. Specifically, N-containing compounds
(e.g. betaine, glycine, and proline), and sugars (e.g. sucrose,
trehalose, fructans) often accumulate in the cytoplasm as
osmoprotectants contributing to water deficit stress tolerance.

Proteomics is a powerful tool to understand plant reactions to
drought stimuli especially in a hexaploid crop such as wheat.
Comparative proteomics analysis is deemed as an effective
strategy to identify crucial proteins, however in crops such as
wheat, it becomes very difficult because of the large genome size.
Techniques such as Liquid Chromatography with tandem mass
spectrometry (LC-MS/MS) provide unique indications of
expressed proteins at a given time point. However, it does not
July 2020 | Volume 11 | Article 1053
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give an indication of the activity of a given protein, and thus,
technologies such as LC MS/MS should be combined with
activity assays to provide a more holistic demonstration of
important proteins and their activities in context of water
stress tolerance. Water deficit is known to induce changes in
the proteome of plants because of protein breakdown catalyzed
by proteases (Vierstra, 1993; Hieng et al., 2004; Simova-Stoilova
et al., 2010). Proteases are ubiquitously required for readjustment
of a plant's metabolic status, through the method of protein
turnover, to remobilize nutrients to counter environmental shifts
and maintain developmental processes (Nelson and Millar,
2015). Known protein turnover processes involved in this
readjustment include ubiquitination, phosphorylation, and
SUMOylation with the latter referring to the post-translational
modification of protein substrates through the covalent
conjugation with the SUMO (Small Ubiquitin-like Modifier)
peptide. This modification is reminiscent of ubiquitination,
even though it has its own set of homologous enzymes
(Ranieri et al., 2018). The conjugation of SUMO on a protein
is reversible (de-SUMOylation) where SUMO proteases (clan
cysteine proteases) cleaves SUMO conjugates of the targeted
proteins (Guerra et al., 2015; Benlloch and Lois, 2018; Morrell
and Sadanandom, 2019 and references within).

Even though water deficit induces major changes in the
biochemical processes of plants, drought is often an episodic
event. Once soil moisture is restored (i.e., by irrigation or rain
fall), plants regain normal physiological functionality (i.e.,
water transport and turgor pressure, stomatal conductance,
photosynthetic activity, etc.) and grow to maturity to produce
seed. For plants experiencing prolonged periods of water deficit,
this does not happen naturally, and only selected plants display a
“recovery” phenotype whereby this can be reversed after severe
water deficit (Abid et al., 2018). In order to better understand the
underlying genetic mechanisms enabling plants to delay
senescence and recover after being completely dehydrated, we
compared physiological responses, metabolic and enzymatic
activity, and changes in the proteome of a water deficit stress-
sensitive wheat line (Tugela DN) with its near-isogenic mutant
line (RYNO3936) that express a combination of water deficit stress
avoidance and recovery phenotypes. An improved understanding
of such a phenotype will ease introducing these traits into breeding
programs for enhanced drought-tolerant phenotypes and its
future discovery in mutant breeding programs.
MATERIALS AND METHODS

Water-Deficit Treatment, Plant
Phenotyping, Plant Biomass, and Soil
Relative Moisture Content
Random mutagenesis was performed as previously described
(Mbwanjii, 2014; Botha et al., 2017). In brief, mutant RYNO3936
was developed using chemically induced mutagenesis by
exposing seed of a red hard winter wheat cultivar, Tugela DN
to 1 mM Sodium azide for 2 h, where after the treated seed was
planted in trays containing equal amounts of substrate (sand:
Frontiers in Plant Science | www.frontiersin.org 3
soil) and grown in a greenhouse at temperatures between 20°C
and 26°C. After a month of growth, water was withheld, and
plants selected for water deficit tolerance under low nitrogen
regimes. The resultant mutant, RYNO3936 was then selfed for
six generations to retain the water deficit stress tolerant trait
(Mbwanjii, 2014; Botha et al., 2017).

Seeds of the WT parent (Tugela DN) and mutant RYNO3936
were grown in a greenhouse with natural day/night temperature
at 23 ± 3°C (Welgevallen Experimental Farm, Stellenbosch
University, South Africa). Seeds were planted in pots
[dimensions: 25 cm (diameters) × 30 cm (height)] filled with
equal amounts of sand and crusher dust (1:1). A total of 30 pots
(15 per control and 15 per mutant) arranged in a randomized
complete block design was used, with each pot containing 5
seeds. The plants were watered daily using a fully automated
system containing nutrients (Multifeed™, South Africa). All pots
were regularly assessed to ensure that a constant gravimetric
reading of 80% was maintained, until plants reached the final
extension stage (58–65 days after germination) corresponding to
phase 45 of Zadoks' scale (Zadoks et al., 1974; Vendruscolo et al.,
2007). From this stage onwards, the watering was withheld, and
water deficit stress induced. Day 0 measurement was recorded
under irrigation (gravimetric reading of 80%). Water was then
withheld for 14 consecutive days or until soil moisture reached
21% to 24%, with measurements collected on days 7 and 14. The
plants were then subjected to rehydration for 7 days during
which a gravimetric reading of 70% was maintained, when the
last set of data was collected (i.e., day 21 denoted “re-watered”).

Plant growth analysis (i.e., plant height, and flag leaf length
and width) were assessed as previously described (Aase, 1977)
using a line gauge (unit of measurement in mm). For plant
height, all the individual tillers of the plant were measured from
the ground to the tip of the tallest tiller of the plant (n = 20). The
relative moisture content (RMC) was calculated according to the
following formula: RMC (%) = (fresh weight − dry weight)/
(turgid weight − dry weight) × 100 (Sade et al., 2014; Sade et al.,
2015). The flag leaf was removed and kept in distilled water for ±
4 h to achieve full turgidity. The leaf dry weight was measured
after keeping the turgid leaf at 80°C in an oven for 16 h. The
RWC was tested at days 0, 7, and 14 after induction of water
deficit stress and then 7 days after re-watering (day 21). The
RWC was measured using three similar-sized leaves and six
replicates for each treatment. Soil samples (n = 3) to 150 mm
depth were also collected, and the wet soil mass was determined
through drying the soil in an oven at 105°C for 48 h after which
the soil was weighed and the gravimetric soil moisture content
determined (Black and Power, 1965).

Stomatal Conductance, Chlorophyll
Fluorescence, and Chlorophyll Content
Measurement
Chlorophyll fluorescence and stomatal conductance were
measured at respective time points (days 0, 7, 14, and after re-
watering, day 21) as previously described (Le Roux et al., 2019).
Stomatal conductance (gsw) was measured at three positions on
each leaf using three independent plants (n = 9) with a
July 2020 | Volume 11 | Article 1053
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porometer (model SC-1, Decagon Devices Inc., Pullman, WA,
USA) following the manufacturer's instructions. Rate of
photosynthesis was measured according to Strasser et al.
(2004) making use of chlorophyll fluorescence induction
transients (O-J-I-P), using a hand-held Chlorophyll
Fluorometer (model: OS-30P; Manufacturer: Opti-Sciences,
Inc., United States). Dark adaptation clips were applied to
leaves for 20 min (prior to reading) to achieve a flush out of
assimilates. Technical repeats for both instruments were
recorded at different places from the tip to the base of the flag
leaf to represent the entire leaf surface. All measurements were
taken at the onset of the water deficit stress treatment (day 0),
then at days 7 and 14 after induction of water deficit stress. At
day 14, plants were re-watered and then watered on a daily basis
to ensure full recovery. Measurements were then taken on day 21
(denoted “re-watered”). Chlorophyll concentrations were
quantified and calculated according to Arnon (1949) using the
SmartSpec™ Plus BioRad.

SDS-PAGE Electrophoresis and Western
Blot Analysis
Total protein was extracted and separated using the Mini-
Protein TGX gradient gel (4%–15%) as previously described
(Le Roux et al., 2019). The Bio-Rad protein assay reagents with
bovine albumin as the standard (Bio-Rad Laboratories Inc.,
Hercules, CA) was used for determination of protein
concentration (Bradford, 1976), and quantified using a Glomax
Spectrophotometer (Promega, Sunnyvale, CA) (Rylutt and
Parish, 1982).

Western blot analyses were conducted using a Bio-Rad Trans-
Blot® SD semi-dry transfer cell apparatus and polyvinylidene
difluoride membranes (Hybond-P, Amersham Biosciences). The
membranes were blocked with 3% bovine serum albumin (BSA)
and probed with polyclonal large (RbcL) and small (RbcS)
RuBisCO Subunits (RbcL and RbcS, 1:50000; Botha and Small,
1987) and human anti-SUMO1 monoclonal antibody (1:2500)
(UBPBio, Aurora, USA) diluted in buffered saline containing 3%
BSA. Detection employed alkaline phosphatase conjugated
Donkey Anti-Mouse (Abcam) (1:2500) or goat anti-rabbit
(1:7000) (Sigma-Aldrich, St. Louis, MO, USA) antibodies in
conjunction with nitro blue tetrazolium and 5-Bromo-4-
chloro-3-indolyl phosphate (Sigma-Aldrich, St. Louis,
MO, USA).

Protease Determination
Leaf tissue was ground after being flash frozen in liquid nitrogen;
the powder was added to cold 0.1 M citrate-phosphate buffer (pH
5.6) containing 10 mM L-cysteine. A centrifugation step was
included at 25,000 × g for 20 min at 4°C. The supernatant was
electrophoresed using a gradient acrylamide gel (5–15%). The
gradient gel was prepared using the Hoefer™ SG Series Gradient
Makers system as described by Le Roux et al. (2019). A gel
equilibration step was conducted by pre-electrophoresis for 60
min at 50 V in the gel buffer storage condition at 4°C. Samples
Frontiers in Plant Science | www.frontiersin.org 4
(80 mg) were loaded with and without addition of the cysteine
proteinase inhibitor E64 (Barrett et al., 1982; Matsumoto et al.,
1999). Proteins were separated at 15 mA for 2 h. After
electrophoresis, the gels were meticulously removed from the
glass plates and washed three times in a renatured buffer (5 mM
cysteine and 2.5% v/v Triton-X 100) and subsequently incubated
in developing buffer (0.5% v/v Triton-X 100, 50 mM Tris–HCl,
pH 7.5 and 5 mM CaCl2, 1 mM ZnCl2, 10 mM cysteine) for 24 h.
The gels were stained with Coomassie R-250 and de-stained until
clear zones were visible against the dark blue background (Le
Roux et al., 2019).

Amino Acid Extraction and Quantification
Amino acid extraction and quantification were conducted as
previously described (Le Roux et al., 2019). In brief, leaf material
was dried out in an oven at 60°C for 24 h, where after samples
were ground to a powder and 0.5 ml of 6 M HCl containing
norleucine (250 ppm) added as an internal standard. AccQ.Tag
derivatives of extracted amino acids were generated using the
AccQ.Tag Ultra Derivatization Kit following the manufacturer's
instruction (Waters). Derivatized amino acids were analyzed
using an Acquity UPLC system equipped with a binary solvent
delivery system and an auto sampler. For separation an
AccQ.Tag Ultra column (100 9 2.1 mm) (Waters) was used.
Derivatized amino acids were detected at 260 nm using a photo
diode array detector. Amino acids in the samples were identified
by co-elution with amino acid standard H (Pierce) and
commercially available individual amino acids (Sigma).
Concentration of amino acids in each sample was calculated
based on the peak areas and calibration curves generated with
commercial standards.

Proteome Analysis
Protein Extraction, Quantification, and Digestion
Leaf protein was extracted using a modified method to that
which was previously described (Damerval et al., 1986; Wang
et al., 2006; Wang et al., 2007). In brief, after treatment the leaf
tissue was ground into fine powder in liquid nitrogen and
transferred to a falcon tube. To this, 20 ml of cold (−20°C)
extraction buffer (10% w/v TCA/acetone containing 0.07% b-
mercaptoethanol (b-ME) was added and homogenized by
vortexing vigorously for 20 s. Where after the tube was
incubated at −80°C overnight to allow complete precipitation
of proteins. This procedure was repeated for each of the
treatments. After the overnight incubation, the tubes were
centrifuged at 5,200g for 30 min at 4°C and the supernatant
removed. Three acetone washes were consecutively performed by
adding 5 ml of ice-cold acetone (−20°C) containing 0.07% b-ME,
vortexing the tube briefly, centrifuging at 5,200g for 15 min, and
again removing the supernatant. After completing the third
wash, the supernatant was removed, and the tube was
centrifuged for another 10 min, where after the remaining
supernatant was removed using a pipette. The pellet was
lyophilized for 2 h. The lyophilized samples were stored at
−80°C till further use.
July 2020 | Volume 11 | Article 1053
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iTRAQ Labeling and SCX Fractionation
Protein Digestion
The iTRAQ-labeling and analyses were conducted as previously
described (Wang et al., 2016). In brief, an aliquot containing 100
mg of solubilized protein in 100 mM triethylamonium
bicarbonate (TEAB, Sigma) containing 4M Guanidine-HCl,
was reduced with tris-carboxyethyl phosphine (TCEP, Sigma)
at 60°C prior to cysteine residues being thiomethylated with
methane methylthiosulfonate (MMTS, Sigma). The reduced and
thiomethylated sample was digested with Trypsin Gold
(Promega, Madison, USA) (protein/trypsin = 20:1) after a 10
times dilution at 37°C for 18 h. The peptides dried under vacuum
and resuspended for desalting in 2% acetonitrile/water
containing 0.1% formic acid. Residual digest reagents were
removed using an in-house manufactured C18 stage tip
(Empore Octadecyl C18 extraction discs; Supelco). The 20 µL
sample was loaded onto the stage tip after activating the C18

membrane with 30 µL methanol (Sigma) and equilibration with
30 µL 2% acetonitrile/water; 0.05% TFA. The bound sample was
washed with 30 µL 2% acetonitrile/water; 0.1% FA before elution
with 30 µL 50% acetonitrile/water 0.1% FA. The eluate was
evaporated to dryness. The dried peptides were dissolved in 20
µL 2% acetonitrile/water; 0.1% FA for LC-MS analysis

LC–ESI-MS/MS Analysis Based on the
Thermo Scientific Fusion Tribrid System
Liquid chromatography was performed on a Thermo Scientific
Ultimate 3000 RSLC equipped with a 0.5 cm × 300 µm C18 trap
column and a 35 cm × 75 µm in-house manufactured C18

column (Luna C18, 3.6 µm; Phenomenex) analytical column.
The solvent system employed was loading: 2% acetonitrile/water;
0.1% FA; Solvent A: 2% acetonitrile/water; 0.1% FA and Solvent
B: 100% acetonitrile/water. The samples were loaded onto the
trap column using loading solvent at a flow rate of 15 µL/min
from a temperature controlled autosampler set at 7°C. Loading
was performed for 5 min before the sample was eluted onto the
analytical column. Flow rate was set to 500 nl/min and the
gradient generated as follows: 2.0% to 10% B over 5 min; 5% to
25% B from 5 to 50 min using Chromeleon non-linear gradient 6,
25% to 45% from 50 to 65 min, using Chromeleon non-linear
gradient 6. Chromatography was performed at 50°C and the
outflow delivered to the mass spectrometer through a stainless-
steel nano-bore emitter.

The Thermo Scientific Fusion mass spectrometer was
equipped with a Nanospray Flex ionization source. The sample
was introduced through a stainless-steel emitter. Data was
collected in positive mode with spray voltage set to 2 kV and
ion transfer capillary set to 275°C. Spectra were internally
calibrated using polysiloxane ions at m/z = 445.12003 and
371.10024. MS1 scans were performed using the orbitrap
detector set at 120 000 resolution over the scan range 350 to
1650 with AGC target at 3 E5 and maximum injection time of 40
ms. Data was acquired in profile mode.

MS2 acquisitions were performed using monoisotopic
precursor selection for ion with charges +2-+6 with error
tolerance set to ± 0.02 ppm. Precursor ions were excluded
Frontiers in Plant Science | www.frontiersin.org 5
from fragmentation once for a period of 30 s. Precursor ions
were selected for fragmentation in HCD mode using the
quadrupole mass analyzer with HCD energy set to 32.5%.
Fragment ions were detected in the orbitrap mass analyzer set
to 15 000 resolution. The AGC target was set to 1E4 and the
maximum injection time to 45 ms. The data were acquired in
centroid mode.

The raw files generated by the mass spectrometer were
imported into Proteome Discoverer v1.4 (Thermo Scientific)
and processed using the SequestHT algorithm included in
Proteome Discoverer. Data analysis was structured to allow for
methylthio as fixed modification as well as NQ deamidation
(NQ), oxidation (M). Precursor tolerance was set to 10 ppm and
fragment ion tolerance to 0.02 Da. The database used was the
murine taxonomy database obtained from Uniprot with the
sequence of amyloid beta A4 P05067 added. The results files
were imported into Scaffold v1.4.4 and identified peptides
validated using the X!Tandem search algorithm included in
Scaffold. Peptide and protein validation were performed using
the Peptide and Protein Prophet algorithms. Protein quantitation
was performed by first performing a t-test on the paired data and
applying the Hochberg-Benjamini correction (Benjamini and
Hochberg, 1995).

Bioinformatics Analysis
When comparing differential expression of peptides between
treatments (i.e., days 0, 7, 14, and 21), data obtained were
analyzed using Scaffold Viewer 4 proteomics software (http://
www.proteomesoftware.com/products/scaffold/; Searle, 2010) by
comparing all treatments with each other. The Benjamini-
Hochberg multiple testing adjustment was applied in order to
control the comparison-wide false discovery rate (Benjamini and
Hochberg, 1995). Sequences representing the peptide were subjected
to Blast2GO (Conesa et al., 2005) analysis to obtain the representing
genes, as well as gene ontologies and functional categories. A P-
value ≤ 0.05 was used as the threshold to determine the significant
enrichments of GO and KEGG pathways.

Clustering and Data Analysis
Resulting peptide intensity signals were first normalized using the
Cluster program (Eisen et al., 1998), with mean-centering applying
Spearman's rank correlation. A cluster image representing groups of
differentially expressed peptides that share similar expression
patterns was generated from the normalized data and visualized
with Java TreeView (Saldanha, 2004).

Enzyme Measurements and Protein
Determination
Extraction of enzymes was performed as described in Botha et al.
(2014). All enzyme activity measurements were conducted using
three biological repeats (n = 3) and conducted in triplicate (n =
9). Peroxidase activity was determined following a modified
method of Zieslin and Ben-Zaken (1993) and expressed as
mmol tetraguaiacol min−1 mg−1 protein. Glutathione S-
transferase (GST) enzyme activity was measured as described
by Venisse et al. (2001), with the formation of GS-DNB
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conjugate measured at 340 nm. GST activity was expressed as
mmol GSH min−1 mg−1 protein.

Statistical Analyses
All data were collected using three biological repeats (n = 3) with
measurements done in triplicate (n = 9). Mean values are presented
with their standard deviation (SD) and analyzed using Graphpad
Prism software version 5.0 (http://www.graphpad.com/scientific-
software/prism/) (Motulsky, 2007). Statistical validation and
significance (P ≤ 0.05) were determined with analysis of variance
(ANOVA) followed by post-t Dunnett's, or Turkey or Bonferonni
tests (Amstrong, 2014).
RESULTS

Plant Phenotypes, Physiological
Response, and Reproduction Under Water
Deficit
The mutant wheat line RYNO3936 visually displayed a “bushy”
phenotype with longer shoots and broader leaves, and more
tillers and roots when compared to its WT parent (Figures 1A, D
and 2). After induction of water deficit, the WT Tugela DN was
visually wilted after 2 days of water deficit stress, and dead after
day 7 (Figures 1B, C). In contrast, the mutant wheat line
RYNO3936 visually displayed signs of stress only after day 7 of
induced water deficit stress and lasted much longer than the WT
Tugela DN plants (Figures 1E, F). Re-watering of the mutant
wheat line RYNO3936 after day 14, resulted in partial to full
recovery of the mutant plants, but not the control (day 21)
(Figure 1G).
Frontiers in Plant Science | www.frontiersin.org 6
When growth and reproduction of the mutant wheat line
RYNO3936 was compared with its WT Tugela DN parent, it
took significantly longer (148.0 ± 4.0 vs. 100.5 ± 9.5 days) to
reach the heading phase under well-watered growth conditions,
but headed much sooner (92.0 ± 11.0 days) under water deficit
conditions (Table 1). Under well-watered growth conditions,
mutant wheat line RYNO3936 produced significantly more
heads (7.0 ± 2.0) and seeds per plant (120.0 ± 33.0) when
compared with its WT parent (heads = 2.0 ± 1.0; seed = 32 ±
10.0). With the induction of water deficit stress, the WT parent
FIGURE 1 | Phenotypic response of WT Tugela DN and Mutant RYNO3936 wheat prior to (A, D) and after induction of water stress (B, C; E, F). Where (A–C) is
WT Tugela DN wheat at day 0 (A); day 7 (B); and day 14 (C). While (D, E) is Mutant RYNO3936 wheat at day 0 (D); day 7 (E); day 14 (F) and re-watering (G) the
arrow shows initiation of recovery 2 and fully recovery 1.
FIGURE 2 | Plant height as well as flag leaf length and width of WT Tugela
DN and Mutant RYNO3936 prior to exposure to water stress. Capped bars
above means represent ± SD of three replicates. Asterisks above columns
means denote the significant differences compared with WT Tugela DN for a
single mutant line. **P ≤ 0.01; ***P ≤ 0.05. ns, nonsignificant.
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died after 7 days and failed to reproduce. Under water deficit
stress, the mutant wheat line RYNO3936 yielded equivalent to
what the WT parent yielded under well-watered growth
conditions (Table 1).

Even though the relative moisture content (RMC) in the leaves
was similar between themutant andWT plants before the induction
of water deficit stress, RMC declined significantly (P < 0.05) in WT
Tugela DN, but not in the mutants, with the induction of water
deficit stress (Figure 3A). This decrease in RMC coincided with
declines with soil moisture content (Figure 3A). At Day 7, the
mutant lost nearly 21% of its RMC, whereas the WT lost 65% with
both having access to a soil moisture content of ± 24%. After re-
watering at day 14, the mutant RYNO3936 took three days to
display greening of leaves, with some leaves returning to its natural
green color after approximately a week after regaining most of its
RMC ( ± 76%). However, not all leaves could recover in the mutant
plants from water stress-induced damage as can be observed in
Figure 1G.

RMC of the WT Tugela DN plant roots was significantly
higher ( ± 70%) than that of the mutant (± 45%) pre-induction of
water deficit stress (day 0) but declined to below 10% after
induction of water stress (Figure 3B). In contrast, even though
the RMC in the roots of mutant RYNO3936 decreased about
±50%, it remained at the ±20% level throughout the water deficit
experiment and regained RMC with re-watering to return to pre-
water deficit values.

Chlorophyll content decreased in both plants with the WT
Tugela DN showing a greater loss in chlorophyll (± 50%) within
the 7 days after induction of water deficit, which is much sooner
than in the mutant RYNO3936 plants (Figure 4A). Chlorophyll
content increased with re-watering, while the WT plant suffered
a complete loss of chlorophyll with no recovery despite re-
watering. A significant (p < 0.05) decline in chlorophyll
fluorescence, as a measure of PSII efficiency (Schreiber et al.,
2003; Strasser et al., 2004), was measured in both the WT Tugela
DN and mutant RYNO3936 after induction of water deficit stress
(Figure 4B). This decrease in chlorophyll fluorescence was less in
the mutant wheat line than in its WT parent and recovered in the
mutant RYNO3936 wheat line, but not in theWT parent after re-
watering of plants after 14 days water deficit treatment. Stomatal
conductivity followed similar trends as that measured with
chlorophyll fluorescence (Figure 4B).

To confirm the observed changes in chlorophyll content and
fluorescence in theWT Tugela DN and mutant RYNO3936 lines,
the expression of RuBisCO before (day 0) and after induction of
Frontiers in Plant Science | www.frontiersin.org 7
water deficit stress (days 7 and 14), and re-watering (day 21) was
also analyzed using Western Blot analyses (Figure 5). Protein
blots probed with anti-LSU (RuBisCO large subunit) and anti-
SSU (RuBisCO small subunit) IgGs revealed two cross-reacting
peptides for the large subunit (LSU) with sizes of 56 ± 4 kDa and
50 ± 4 kDa (LSU), respectively, and 15 ± 2 kDa for the small
subunit, which corresponds to the sizes for the subunits in wheat
(Botha and Small, 1987; Le Roux et al., 2019). Interestingly, a
smaller form of the LSUs (50 ± 4 kDa) was observed in
RYNO3936, but not in the WT, and this form disappears with
the induction of water stress (days 7 and 14), but reappears after
recovery (day 21, Figure 5A).

To further estimate the relative abundance of the RuBisCO
subunits, the protein blots were scanned with a laser
TABLE 1 | The response of WT Tugela DN and Mutant RYNO3936 to water deficit stress.

Genotype Treatment
(days)

Days to heading
(days)

Anthesis from heading date
(days)

Heads per plant
(number)

Seeds per plant
(number)

RYNO3936 Control 148.0 ± 4.0 16.0 ± 4.0 7.0 ± 2.0 120.0 ± 33.0
Water stressed 92.0 ± 11.0 7.0 ± 2.0 2.5 ± 1.5 34.0 ± 6.0

WT Control 100.5 ± 9.5 12.5 ± 1.5 2.0 ± 1.0 32.0 ± 10.0
Water stressed nd nd nd nd
July 2020 | Volume
Indicated are days to heading, days to anthesis, number of heads and seeds produced prior (0 day) and after induction of water deficit stress (days 7 and 14) (± = standard deviation) (n =
3). nd, WT Tugela DN dies prematurely and produced no seed.
A

B

FIGURE 3 | Comparative analysis of relative moisture content (RMC)
measured in the leaves (A) and roots (B) prior to and after induction of water
stress. The gravimetric readings of the soil are superimposed against the
RMC. Indicated are the RMC of WT Tugela DN and Mutant RYNO3936
emphasizing how they maintain RMC under deficient soil moisture. Error bars
indicate SD (n = 9) and significance was set at p ≤ 0.05.
11 | Article 1053
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densitometer. Densitometric analyses of the blots revealed a high
abundance in LSU in the mutant during irrigation, water stress,
and rehydration, when compared to the WT (Figure 5B). Both
subunits decreased in abundance with the induction of water
deficit stress.

Changes in Free Amino Acid Under Water
Stress
To access the effect of water deficit on total free amino acid
(FAA) the changes thereof were quantified in leaf material before
(day 0) and after induction of water stress (days 7 and 14), and
after re-watering (day 21; Table 2). Before the induction of water
stress, the FAA levels between the WT Tugela DN and mutant
lines were comparable, with RYNO3936 maintaining slightly
lower FAA levels, except for methionine, leucine, and
phenylalanine that were present in much higher levels in
RYNO3936 (p < 0.05). Water deficit (day 7) induced higher
amounts of proline, methionine, and phenylalanine in the WT
Tugela DN, and higher amounts of serine, aspartate, glutamate,
proline, lysine, and isoleucine in the mutant wheat plants.
Prolonged water stress (day 14) further increased in all FAA
(Table 2). Proline was the highest accumulated metabolite,
Frontiers in Plant Science | www.frontiersin.org 8
during the water deficit conditions and tends to remain so
despite re-watering conditions.

Changes in the Proteome With Water
Stress
In order to elucidate the changes in protein expression that was
induced in RYNO3936 due to mutagenesis, we next compared the
proteome of WT Tugela DN (day 0) with that of RYNO3936 (day
0) (Figure 6; Supplementary Tables S1A, B). When comparing the
top 100 most significantly expressed proteins in WT Tugela DN
with that in the mutant RYNO3936, most of the expressed proteins
were expressed equally in both lines. However, there were unique
proteins only expressed in RYNO3936 that have been previously
identified in dehydration-tolerant plants (e.g., abscisic stress-
ripening protein, cold induced protein, cold-responsive protein,
dehydrin, and Group 3 late embryogenesis abundant protein)
(Supplementary Table S1). Expressed proteins were grouped into
key functional processes (i.e., ribosomal – protein synthesis; energy
production – specifically ATP production; photosynthesis; carbon
assimilation – specifically respiration; stress – includes host defense;
and reactive oxidative stress (ROS) associated) to visualize the
mutagenesis-induced differences that enable RYNO3936 to be
more tolerant to water deficit than WT Tugela DN (Figure 6).
RYNO3936 seemingly invests more resources into photosynthesis
(e.g., chlorophyll a-b binding protein, Photosystem II CP47
chlorophyll apoprotein, Photosystem I P700 chlorophyll a
apoprotein A2, Ribulose bisphosphate carboxylase large chain,
Cytochrome b6-f complex iron-sulfur subunit, chloroplastic) and
energy production (e.g., ATP synthase subunit alpha,
mitochondrial) and less into the production of defense and stress-
responsive proteins (e.g., lipoxygenase; glucanases) (Table 3).

To better understand the coping mechanisms applied by
mutant RYNO3936, we also compared the changes in the
proteome of RYNO3936 that occurred before (day 0) and after
induction of water stress (days 7, 14), and recovery of the mutant
plant (day 21; Supplementary Tables S1, S2, S3). After analysis
of the proteins in RYNO3936 across all treatments, we found that
99 proteins were shared among all treatments (Figure 7,
Supplementary Table 1S), with 6 uniquely expressed at day 0
(e.g., thioredoxin, cold responsive proteins), only 1 on day 7 (i.e.,
LAlv9 family protein), a total of 7 on day 14 (e.g., aldehyde
dehydrogenase, lipoxygenase, GTP-binding nuclear protein, heat
shock protein 81, 5-methyltetrahydropteroyltriglutamate-
homocysteine methyltransferase), and 14 proteins in re-
watered, recovered leaf material (day 21) (e.g., alpha gliadin,
alpha-amylase/trypsin inhibitor, globulin, gamma gliadin, grain
softness protein, high and low molecular weight glutenin subunit
proteins, LEA3 protein, dimeric alpha-amylase inhibitor, grain
softness protein) (Figure 8).

To visualize the observed proteomic changes before (day 0),
after induction of water stress (days 7 and 14) and after recovery
(day 21), we conducted a cluster analysis (Eisen et al., 1998) and
visualized the clusters using TreeView (Saldanha, 2004)
(Supplementary Figure S1, Supplementary Table S2). We
obtained two clusters with two major groupings according to
protein expression patterns, with unstressed (day 0) and
A

B

FIGURE 4 | (A) Total chlorophyll measured in the WT Tugela DN and Mutant
RYNO3936. prior to (day 0) and after exposure to water stress (days 7 and
14). Capped bars above means represent ± SD of three replicates. Asterisks
above columns means denote the significant differences compared with WT
Tugela DN for a single mutant line. **P ≤ 0.01; ***P ≤ 0.05. (B) Rate of
photosynthesis (Fv/Fm) (line graph) and stomatal conductivity (scatter plot)
prior to (day 0) and after exposure to water stress (days 7 and 14).
Photosynthesis significance was determined by p ≤ 0.005 where n = 6 and
error bar indicate SD.
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A

B

FIGURE 5 | (A) Top: Protein blot of crude extract from WT Tugela DN and Mutant RYNO3936 wheat prior to (day 0) and after exposure (days 7 and 14) to water
stress, and re-watered (day 21) probed with anti-Rubisco (LSU) and (SSU) IgG. All lanes were loaded with 20 mg total protein. Blots were probed with a 1:7 000
dilution of the polyclonal IgG against LSU, SSU. The leaf proteins were resolved by 12% (w/v) sodium dodecyl sulfate–polyacrylamide gel electrophoresis prior to
transferring to nitrocellulose. Images were cropped for presentation purposes. M1–M3 represents three independent mutant lines. (B) Gel densitometric analysis of
the protein blot in (A) of the rubisco large (LSU, 54 kDa) and small (SSU, 14 kDa) subunits in the leaf crude protein extracts from WT Tugela DN and Mutant
RYNO3936 wheat prior to (day 0) and after exposure (days 7 and 14) to water stress, and re-watered. Data are expressed as relative levels of rubisco protein
compared with the basic level in control line (mean value of 1.0). Each bar is the mean of three independent values (biological replicates) ± SE.
TABLE 2 | Levels of free amino acids in leaf material of WT Tugela DN and Mutant RYNO3936 measured prior to (day 0) and after induction of water stress (days 7 and
14).

Genotype Days Free amino acid content [Concentration in % (m/m) dry solid]

his ser arg gly asp glu thr ala pro lys tyr met val lle leu phe

WT Tugela DN 0 0.10 0.33 0.32 0.31 0.55 0.59 0.24 0.39 0.29 0.39 0.21 0.54 0.31 0.18 0.42 0.34
7 nd 0.20 nd 0.27 nd 0.56 0.31 0.42 0.88 0.50 0.14 2.54 0.14 0.33 0.59 1.65

RYNO3936 0 0.10 0.20 0.20 0.16 0.53 0.26 0.10 0.19 0.15 0.17 nd 1.80 0.33 0.09 1.21 1.63
7 0.17 0.30 0.27 0.29 1.10 0.90 0.19 0.34 1.30 0.39 0.19 0.91 0.39 0.23 0.50 0.46
14 0.37 0.74 0.75 0.76 1.48 2.55 0.69 0.97 2.87 0.82 0.44 0.28 0.97 0.55 1.15 0.85
Re-watered 0.37 0.20 0.14 0.18 0.42 0.36 0.10 0.22 0.43 0.23 0.14 0.56 0.23 0.10 0.25 0.79
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recovered plants (day 21) that grouped together, and stressed
plants (days 7 and 14) that formed another grouping.

We also assigned the obtained peptides into functional
categories (Supplementary Figure S2) to confirm their
involvement in plant metabolism. Within the biological
processes, most of the peptides belonged to cellular metabolic
process (18%), while in the cellular component the largest groups
belonged to the intracellular (25%) and intercellular (25%) parts.
When assigned to the molecular function, most peptides
belonged to the ion binding category (38%).

Protein Turnover During Water Deficit
To study the changes in SUMO cysteine proteases, blots of
separated crude protein extracts were probed with monoclonal
anti-SUMO1 IgG. Several cross-reacting peptides were found
ranging in sizes from 150 ± 10 kDa to 10 ± 5 kDa. At day 0, both
the WT Tugela DN and mutant RYNO3936 plants had one cross
reacting SUMO1 peptide present that was absent in the other line
(Figure 9A, bottom). At day 7, the WT Tugela DN had two
peptides that were absent in the mutant RYNO3936, while the
mutant plant had a cross-reacting SUMO1 peptide present that
was absent in WT wheat line. When comparing the profile of
cross-reacting SUMO1 peptides in RYNO3936 before (day 0)
and after induction of water stress (days 7, 14), and after recovery
(day 21), more differences in banding patters and intensity of the
proteins were observed (Figure 9A, bottom).

To further elucidate whether the peptides on the protein blots
were cysteine proteases, we included a protease inhibitor E64
specific to cysteine proteases during the protein analysis before
separation on gradient zymograms (Figure 9B). The WT Tugela
DN and mutant RYNO3936 plants differed in protein bands with
proteolytic activity. Addition of the cysteine protease inhibitor
E64 blocked the activity of three different proteases in each of the
plants. A comparison between the profiles of the mutant plant
before (day 0) and after induction of water stress (days 7, 14), and
after recovery (day 21), revealed three protein bands with
proteolytic activity in unstressed and recovered mutant plants,
Frontiers in Plant Science | www.frontiersin.org 10
but four protein bands with proteolytic activity in the water
stressed plants (days 7 and 14).

Oxidative Defense Enzymes
Mutant RYNO3936 expressed significantly higher POX activity
than WT Tugela DN before (day 0) and after water stress (days 7
and 14), with the highest activity on day 7 after induction of
water stress (Figure 10A). GST activity increased significantly in
WT Tugela DN after induction of water deficit stress but did not
change significantly in the mutant plant (P < 0.05) (Figure 10B).
DISCUSSION

Drought tolerance is a polygenic trait that is difficult to attain
using conventional breeding. However, chemically induced
mutagenesis has already produced excellent results by altering
major polygenic traits leading to synergistic effects which
increased the quality and yield of wheat (Ahloowalia et al.,
2004; Tian et al., 2012). Inducing random mutagenesis in a red
hard winter wheat line (Tugela DN), a mutant wheat line
RYNO3936 with improved tolerance to water deficit, and the
ability to recover fully and reproduce, after being physiologically
“dead” (leaves completely dry/dehydrated) was developed. In
the current study, we characterized the physiological and
biochemical responses of this mutant wheat line RYNO3936
during irrigation and induced water deficit stress.

Our mutant's coping mechanism differs significantly from
that of the WT wheat line, as prolonged exposure to water deficit
stress seemingly has no influence on the phenotype of the mutant
plant, while the WT wheat line suffered various developmental
deformities (i.e., leaves are wrinkled or twisted and heads are
deformed) and dies. Under non-water deficit conditions, the
mutant plants took longer to reach maturity when compared to
the control but produced more tillers and 4× more seed. Under
water deficit stress, however, our mutant plants matured faster
FIGURE 6 | Comparison of the proteins expressed in WT Tugela DN (day 0) and the mutant RYNO3936 (day 0) according by the proportional contributions of
functional categories.
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TABLE 3 | List of proteins expressed in RYNO3936 before (day 0) and after exposure to water stress (days 7 and 14), and recovery after re-watering (day 21) (p ≤

0.05).

Identified Proteins (229) Accession Number Molecular
Weight

ANOVA Test
(p-value):

*(p < 0.01463)

Oxygen-evolving enhancer protein 1, chloroplastic OS=Triticum urartu GN=TRIUR3_31979 PE=4
SV=1

M8AE10_TRIUA (+1) 34 kDa <0.00010

ATP synthase delta chain, chloroplastic OS=Aegilops tauschii GN=F775_06392 PE=3 SV=1 N1R5T6_AEGTA 18 kDa <0.00010
20 kDa chaperonin, chloroplastic OS=Aegilops tauschii GN=F775_32594 PE=3 SV=1 M8AVR4_AEGTA (+2) 26 kDa <0.00010
Uncharacterized protein OS=Triticum aestivum PE=4 SV=1 W5GFX3_WHEAT (+1) 23 kDa <0.00010
Stromal 70 kDa heat shock-related protein, chloroplastic OS=Aegilops tauschii GN=F775_29881
PE=3 SV=1

N1QXI7_AEGTA 73 kDa <0.00010

Adenosylhomocysteinase OS=Triticum urartu GN=TRIUR3_03943 PE=3 SV=1 M7ZAK2_TRIUA (+2) 46 kDa <0.00010
Alpha-amylase/trypsin inhibitor CM3 OS=Triticum aestivum PE=1 SV=1 IAAC3_WHEAT 18 kDa <0.00010
Uncharacterized protein OS=Aegilops tauschii GN=F775_27291 PE=4 SV=1 M8CU50_AEGTA 32 kDa <0.00010
UTP–glucose-1-phosphate uridylyltransferase OS=Triticum urartu GN=TRIUR3_15167 PE=4 SV=1 M7YXN3_TRIUA 51 kDa <0.00010
40S ribosomal protein S20 OS=Triticum urartu GN=TRIUR3_10578 PE=3 SV=1 M7YRN1_TRIUA (+3) 14 kDa <0.00010
Gamma-gliadin OS=Triticum dicoccoides GN=ll703 PE=4 SV=1 B6UKJ9_TRIDC (+13) 29 kDa <0.00010
Aldehyde dehydrogenase 7b OS=Triticum aestivum PE=2 SV=1 D9IFB7_WHEAT (+1) 54 kDa <0.00010
Uncharacterized protein OS=Triticum aestivum GN=TRAES_3BF028000060CFD_c1 PE=3 SV=1 A0A077S298_WHEAT (+1) 18 kDa 0.00015
Uncharacterized protein OS=Triticum aestivum PE=4 SV=1 W5DYH0_WHEAT 39 kDa 0.0002
Grain softness protein (Fragment) OS=Triticum aestivum GN=Gsp-1D PE=4 SV=1 A0A0A7AA82_WHEAT (+6) 16 kDa 0.00021
Lipoxygenase OS=Triticum aestivum PE=3 SV=1 W5F9D7_WHEAT 97 kDa 0.00023
5-methyltetrahydropteroyltriglutamate–homocysteine methyltransferase OS=Triticum urartu
GN=TRIUR3_07672 PE=3 SV=1

M7ZHT1_TRIUA 85 kDa 0.00025

Fructose-bisphosphate aldolase OS=Triticum urartu GN=TRIUR3_24109 PE=3 SV=1 M7ZGS6_TRIUA (+3) 39 kDa 0.00032
ADP,ATP carrier protein, mitochondrial OS=Triticum urartu GN=TRIUR3_11472 PE=3 SV=1 M8A2G0_TRIUA (+3) 41 kDa 0.00032
Uncharacterized protein OS=Triticum aestivum PE=4 SV=1 W5FDV7_WHEAT 25 kDa 0.00037
Uncharacterized protein OS=Triticum aestivum PE=4 SV=1 W5HAX6_WHEAT 15 kDa 0.00037
Uncharacterized protein OS=Triticum aestivum PE=3 SV=1 W5FRF1_WHEAT 34 kDa 0.0004
Uncharacterized protein OS=Triticum aestivum PE=4 SV=1 W5B9F3_WHEAT 27 kDa 0.00054
Uncharacterized protein OS=Triticum aestivum PE=4 SV=1 W5G736_WHEAT 32 kDa 0.00054
Uncharacterized protein OS=Triticum aestivum PE=4 SV=1 W5HCY0_WHEAT 26 kDa 0.00069
Chlorophyll a-b binding protein, chloroplastic OS=Triticum urartu GN=TRIUR3_18701 PE=3 SV=1 M7YH23_TRIUA (+2) 38 kDa 0.00072
GTP-binding nuclear protein OS=Triticum urartu GN=TRIUR3_25734 PE=3 SV=1 M8ACU1_TRIUA (+5) 26 kDa 0.00076
60S acidic ribosomal protein P0 OS=Aegilops tauschii GN=F775_28558 PE=3 SV=1 N1QYE3_AEGTA 35 kDa 0.00086
Oxygen-evolving enhancer protein 3-1, chloroplastic OS=Aegilops tauschii GN=F775_30429 PE=4
SV=1

M8BB25_AEGTA (+3) 18 kDa 0.0013

Actin OS=Triticum aestivum PE=3 SV=1 A0A067YNJ5_WHEAT (+16) 42 kDa 0.0013
Low molecular weight glutenin OS=Triticum aestivum GN=Glu-A3 PE=4 SV=1 C3VN75_WHEAT (+3) 35 kDa 0.0013
Uncharacterized protein OS=Triticum aestivum GN=TRAES_3BF167600010CFD_c1 PE=4 SV=1 W5D1Z1_WHEAT 21 kDa 0.0014
30S ribosomal protein 1, chloroplastic OS=Aegilops tauschii GN=F775_31789 PE=4 SV=1 M8CEC3_AEGTA (+3) 26 kDa 0.0014
Photosystem II CP47 chlorophyll apoprotein OS=Aegilops tauschii GN=F775_04233 PE=4 SV=1 M8CB07_AEGTA 55 kDa 0.0015
70 kDa heat shock protein OS=Triticum aestivum PE=2 SV=1 C7ENF7_WHEAT (+1) 74 kDa 0.0015
Peptidyl-prolyl cis-trans isomerase OS=Triticum aestivum PE=2 SV=1 A7LM55_WHEAT 18 kDa 0.0016
Quinone oxidoreductase-like protein OS=Aegilops tauschii GN=F775_07275 PE=4 SV=1 M8AW52_AEGTA 32 kDa 0.002
Uncharacterized protein OS=Triticum aestivum PE=4 SV=1 W5HLU5_WHEAT (+1) 48 kDa 0.0021
Superoxide dismutase [Cu-Zn] OS=Triticum aestivum GN=SOD1.2 PE=2 SV=1 O24400_WHEAT 20 kDa 0.0022
Single-stranded nucleic acid binding protein OS=Triticum aestivum GN=whGRP-1 PE=2 SV=1 Q41518_WHEAT 16 kDa 0.0022
Low molecular weight glutenin subunit (Fragment) OS=Thinopyrum ponticum x Triticum aestivum
PE=4 SV=1

Q5PU42_9POAL 34 kDa 0.0022

Uncharacterized protein OS=Triticum aestivum PE=3 SV=1 W5EHT8_WHEAT 19 kDa 0.0023
Photosystem I P700 chlorophyll a apoprotein A2 OS=Triticum aestivum GN=psaB PE=3 SV=1 PSAB_WHEAT (+1) 83 kDa 0.0026
Uncharacterized protein OS=Triticum urartu GN=TRIUR3_33029 PE=4 SV=1 M7Z7B4_TRIUA 32 kDa 0.0032
Uncharacterized protein OS=Aegilops tauschii GN=F775_04480 PE=4 SV=1 M8BDP7_AEGTA 26 kDa 0.0034
Uncharacterized protein OS=Triticum aestivum PE=3 SV=1 W5E575_WHEAT 35 kDa 0.0034
60S ribosomal protein L4-1 OS=Triticum urartu GN=TRIUR3_35018 PE=4 SV=1 M8A580_TRIUA (+2) 36 kDa 0.0037
Ribulose bisphosphate carboxylase large chain OS=Triticum aestivum GN=rbcL PE=1 SV=2 RBL_WHEAT (+1) 53 kDa 0.0045
Ribosomal protein OS=Triticum urartu GN=TRIUR3_07435 PE=3 SV=1 M7ZM70_TRIUA 18 kDa 0.0047
Cold-responsive protein WCOR14 OS=Aegilops tauschii GN=F775_26151 PE=4 SV=1 C0L981_AEGTA (+2) 14 kDa 0.0049
Putative calcium-binding protein CML7 OS=Triticum urartu GN=TRIUR3_30313 PE=3 SV=1 M7ZNI1_TRIUA 32 kDa 0.0057
Germin-like protein 8-14 OS=Triticum urartu GN=TRIUR3_27105 PE=3 SV=1 M7ZSU0_TRIUA (+2) 22 kDa 0.006
Glyceraldehyde-3-phosphate dehydrogenase OS=Aegilops tauschii GN=F775_07657 PE=3 SV=1 M8C8G6_AEGTA (+1) 37 kDa 0.0061
Uncharacterized protein OS=Triticum aestivum PE=4 SV=1 W5FGX7_WHEAT 41 kDa 0.0076
ATP synthase subunit alpha, mitochondrial OS=Triticum aestivum GN=ATPA PE=3 SV=1 ATPAM_WHEAT (+1) 55 kDa 0.0078

(Continued)
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than WT Tugela DN and produced the same amount of seed
than WT Tugela DN under irrigation. This seemingly rapid
transition from a vegetative to reproductive stage corresponds to
observation in engineered rice (Oryza sativa) expressing the
galactinol synthase gene when exposed to water deficit
conditions (Selvaraj et al., 2017), which essentially affords the
plant the ability to produce seeds before the induced stress
becomes lethal for the crop (Kazan and Lyons, 2016; Gol et al.,
Frontiers in Plant Science | www.frontiersin.org 12
2017). Interestingly, the mutant RYNO 3936 avoids premature
wilting during induced water stress, as demonstrated by its high
RMC when compared to WT Tugela DN, which visually wilted
within 3 days after water was withheld. Physiologically, the
function of wilting is to soften leaves to enable leaf rolling,
thus limiting surface area for further water loss by evaporation
(Bowne et al., 2012). Mutant RYNO3936 expresses a “slow-
wilting phenotype”, since it retains a higher RMC during water
TABLE 3 | Continued

Identified Proteins (229) Accession Number Molecular
Weight

ANOVA Test
(p-value):

*(p < 0.01463)

Uncharacterized protein OS=Triticum aestivum PE=3 SV=1 W5G312_WHEAT 82 kDa 0.008
Thioredoxin OS=Triticum urartu GN=TRIUR3_30421 PE=3 SV=1 M8ASF0_TRIUA (+5) 12 kDa 0.008
Uncharacterized protein OS=Triticum aestivum GN=TRAES_3BF092100100CFD_c1 PE=3 SV=1 A0A077S2R7_WHEAT 111 kDa 0.0087
Dimeric alpha-amylase inhibitor OS=Triticum aestivum PE=4 SV=1 I6PZ03_WHEAT (+1) 15 kDa 0.01
Uncharacterized protein OS=Triticum aestivum PE=3 SV=1 W5BD57_WHEAT 102 kDa 0.013
Cytochrome b6-f complex iron-sulfur subunit, chloroplastic OS=Triticum aestivum GN=petC PE=2
SV=1

UCRIA_WHEAT 24 kDa 0.013

Chloroplast inositol phosphatase-like protein OS=Triticum aestivum PE=2 SV=1 Q5XUV3_WHEAT (+1) 32 kDa 0.013
Putative vacuolar defense protein OS=Triticum aestivum GN=PR4e PE=4 SV=1 Q6PWL8_WHEAT (+1) 18 kDa 0.013
14-3-3 protein OS=Triticum aestivum GN=14R2 PE=2 SV=1 L0GED8_WHEAT (+3) 29 kDa 0.014
Globulin 1 OS=Triticum aestivum PE=4 SV=1 Q0Q5D4_WHEAT (+1) 25 kDa 0.014
Uncharacterized protein OS=Aegilops tauschii GN=F775_28677 PE=4 SV=1 R7W586_AEGTA 24 kDa 0.014
Chlorophyll a-b binding protein, chloroplastic OS=Triticum aestivum GN=CBP5 PE=2 SV=1 C1K5B9_WHEAT (+2) 29 kDa 0.015
Uncharacterized protein OS=Triticum aestivum GN=TRAES_3BF068000010CFD_c1 PE=4 SV=1 A0A077RQ49_WHEAT 274 kDa 0.015
ATP-dependent zinc metalloprotease FTSH 1, chloroplastic OS=Triticum urartu GN=TRIUR3_31373
PE=3 SV=1

M8ADT2_TRIUA (+2) 54 kDa 0.015

30S ribosomal protein 2, chloroplastic OS=Aegilops tauschii GN=F775_28246 PE=4 SV=1 M8BN30_AEGTA (+1) 20 kDa 0.015
Fructose-bisphosphate aldolase OS=Triticum aestivum GN=AlDP PE=2 SV=1 C0KTA6_WHEAT (+1) 42 kDa 0.016
Elongation factor Tu OS=Triticum urartu GN=TRIUR3_34609 PE=3 SV=1 M7ZEC4_TRIUA (+2) 46 kDa 0.017
Uncharacterized protein OS=Triticum urartu GN=TRIUR3_27117 PE=3 SV=1 M8AJF1_TRIUA (+3) 26 kDa 0.017
Glyceraldehyde-3-phosphate dehydrogenase OS=Aegilops tauschii GN=F775_05242 PE=3 SV=1 M8C9Y7_AEGTA (+2) 43 kDa 0.018
ATP synthase subunit alpha OS=Triticum urartu GN=atpA PE=3 SV=1 M8AUX6_TRIUA 62 kDa 0.019
Plastocyanin OS=Triticum aestivum PE=3 SV=1 W5DL22_WHEAT 16 kDa 0.02
Peroxisomal (S)-2-hydroxy-acid oxidase GLO1 OS=Triticum urartu GN=TRIUR3_22574 PE=4 SV=1 M7YXL1_TRIUA (+2) 40 kDa 0.021
Ribulose bisphosphate carboxylase small chain OS=Triticum urartu GN=TRIUR3_12281 PE=3 SV=1 M7YCR2_TRIUA (+7) 19 kDa 0.023
Glycine cleavage system H protein, mitochondrial OS=Triticum urartu GN=TRIUR3_12946 PE=3
SV=1

M7Z6F5_TRIUA 17 kDa 0.023

ATP synthase subunit OS=Triticum aestivum PE=2 SV=1 D3K4D8_WHEAT (+1) 40 kDa 0.023
Photosystem II CP43 reaction center protein (Fragment) OS=Triticum timopheevii GN=psbC PE=3
SV=1

A0A090ARF9_TRITI (+3) 54 kDa 0.024

Uncharacterized protein OS=Triticum aestivum PE=4 SV=1 W4ZSM1_WHEAT 15 kDa 0.025
Chlorophyll a-b binding protein, chloroplastic OS=Triticum urartu GN=TRIUR3_20986 PE=3 SV=1 M7ZM86_TRIUA (+3) 23 kDa 0.026
Uncharacterized protein OS=Triticum aestivum PE=4 SV=1 W5F6W2_WHEAT 16 kDa 0.027
LEA3 OS=Triticum turgidum subsp. durum PE=2 SV=1 A0A0M4HM24_TRITD 22 kDa 0.027
Uncharacterized protein OS=Aegilops tauschii GN=F775_29168 PE=4 SV=1 M8BNU5_AEGTA 91 kDa 0.028
Alanine aminotransferase 2 OS=Aegilops tauschii GN=F775_30987 PE=4 SV=1 M8BWQ5_AEGTA (+2) 58 kDa 0.028
Serine hydroxymethyltransferase OS=Triticum aestivum PE=3 SV=1 W5ECJ8_WHEAT 59 kDa 0.029
60S ribosomal protein L23a OS=Triticum urartu GN=TRIUR3_20390 PE=3 SV=1 M8A553_TRIUA (+2) 20 kDa 0.029
Cytochrome f OS=Triticum aestivum GN=petA PE=3 SV=3 CYF_WHEAT (+3) 35 kDa 0.03
High molecular weight glutenin subunit Ax-dp (Fragment) OS=Triticum polonicum PE=4 SV=1 D1MJA1_9POAL 91 kDa 0.03
Ribulose bisphosphate carboxylase small chain OS=Triticum aestivum GN=rbcS PE=3 SV=1 Q9FEE4_WHEAT 19 kDa 0.035
High molecular weight glutenin subunit OS=Triticum aestivum GN=Glu PE=4 SV=1 W6AWK6_WHEAT 67 kDa 0.035
Photosystem 1 subunit 5 OS=Triticum aestivum GN=pssv-1B PE=4 SV=1 Q2L3V4_WHEAT 15 kDa 0.036
Histone H2A OS=Aegilops tauschii GN=F775_29407 PE=3 SV=1 R7WEH7_AEGTA (+1) 16 kDa 0.039
Uncharacterized protein OS=Triticum aestivum PE=3 SV=1 W5B4C8_WHEAT (+1) 29 kDa 0.04
Fructose-bisphosphate aldolase OS=Triticum aestivum PE=3 SV=1 W5G4A2_WHEAT 42 kDa 0.041
Uncharacterized protein OS=Triticum urartu GN=TRIUR3_14987 PE=4 SV=1 M7ZIY8_TRIUA (+1) 27 kDa 0.044
RUBISCO activase alpha (Fragment) OS=Triticum aestivum GN=rca2_alpha PE=4 SV=1 A0A078BQY4_WHEAT (+3) 45 kDa 0.045
Cell division protease ftsH-like protein, chloroplastic OS=Aegilops tauschii GN=F775_28819 PE=3
SV=1

M8BVC8_AEGTA 72 kDa 0.048

PsbP-like protein 1, chloroplastic OS=Aegilops tauschii GN=F775_30938 PE=4 SV=1 R7VZH9_AEGTA (+2) 23 kDa 0.94
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deficit stress and loses rigidity only with prolonged water stress
(day 14). Even though RMC declines in the mutant and the plant
shows visual senescence (browning of leaves), the visual
browning is less when compared to that of WT Tugela DN.
However, after re-watering, the mutant fully recovers as
demonstrated by the increase in RMC, suggesting that the
mutant can readjust its osmoregulation assuming full turgor
pressure and recover to activate its metabolic activity providing
whole-plant relief to the water deficit stress (Souza et al., 2004).

When water deficit stress was induced, both WT and mutant
plants senesced with their leaves losing their green color which is
synonymous to the preferential degradation of chlorophyll over
carotenoids (Balazadeh, 2014; Li et al., 2019). The visible de-
Frontiers in Plant Science | www.frontiersin.org 13
greening of the leaves, however, took longer in the mutant
RYNO3936, as it was evident from its chlorophyll content that
remained higher when compared to the WT Tugela DN. This
observed “slow-wilting phenotype” is substantiated by the fact
that the mutant remained photosynthetically active much longer
than the WT Tugela DN (Thomas and Ougham, 2014), before it
also senesces. A reduction of chlorophyll during water deficit
stress is common in many crop species and largely dependent on
the duration and severity of water stress (Brestic et al., 2015;
Lakra et al., 2015; Peng et al., 2017).

It is evident that the mutant RYNO3936 could maintain an
active metabolic state despite the experienced water deficit stress, as
substantiated by the high rate of stomatal conductance and
chlorophyll fluorescence during water deficit stress conditions. It
is well understood that chlorophyll fluorescence and stomatal
conductance are intrinsically coupled under a wide range of
environmental conditions (i.e., soil moisture). However, different
crop species such as tomatoes, kidney beans, potatoes, rice, and
wheat manage the intrinsic relationship differently (Miyashita et al.,
2005; Yuan et al., 2015; Ouyang et al., 2017; Wheeler et al., 2019;
Wang et al., 2020). Generally, studies suggest that water deficit stress
induces a reduction in photosynthesis and stomatal conductance,
consequently, restricts the availability of CO2 for carboxylation
(Ehonen et al., 2019). The mutant showed a decline in chlorophyll
fluorescence and stomatal conductance only after prolonged
induced water deficit stress (14 days) and restored to near full
functionality with re-watering (Yi et al., 2016). The manner in
which the mutant manifest its physiological response to water
deficit and re-watering, is consistent with the results reported in
maize inbred and hybrid lines (Chen et al., 2016) and two wheat
cultivars (Abid et al., 2018), that showed a decrease in chlorophyll
fluorescence and stomatal conductance during water deficit stress,
but rapid “recovery” in chlorophyll fluorescence and stomatal
conductance to normal levels after re-watering. This suggests that
FIGURE 7 | Venn diagram of the shared and unique proteins present in
RYNO3936 before (day 0) and after exposure to water stress (days 7 and
14), and recovery after re-watering (day 21).
FIGURE 8 | Percentage abundance of the Top 100 peptides expressed in RYNO3936 before (day 0) and after exposure to water stress (days 7 and 14), and
recovery after re-watering (day 21).
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the stomatal aperture increased with re-watering thereby facilitating
diffusion of CO2 from the atmosphere to the carboxylation site of
RuBisCO (Galmés et al., 2011; Kumar et al., 2019).

Water deficit stress is usually associated with the onset of
senescence. The process of senescence is associated with
modification and/or degradation of photosynthetic proteins
Frontiers in Plant Science | www.frontiersin.org 14
making them dysfunctional. Since random mutagenesis was
applied to the mutants, it is likely that changes were induced in
single/multiple genes, resulting in the expression of more proteins
involved in photosynthesis and energy production. Amaranthus
hybridus is an excellent example where a mutation in a chloroplast
protein (i.e., a photosystem II electron transport protein that binds
A

B

FIGURE 9 | (A) Top: Crude protein separated on a 12.5% SDS-PAGE from WT Tugela DN and Mutant RYNO3936 wheat prior to (day 0) and after exposure to
water stress (days 7 and 14). All lanes were loaded with 20 mg total protein. Bottom: WT Tugela DN and Mutant RYNO 3936 wheat prior to (day 0) and after
exposure (days 7 and 14) to water stress, probed with anti-SUMO IgG. All lanes were loaded with 20 mg total protein. Blots were probed with a dilution of 1:10 000
dilution of monoclonal IgG against SUMO1. Images were cropped for presentation purposes. M1 to M3 represents three independent Mutants. (B) Gradient
Zymograms depicting proteolytic activity of WT Tugela DN and Mutant RYNO3936 prior to (day 0) and after exposure to water stress (days 7 and 14). Zymograms
(gradient, 5–15%) were cast and in all cases 35 mg protein was loaded. Inclusion of an incubation step with 0.1 mM Cysteine Protease inhibitor (E-64) performed at
pH 7, enabled for the identification of cysteine proteases. Lanes with + PI refers to treatment with protease inhibitor; whereas - PI refers to no inhibitor treatment.
Arrows indicated bands that were removed after treatment with the 0.1 mM Cysteine Protease inhibitor (E-64). The presented data is representative of two
independent experiments. Images were cropped for presentation purposes, and the contrast was adjusted (10%).
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the electron carrier plastoquinone) improved tolerance to water
deficit (Hirshberg and McIntosh, 1983). The plant also had higher
photosynthetic rates when compared to control plants under water
deficit conditions (Arntz et al., 2000).

To further our understanding of how the mutant plant
manages its photosynthesis, we investigated RuBisCo protein
expression. This enzyme is vital for CO2 fixation and
oxygenation. The protein is assembled in the chloroplast from
nuclear-encoded genes, cytosol synthesized small subunits (SSU)
and plastid encoded genes which synthesis the large subunits
(LSU) (Kawashima and Wildman, 1970; Ellis, 1979). Collectively
the SSU is responsible for maintaining the form, structure, and
activity of RuBisCo, whereas the LSU contain all the active sites
(Knight et al., 1990; Andersson and Backlund, 2008). Not only
does each subunit's response to water deficit stress differ, the
response is also crop dependent. Mutant RYNO 3936 possesses a
high abundance of LSU prior to water deficit stress, which only
decreases upon the first 7 days of water stress thereafter a slight
decline was observed (Figures 9A, B). Prolonged water deficit
stress (day 14) followed by re-watering resulted in no significant
changes in LSU abundance. This unique preservation of LSU
could be due to effective control of proteases, which are able to
degrade the large subunit of Rubisco (Bushnell et al., 1993). Prins
et al. (2008) also found elevated levels of LSU in all tissue types of
engineered tobacco (Nicotiana tabacum L.) that express a rice
cystatin (a family of cysteine proteinases), when compared to
WT tobacco. In contrast, the small subunit levels decreased after
induction of water stress and never recovered to its pre-stressed
state (Figures 9A, B) despite full recovery of the plant. Similar
findings were also reported for tomato, Arabidopsis, and rice
(Bartholomew et al., 1991; Williams et al., 1994; Vu et al., 1999).

Water stress induces senescence processes associated with
protein degradation and turnover. We found changes in the
mutant's protein profiles after induction of water stress (days 7,
14) and after recovery post-re-watering (day 21) which might also
be associated with increased expression of SUMO-proteases with a
papain-like proteinase fold (Hickey et al., 2012). In this regard, we
found a protein of ± 50 kDa in size highly abundant in the mutant's
Frontiers in Plant Science | www.frontiersin.org 15
profile after recovery post-re-watering (Figure 9A). Under non-
stressed conditions SUMO tags may serve as priming sites
essentially preparing our mutant for early stress recognition
(Conrath et al., 2002). Many studies have also demonstrated that
plants unable to latch SUMO1/2 onto substrate proteins show
phenotypes with changes in flowering time (Castro et al., 2018),
immune responses (Saleh et al., 2015), growth reduction, and
reduced tolerance to salinity, drought, heat, freezing, and
phosphate starvation (Roden et al., 2004; Catala et al., 2007;
Miura et al., 2007; Li et al., 2019). Although SUMOylation is
strongly associated with drought susceptibility (Benlloch and Lois,
2018), a mutated proteome, as in our case, may circumvent the
deleterious SUMOylation effects by increasing SUMO-proteases for
deSUMOylation influx. In a previous study, we concluded that
overexpressing Overly Tolerant to Salt-1 in spring wheat (Gamtoos
R) enhances water stress tolerance in the transgenic plants and
significantly reduces the effects of SUMOylation (Le Roux et al.,
2019). Since SUMO proteins belong to the family of cysteine
protease (Botha et al., 2017), we investigated total proteases and
cysteine proteases by using the inhibitor E64. Proteases play an
important role in programmed cell death, senescence and protein
remobilization, and have been shown to be induced by water stress
(Liu et al., 2018). RYNO 3936 had fewer and a lower abundance of
cysteine proteases during water stress. This also indicates that the
mutant has less protein degradation under water deficit stress and
therefore senesce less (Botha et al., 2017; Le Roux et al., 2019).

We further found in our study that our mutant plants differ
significantly in antioxidative enzyme activities before (day 0) and
after induction of water stress (days 7, 14) when compared to
WT Tugela DN plants. Water stress generally leads to more ROS
signaling linked to ABA production, Ca2+ fluxes and sugar
sensing (Cruz de Carvalho, 2008 and references within). In our
study, we specifically found expression of an abscisic stress-
ripening protein in our mutant plant which was absent from the
WT control indicating a greater control to manage increasing
ROS production.

The mutant also expressed high levels of POX and GST, in
particular 7 days after initiation of water deficit stress. Such
A B

FIGURE 10 | Changes in the peroxidase (POX) (B) and glutathione-S-transferase (GST) (A) activities measured in WT Tugela DN and Mutant RYNO 3936 wheat
prior to (day 0) and after induction of water stress (days 7 and 14). POX activity was measured by the formation of tetraguaiacol monitored at 470 nm while GST
activity represents the formation of GS-DNB conjugate at 340 nm. Capped bars above means represent ± SD of three replicates. Asterisks above columns means
denote the significant differences compared with WT Tugela DN for a single mutant line. **P ≤ 0.01; ***P ≤ 0.05. ns, nonsignificant.
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increase in POX was also recently found in two drought-tolerant
Chinese wheat varieties when exposed to water stress (Abid et al.,
2018), as well as in the tasg1 wheat mutant (Tian et al., 2012).
POX catalyzes hydrogen peroxide-dependent oxidation of a wide
range of substrates, mainly phenol derivatives (Noctor et al.,
2018; Smirnoff and Arnaud, 2019). GST provides a unique
intracellular protection and an increase in GST is linked with
sustaining cell redox homeostasis and guarding organisms
against oxidative stress (Chen et al., 2012; Kumar and Trivedi,
2018). Overall, our findings suggest that there is a significant
difference in antioxidative enzyme activities before (day 0) and
after induction of water deficit stress (days 7, 14) when compared
to WT Tugela DN plants. Water stress generally leads to more
ROS signaling linked to ABA production, Ca2+ fluxes, and sugar
sensing (Cruz de Carvalho, 2008 and references within). In our
study, we specifically found expression of an abscisic stress-
ripening protein in our mutant plant which was absent from the
WT control indicating a greater control to manage increasing
ROS production.

Increases in GST and POX activity further coincided in our
study with a higher content of FAA with proline being the
highest (Table 2), which might suggest that proline also
participates in scavenging reactive oxygen species in addition
to its role as an osmolyte as previously reported for salt-stressed
plants (Hoque et al., 2007; Hossain et al., 2011; Cruz de Carvalho
et al., 2013; Rejeb et al., 2014). Proline provides osmo-protection
and the amount increases in many plant species, including
maize, wheat, and pea, following exposure to water deficit
stress (Matysik et al., 2002; Rampino et al., 2006; Charlton
et al., 2008; Szabados and Savoure, 2010; Witt et al., 2012;
Abid et al., 2018; Le Roux et al., 2019; Verslues and Juenger,
2019). Other FAAs that were much higher in the mutant when
compared to the WT Tugela DN include methionine, asparagine,
isoleucine, and phenylalanine. Pool sizes of FAAs are important,
not only because of their requirement in protein biosynthesis
(Good and Zaplachinski, 1994), but also for their additional
functions in plant metabolism and signal transduction processes
which ultimately may contribute to adequate water stress
response. The extended level of amino acids is evident in
enhancing stress pliability in our study, since RYNO3936
increases FAA under water deficit stress conditions, but FAA
concentrations decrease considerably after re-watering to near
well-watered levels (day 0). Abid et al. (2018) demonstrated that
drought stress leads to a gradual increase of FAA, but soon
decrease to match that of well-watered levels in wheat. This
effective management of FAA has been suggested to aid in
drought tolerance by protein stabilization, ROS detoxification
and osmotic adjustment (Bowne et al., 2012; Rabara et al., 2017;
Michaletti et al., 2018; Jia et al., 2019). FAA pool sizes are known
to be induced under stress and during senescence (Hildebrandt
et al., 2015 and references within). More important in the context
of this study, in a recent study by Yadav et al. (2019), a strong
genetic association was observed between glasshouse-based
RWC, metabolites, and yield gap-based drought tolerance
(YDT; the ratio of yield in water-limited versus well-watered
conditions) across 18 field environments spanning sites and
Frontiers in Plant Science | www.frontiersin.org 16
seasons. Specifically of interest is the observation that 98% of
the genetic YDT variance could be explained by drought
responses of four metabolites: serine, asparagine, methionine,
and lysine (R2 = 0.98; P < 0.01). More specifically, that higher
levels of methionine and lysine were more strongly associated
with higher YDT, than the other amino acids, which support our
observations in RYNO3638 with enhanced water deficit stress
tolerance (Le Roux et al., 2019).

Changes in the transcriptome differs to changes at protein
level (Gygi et al., 1999; Bogeat-Triboulot et al., 2006; Morimoto
and Yahara, 2018), necessitating studies into the proteome to
elucidate the water stress response pathway in crop species (Ford
et al., 2011; Budak et al., 2013; Rabello et al., 2014; Liu et al., 2015;
Chmielewska et al., 2016). In our study, we also found that our
mutant RYNO3936 expressed proteins associated with osmotic
stress tolerance (e.g. abscisic stress-ripening protein, cold
induced protein, cold-responsive protein, dehydrin, and Group
3 late embryogenesis abundant protein, LEA) more than in the
control. Dehydrin and LEA proteins have been long known to
increase osmotic stress tolerance in plants (Figueras et al., 2005;
Brini et al., 2007). With induction of water stress (day 7), the
mutant expressed a LAlv9 family protein belonging to the family
of lipocalins. Literature is rather limited regarding functionality
of these proteins. In the past, lipocalins have been classified as
transport proteins; however, it is now clear that lipocalins are
involved in a variety of functions, including regulation of cell
homeostasis, modulation of the immune response, programmed
cell death (Lee et al., 2007; Kale et al., 2018) and, as carrier
proteins, to act in the general clearance of endogenous and
exogenous compounds (Flower, 1996 and references within;
Kale et al., 2018). In mammals, an ortholog of the lipocalin
family (BCL-2) controls cell death primarily by direct binding
interactions that regulate mitochondrial outer membrane
permeabilization (MOMP) leading to the irreversible release of
intermembrane space proteins, subsequent caspase activation,
and apoptosis (Kale et al., 2018). While in plants, the AtTIL
lipocalin was shown to be functional in modulating tolerance to
oxidative stress (Charron et al., 2008), when it was demonstrated
that overexpression enhances tolerance to stress caused by
freezing, paraquat, and light in Arabidopsis by encoding
components of oxidative stress and energy balance. More
importantly in the context of the present study, in Arabidopsis
AtTIL lipocalin delays flowering and maintains leaf greenness in
the latter plant, like our observations in RYNO3936. So lipocalin
might partly explain the more water deficit stress tolerance of the
mutant. This would be a new and important aspect not found so
far for a wheat mutant with improved drought tolerance.

In conclusion, we characterized a new wheat mutant RYNO3936
which is associated with delayed water deficit stress-induced leaf
senescence and rapid drought recovery. In particular, when this
mutant was exposed to water deficit conditions it displayed higher
RWC in its roots and leaves, sustained its chlorophyll fluorescence
activity and stomatal conductance, accumulated in a selected set of
FAAs associated with drought stress, expressed a unique set of
proteins, showed delayed protein degradation and higher
antioxidative enzyme activities when compared with its WT
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progenitor. Our mutant also uniquely expressed an abscisic stress-
ripening protein and a LAlv9 family protein belonging to the family
of lipocalins, which are involved in a variety of functions, including
regulation of cell homeostasis, modulation of the immune response,
and programmed cell death. Overall, our results suggest that our new
high yielding wheat mutant RYNO2936 has a potential application in
wheat breeding programs to enhance drought tolerance. Additionally,
we characterized several of its unique traits (compared to the WT)
that will assist future screening of mutant germplasm.
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TABLE S2 | Blast2GO results from the peptides obtained after LC-ESI-MS/MS
analysis of total protein isolated from RYNO3936 before (day 0), and after induction
of water stress (days 7 and 14), and after recovery and regrowth (day 21).

TABLE S3 | List of proteins expressed in RYNO3936 before (day 0), and after
induction of water stress (days 7 and 14), as well as after recovery and regrowth
(day 21). Indicated are the sequence name, protein identity, length and number of
hits, number of GO terms, and e-value. The cluster numbers correspond to that
given in Figure S2.

FIGURE S1 | Proportional contribution of proteins expressed in RYNO3936 to the
different functional categories, where (A) biological processes; (B) cellular
component; and (C) molecular function.

FIGURE S2 | Cluster image generated by Java TreeView (Saldanha, 2004) of the
proteins obtained after LC-ESI-MS/MS analysis of total protein isolated from
RYNO3936 before (day 0), and after induction of water stress (days 7 and 14), and
after recovery and regrowth (day 21). Red bands show up-regulated proteins,
whereas green bands show down-regulated proteins.
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Perdomo, J., Capó-Bauçà, S., Carmo-Silva, E., and Galmés, J. (2017). RuBisCO and
RuBisCO activase play an important role in the biochemical limitations of
photosynthesis in rice, wheat, and maize under high temperature and water
deficit. Front. Plant Sci. 8, 490. doi: 10.3389/fpls.2017.00490

Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S.,
Kundu, D. J., et al. (2019). The PRIDE database and related tools and resources
in 2019: improving support for quantification data. Nucleic Acids Res. 47 (D1),
D442–D450. doi: 10.1093/nar/gky1106

Prins, A., van Heerden, P., Olmos, E., Kunert, K., and Foyer, C. (2008). Cysteine
proteinases regulate chloroplast protein content and composition in tobacco
leaves: a model for dynamic interactions with ribulose-1,5-bisphosphate
carboxylase/oxygenase (Rubisco) vesicular bodies. J. Exp. Bot. 59, 1935–1950.
doi: 10.1093/jxb/ern086

Rabara, R., Tripathi, P., and Rushton, P. (2017). Comparative metabolome profile
between tobacco and soybean grown under water-stressed conditions. BioMed.
Res. Int. 2017, 1–12. doi: 10.1155/2017/3065251

Rabello, F., Villeth, G., Rabello, A., Rangel, P., Guimarães, C., Huergo, L. F., et al.
(2014). Proteomic analysis of upland rice (Oryza sativa L.) exposed to
intermittent water deficit. Protein J. 33, 221–230. doi: 10.1007/s10930-014-
9554-1

Rampino, P., Pataleo, S., Gerardi, C., Mita, G., and Perrotta, C. (2006). Drought
stress response in wheat: physiological and molecular analysis of resistant and
sensitive genotypes. Plant Cell Environ. 29, 2143–2152. doi: 10.1111/j.1365-
3040.2006.01588.x

Ranieri, M., Vivo, M., De Simone, M., Guerrini, L., Pollice, A., La Mantia, G., et al.
(2018). SUMOylation and ubiquitylation crosstalk in the control of DNp63a
protein stability. Gene 645, 34–40. doi: 10.1016/j.gene.2017.12.018

Reddy, A., Chaitanya, K., and Vivekanandan, M. (2004). Drought-induced
responses of photosynthesis and antioxidant metabolism in higher plants.
J. Plant Physiol. 161, 1189–1202. doi: 10.1016/j.jplph.2004.01.013
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