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Plant viruses cause considerable economic losses and are a threat for sustainable
agriculture. The frequent emergence of new viral diseases is mainly due to international
trade, climate change, and the ability of viruses for rapid evolution. Disease control is
based on two strategies: i) immunization (genetic resistance obtained by plant breeding,
plant transformation, cross-protection, or others), and i) prophylaxis to restrain virus
dispersion (using quarantine, certification, removal of infected plants, control of natural
vectors, or other procedures). Disease management relies strongly on a fast and accurate
identification of the causal agent. For known viruses, diagnosis consists in assigning a
virus infecting a plant sample to a group of viruses sharing commmon characteristics, which
is usually referred to as species. However, the specificity of diagnosis can also reach
higher taxonomic levels, as genus or family, or lower levels, as strain or variant. Diagnostic
procedures must be optimized for accuracy by detecting the maximum number of
members within the group (sensitivity as the true positive rate) and distinguishing them
from outgroup viruses (specificity as the true negative rate). This requires information on
the genetic relationships within-group and with members of other groups. The influence of
the genetic diversity of virus populations in diagnosis and disease management is well
documented, but information on how to integrate the genetic diversity in the detection
methods is still scarce. Here we review the techniques used for plant virus diagnosis and
disease control, including characteristics such as accuracy, detection level, multiplexing,
quantification, portability, and designability. The effect of genetic diversity and evolution of
plant viruses in the design and performance of some detection and disease control
techniques are also discussed. High-throughput or next-generation sequencing provides
broad-spectrum and accurate identification of viruses enabling multiplex detection,
quantification, and the discovery of new viruses. Likely, this technique will be the future
standard in diagnostics as its cost will be dropping and becoming more affordable.

Keywords: hybridization, PCR, loop-mediated isothermal amplification, next-generation sequencing, multiplexing,
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INTRODUCTION

Viral diseases are a major threat to sustainable and productive
agriculture worldwide, resulting in losses of several billion dollars
every year (Mumford et al, 2016). The highest impact occurs
with emerging diseases, defined by a rapid increase in disease
incidence, geographical range, and/or pathogenicity. The main
factors driving virus emergence are: i) the agricultural systems
based on monocrops with low genetic diversity and high plant
density, which are more vulnerable to pathogens and pests; ii)
world trade of plant material (germplasm and live plants)
that moves viruses, hosts, and vectors to new regions and
environments; iii) the climate change affecting the distribution
area of hosts and vectors; and iv) the ability of viruses for rapid
evolution and adaptation (Anderson et al., 2004; Jones, 2009;
Elena et al., 2014).

Presently, curing plants once they have been infected by a virus
is not feasible, unlike bacteria or fungi that can be treated with
antibacterial or antifungal agents, respectively. So, disease
management relies on preventing viruses from entering plants,
or getting plants resistant to viral infection, using multiple
strategies that must be developed specifically for each virus,
host, and environment (pathosystem). Specific tools for virus
diagnostics and identification are pivotal to set up and evaluate
disease management. Here, the current state and progress of
procedures used for virus detection are reviewed, discussing
important features such as their sensitivity, specificity, versatility,
portability, capacity for multiplexing, and virus quantification and
designability. This review also includes basic concepts of genetic
diversity and evolution of plant viruses and how they must be
considered to improve detection. Finally, the main strategies for
disease control are described, showing both the more suitable
detection methods and how genetic diversity and evolution of
virus populations can affect the efficiency and durability of some
control strategies. This review follows a pragmatic approach aimed
to guide plant pathologists to design and apply more accurate
detection procedures for a more efficient management of
viral diseases.

GENETIC VARIABILITY AND EVOLUTION
OF PLANT VIRUSES

Viruses have a great potential for high genetic variability due to
their rapid replication and generation of large populations.
Viruses with RNA genomes, comprising most plant viruses,
and viroids have the highest mutation rate of any group of
replicons, since RNA polymerases lack a proofreading activity
(Domingo et al., 1996; Drake and Holland, 1999; Gago et al,
2009). The mutation rate is so high that replication from a single
RNA molecule gives rise to a population of mutant sequences
(haplotypes or variants) grouped around a master sequence,
termed quasispecies (Holland et al.,, 1982; Moya et al., 2004).
Populations of closely related viral or viroidal variants in
individual plants have been reported (Ambros et al., 1999;
Kong et al, 2000; Gandia et al, 2005). Viral populations in

individual plants can be even more complex, since mixed
infections with different virus species (Juarez et al., 2013) or
divergent variants of the same virus species (Rubio et al., 2001;
Gomez et al,, 2009) are frequent as a consequence of successive
inoculations by vectors (e.g., insects). For example, a survey of
seven tomato viruses in Sicily, Italy (Panno et al., 2012) showed
that most plants (75.5%) presented multiple infections, whereas
17.8% were infected with a single virus, and only 6.7% were free
of these viruses (Table 1). Synergistic interactions between
different viruses and viroids in mixed infection can lead to
increased virulence (symptoms and/or viral accumulation) or
even new diseases (Wang et al., 2002; Wintermantel, 2005;
Murphy and Bowen, 2006; Untiveros et al., 2007; Syller, 2012;
Moreno and Lopez-Moya, 2020). Mixed infections of two viruses
also enable recombination, which, in addition to mutation, is
another source of genetic variation and emergence of new
viruses. Recombinants have been described between different
species of plant viruses (Padidam et al., 1999; Chare and Holmes,
2006; Codoner and Elena, 2008; Davino et al., 2012) or divergent
viral strains (Rubio et al., 2013; Lian et al., 2013; Ferriol et al.,
2014). Recombination seems a frequent event coupled to virus
replication (Froissart et al., 2005; Sztuba-Solinska et al., 2011), so
that populations of different recombinants have been found in
individual plants (Figure 1A) (Vives et al., 2005; Weng et al,,
2007). Recombination in RNA viruses is considered as a
mechanism for rapid removal of many deleterious mutations
produced during replication and regeneration of functional
genomes (Moya et al., 2004).

The genetic variation produced by mutation and recombination
is restricted and structured by the other three evolutionary forces:
natural selection, genetic drift, and gene flow. Natural selection is a
directional process by which the less fit virus variants will decrease
their frequency in the population (negative or purifying selection)
as a result of functional restrictions necessary for replication,
movement between plant cells, transmission by vectors, and
specific interactions between virus and host or virus and vector
(Power, 2000; Schneider and Roossinck, 2001; Chare and Holmes,
2004). Positive or adaptive selection consists in the frequency
increase of the fittest variants carrying genetic changes required
to become adapted to new hosts and/or vectors (Agudelo-Romero
et al., 2008; Ohshima et al., 2009; Pefa et al., 2014). Genetic drift
consists of stochastic changes in the frequencies of genomic
variants in a finite population due to random sampling occurred
during reproduction (Moya et al., 2004). The effect is a reduction of
genetic variability and fixation of selectively neutral variants that is
more evident after a rapid reduction of the population size by
population bottlenecks or founder events, which can occur in
different steps of the virus life cycle, such as virus movement
between plant cells and transmission by vectors (Sacristan et al.,
2003; Ali et al.,, 2006; Betancourt et al., 2008; Ali and Roossinck,
2010). Figure 1B shows genetic changes of citrus tristeza virus
(CTV) isolates, revealed by single-strand conformation
polymorphism analysis (explained below), after host change or
vector transmission. Finally, gene flow (migration) among viral
populations from distinct geographic areas is another factor
shaping the genetic structure and variation, so that high
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TABLE 1 | Multiple infections of viruses in tomato crops in Sicily, Italy.

N,? N, (%)° PepMV °© TSWV °© ToTV °©
0 3(6.7) - - -
1 8(17.8) + - -
_ 4 _
2 10 (22.2) + + -
¥ _ _
_ . _
_ 4 _
3 13 (28.8) + + -
_ 4 _
_ 4 _
_ . _
4 8(17.8) + + -
+ + -
_ 4 _
+ - +
+ _ _
i _ _
5 3(6.7) + + -
+ +
+ - +
Ni (%)° 17 (37.8) 25 (55.6) 2 (4.4)

Data obtained from Table 2 in Panno et al., 2012.
AN,, number of viruses per plant.

ToCV ° CMV °© ToMV © TIcv © Ne (%)
- - - - 3(6.7)
- - - - 2 (4.4)
- - - - 2 (4.4)
+ - - - 4(8.9)
- - - - 2 (4.4)
+ - - - 2 (4.4)
+ - - - 2 (4.4)
- + - - 1(2.2)
+ + - - 1(2.2)
+ - - + 2 (4.4)
+ - - - 2 (4.4)
+ + - - 7 (15.6)
+ - + - 1(2.2)
- + + - 2(4.4)
+ + + - 1(2.2)
- + + - 1(2.2)
+ + - - 1(2.2)
+ - + + 2 (4.4)
- - + + 122
+ + - + 1(2.2)
+ + + - 2 (4.4
+ - + + 1(2.2)
+ + + - 1(2.2)
+ - + + 1(2.2)

32 (71.1) 20 (44.4) 12 (26.7) 6 (13.3)

PN,,(%), number of plants and percentage (between parentheses) of uninfected (N, = 0), or with single (N, = 1), double (N, = 2), triple (N, = 3), quadruple (N, = 4), or quintuple (N, = 5)

infections.

Viruses: Pepino mosaic virus (PepMV), Tomato spotted wilt virus (TSWV), Tomato torrado virus (ToTV), Tomato chlorosis virus (ToCV), Cucumber mosaic virus (CMV), Tomato mosaic

“

virus (ToMV) and Tomato infectious chlorosis virus (TICV). “+” indicates the presence and “~” the absence of a virus.

INe (%), number and percentage of plants infected by different virus combinations.
°N; (%), number and percentage of plants infected by each virus.

migration rates favor genetic uniformity between populations
decreasing the global genetic diversity (Moya et al., 2004). The
rapid evolution of plant viruses implies that epidemiological and
evolutionary processes interplay, and they must be considered
together to understand and prevent viral emergence.

DETECTION OF PLANT VIRUSES

Serological and Molecular Techniques
In the last decades, rapid and specific serological (enzyme-linked
immunosorbent assay, ELISA) and molecular techniques
(molecular hybridization and DNA amplification) for the
detection of plant viruses have been developed. ELISA is based
on specific binding of viral proteins with antibodies (Clark and
Adams, 1977), and molecular hybridization, on binding viral
nucleic acids with sequence-specific DNA or RNA probes, due to
their sequence complementarity (Hull and Al-Hakim, 1988).
These binding events are visualized by attached markers based
on fluorescent dyes, enzymes producing colorimetric or
chemiluminescent reactions, radioactivity, or others.

Detection methods based on DNA amplification can be
classified into two types: polymerase chain reaction (PCR) and
isothermal amplification. PCR makes millions of DNA copies of a

specific region of the viral genome that are usually visualized by
electrophoresis or by hybridization with fluorescent probes. PCR
can use as template genomic DNA, or complementary DNA
obtained after reverse transcription (RT) of viral RNA.
Amplification occurs in three steps: i) denaturation by heating at
90°C to 95°C to separate the double-stranded DNA (dsDNA)
template into single strands; ii) annealing by cooling at 40°C to
60°C to allow the primers (two short DNA sequences of 15-40 nt)
to bind the start and end of the target DNA; iii) extension by heating
at 70°C to 75°C, in which a thermostable DNA polymerase
synthesizes new DNA strands starting from the primers. These
steps are repeated for 20 to 40 cycles, so the newly synthesized DNA
segments serve as template in next cycles (Mullis and Faloona,
1987). The PCR product is visualized by electrophoresis, and it can
be further characterized by Sanger sequencing (first-generation
sequencing), enabling a more precise identification by comparison
with known sequences from databases like GenBank (see below).
Also, this approach is used to genotype virus populations, evaluate
their genetic diversity, and study their evolution (see below). Real-
time quantitative PCR (qQPCR) is a variant of this technique that
monitors the reaction progress by detecting a fluorescent reporter
that binds to the dsDNA or is released from sequence-specific
probes of 15 to 30 nt. This PCR variant can be used to quantify
nucleic acids (see below).
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single-strand conformation polymorphism (SSCP) analysis.

87.5% CED 2.5% S 94.4% 87.3% CEN—
7.5% CE— 5.0% I  2.3% D 1.7% cum—
2.5% eEE—— 25% D 2.0 2.5% CEE——
2.5% CEE—— 2.5% CE——

B
Grafting a’phid 4
= =
Citron Sweet orange Sweet orange Sweet orange

FIGURE 1 | Evolutionary analysis of citrus tristeza virus (CTV). (A) A population of recombinants within the CTV isolate SY568-B6 (Vives et al., 2005). Above is a
partial representation of the genomic map of CTV with boxes corresponding to genes. Red and green lines indicate sequence types with about 90% nucleotide
identity between them. The relative frequency of each sequence type is indicated. (B) Genetic variation of the CTV isolate T317 after host change (Rubio et al., 2000)
and the CTV isolate 408F after a transmission event by the aphid Aphis gossypii (d’Urso et al., 2000). Genetic variants are showed as electrophoretic bands after

1

Isothermal amplification can be achieved by different
approaches (Olmos et al., 2007): i) Helicase dependent
amplification (HAD) uses a helicase to separate the strands of
dsDNA, allowing primer binding and extension by DNA
polymerase at a constant temperature of about 65°C. ii)
Recombinase polymerase amplification (RPA) uses a
recombinase which forms a complex with primers to initiate
amplification at a temperature between 37°C and 42°C. iii)
Nucleic acid sequence-based amplification method (NASBA)
uses a modified primer with the bacteriophage T7 promoter
region that attaches to the RNA template. Reverse transcriptase
and RNase H are used to synthesize complementary ds DNA,
and a T7 RNA polymerase to synthesize complementary RNA
strands resulting in amplification. iv) Loop-mediated isothermal
amplification (LAMP) is based on auto cycling and high DNA
strand displacement activity mediated by Bst polymerase from
Geobacillus stearothermophilus, under isothermal conditions at
60°C to 65°C (Panno et al, 2020). Recently, new tools for
molecular diagnosis have been developed based on prokaryotic
clustered regularly interspaced short palindromic repeats
(CRISPR) immunity system, widely applied for genome editing
(Chertow, 2018).

High-Throughput Sequencing

The advent of high-throughput sequencing (HTS) technologies,
also known as next-generation sequencing, has led to a revolution
in plant virus diagnosis (Maree et al., 2018; Villamor et al., 2019).
HTS does not require any previous knowledge of viral sequences
and can sequence millions or billions of DNA molecules in

parallel, enabling the detection of all viruses present in a plant
(virome), including those still unknown (Roossinck, 2015). HTS
allowed elucidating the elusive etiology of some diseases (Vives
et al, 2013; He et al., 2015), but often it is not possible to find a
direct association between the disease and a particular virus
(Tomasechova et al., 2020) among those detected in the infected
plant. In this case, the diagnostic must be established by fulfilling
Koch’s postulates, or at least by finding a tight association between
the disease and the presence of a certain virus in field surveys
(Mumo et al., 2020).

HTS can be divided into two types. Second-generation
sequencing is based on the preparation of random libraries of
DNA fragments when DNA is used as starting material, or of
cDNA obtained by retrotranscription of the RNA with random
primers or oligodT. These libraries are clonally amplified, bond to
synthetic DNA adapters and sequenced in parallel. This produces
a large number of short sequence reads (100-500 nt) that are
assembled by connecting overlapping sequence reads according to
nucleotide identity by informatic analysis, e.g., Geneious package
(www.geneious.com). Several platforms for second-generation
sequencing have been developed by different companies such as
Roche 454, Illumina, Solid and Ion Torrent (Bleidorn, 2016;
Goodwin et al,, 2016; Heather and Chain, 2016; Villamor et al.,
2019). In addition to detection of new plant viruses and viroids,
HTS is being used for studies on epidemiology, synergistic
interactions between viruses, and genetic diversity and
evolutionary mechanisms of virus populations (Kehoe et al.,
2014; Hadidi et al., 2016; Pecman et al., 2017; Roossinck, 2017;
Tan et al.,, 2019; Xu et al.,, 2019).
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Third-generation sequencing is based on sequencing single
molecules in real-time without the need for clonal amplification,
thus shortening DNA preparation time and giving long reads of
several kilobases (Goodwin et al., 2016; van Dijk et al., 2018). Long
reads are more appropriate for genome sequencing, genotyping, and
detecting recombination. However, third-generation sequencing
needs further improvement since error rates are still much higher
than in second-generation sequencing. Several techniques are being
developed by different companies such as single-molecule real-time
(SMRT) and nanopore sequencing. SMRT sequencing uses a flow
cell with millions of individual picolitre wells with transparent
bottoms (zero-mode waveguides) with a DNA polymerase fixed.
Incorporation on each single-molecule template per well is
continuously visualized with a laser and camera system that
records the color and duration of emitted light, as the labeled
nucleotide momentarily pauses during incorporation at the bottom
of the wells. Nanopore sequencing is based on translocating the
DNA or RNA through a nanopore (in membrane proteins or
synthetic materials such as silicon nitride and aluminum oxide),
where an ionic current pass by setting a voltage. The DNA passing
through the nanopore changes the current depending on the shape,
size and length of the DNA sequence. Nanopore sequencing has
several advantages such as the relatively low cost compared to other
HTS technologies, high mobility due to the sequencer small size and
rapid sample processing, without the need for reverse transcription
for RNA viruses (Kiselev et al., 2020). This technology has been
recently used to detect some plant viruses, such as plum pox virus
(PPV) and tomato yellow leaf curl virus (TYLCV), and discover
new plant viruses (Bronzato Badial et al., 2018; Chalupowicz et al,
2019; Naito et al., 2019).

Accuracy of Virus Diagnosis

Detection procedures must be optimized for accuracy, measured
as sensitivity and specificity, which are the statistical measures of
performance of binary classification tests (Sharma et al., 2009).
Sensitivity measures the proportion of actual positives which are
classified as such (probability of true positives) and specificity
measures the proportion of negatives which are correctly
identified (probability of true negatives). Other measures of
accuracy are positive predictive value, defined as the proportion
of positive samples correctly diagnosed, and negative predictive
value, or proportion of samples with negative results correctly
diagnosed (Table 2). However, the predictive values depend on

TABLE 2 | Measure of accuracy in diagnostic tests.

Virus present Virus absent

Test a (True positives) b (False positives) — Positive

positive Type | error predictive value
a/(a+b)

Test ¢ (False negatives) d (True negatives) — Negative

negative | Type Il error predictive value
c/(c+d)

l l
SENSITIVITY a/(a+c)  SPECIFICITY b/(b+d)

*a, b, ¢, and d represent number of samples (plants).

the infection prevalence in the samples tested and do not apply
universally (Olmos et al., 2007).

Low virus titer can limit sensitivity, producing false
negatives when the virus concentration is under the technique
detection threshold. Usually, the molecular techniques are more
sensitive than the serological ones. Conventional PCR is much
more sensitive than molecular hybridization. Some modalities of
PCR are even more sensitive, such as qPCR and nested PCR
(this uses two successive runs of PCR with a second primer pair
to amplify a secondary target within the product of the first run).
LAMP exhibits a sensitivity in the order of qPCR and is less
affected than PCR by inhibitors (phenols, tannins, and complex
polysaccharides), which are often a cause of false negatives.
Paradoxically, the high sensitivity of the amplification
techniques can be a problem, as contamination of reagents
and instruments with amplicons from previous samples and
cross-contamination between samples can produce false
positives reducing specificity.

An important factor affecting the accuracy of the serological
and molecular detection methods is the genetic variability within
each virus species and the genetic relationships with other virus
species. Since these methods are based on specific binding
(protein with antibody or nucleic acids with probes or primers),
some dissimilar virus variants can fail to react giving false
negatives. For example, universal detection of PPV by ELISA
with monoclonal antibodies failed for some PPV isolates
(Sheveleva et al., 2018). On the other hand, false positives by
cross-reactions of antibodies with related viruses have been
described for some viruses, e.g., arabis mosaic virus (ArMV)
(Frison and Stace-Smith, 1992). Unlike antibody production,
primers and probes are better suited to be optimized by
considering the genetic variability. However, genetic variation
of viruses is often neglected, and accuracy is tested just with
samples from local surveys harboring genetically similar virus
isolates. Thus, some detection protocols can fail when applied
with the same reagents (probes or primers) in other geographical
areas or after the emergence of divergent variants, e.g., pepino
mosaic virus (PepMV) and apple chlorotic leafspot virus
(ACLSV) (Mansilla et al., 2003; Spiegel et al., 2006).

To design accurate probes or primers for a given virus, the
first step is to get a picture of the genetic variation and structure
by gathering as many nucleotide sequences as possible from
isolates of that virus and from genetically related viruses.
Sequences of specific genomic regions or complete genomes
can be determined from purified or cloned PCR products or
by HTS from viral samples and retrieved from databases like
GenBank (https://www.ncbi.nlm.nih.gov/). The genetic diversity
and structure can be estimated easily with the MEGA X software
(Kumar et al., 2018), after alignment with the algorithm
CLUSTALW (Higgins et al, 1994) implemented in MEGA.
Nucleotide diversity is the mean distance (proportion of
nucleotide differences) between sequence pairs and can be
considered as a measure of the genetic variation within a virus
population. In this case, p-distance should be used instead of
nucleotide substitution models as this analysis is aimed to know
the actual genetic differences for application in diagnostic and
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not the evolutionary changes that occurred. The genetic structure
can be visualized with phylogenetic trees, which can be inferred
with different methods, such as Neighbor-Joining, Maximum
Likelihood and Maximum Parsimony. As an illustration, Figure
2 shows the nucleotide diversity and the phylogenetic
relationships of randomly selected worldwide isolates of

cucumber green mottle mosaic virus (CGMMYV) and grapevine
leafroll-associated virus 2 (GLRaV-2). The nucleotide diversity of
GLRaV-2 is higher, so it is more challenging to develop an
accurate detection method for GLRaV-2 than for CGMMYV.
Since the viral population of GLRaV-2 is structured in eight
groups or clades, at least one isolate per clade should be

CGMMV

HQ329106 lraEU366912 _—
ndia
AJ459423\ “ = ee ;

JQ712998|ndia(3reece «/,DQ647384 China

HQ692886 Taiwari o) 72AJ429090 France
D12505 Japan

o KF155231 Israel
EF521882 Russia
AJ459421 Greece

e GQ411361 Spain

GLRaV-2

JN865254 Polan:

EU204910 Braziks/100
EU760848 USA FJ786017 China

—
0.01

Nucleotide diversity
0.170

0.048

CGMMV GLRaV-2

EU204911 Brazil

EU760841 USA

AY697863 Italy

DQ286725 ltaly

EF012718 France

™ EU760851 USA

JX513891 Canada

EF012717 Italy

FIGURE 2 | Nucleotide diversities and unrooted neighbor-joining trees of the coat protein gene of 15 isolates of cucumber green mottle mosaic virus (CGMMV) and
grapevine leafroll-associated virus 2 (GLRaV-2). Branch lengths are proportional to the genetic distances and bootstrap values > 65% are indicated.
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considered to develop detection and disease control procedures
for this virus.

For universal detection of a virus by PCR, primers should be
designed from short sequence stretches with conserved
nucleotide positions among all available sequences and they
should be degenerated to cover possible genetic variation not
found in the sequences analyzed (explained in Detection Levels).
For example, detection of PepMV by RT-PCR (Mansilla et al,
2003) failed for new PepMYV isolates and universal detection was
only achieved after designing primers targeting conserved
sequence stretches among PepMV isolates (Ling et al., 2007).
For molecular hybridization, different genomic regions should be
considered for probe design since the genetic diversity can vary
widely along the genome due to different selective pressures or
recombination. For example, broad bean wilt virus 1 (BBWV-1),
with a bipartite single-stranded RNA (ssRNA) genome, showed
the lowest nucleotide diversity in the 5 terminal sequence of
RNA 1 (Ferriol et al., 2014). Thus, only a DNA probe binding
this genomic region allowed universal detection of BBWV-1 by
molecular hybridization (Ferrer et al., 2008).

HTS enables accurate and unbiased identification of viruses
unlike the other techniques (ELISA, molecular hybridization or
amplification) requiring a specific binding that can fail to
detect some genetic variants. HTS generates hundreds of
megabases to gigabases of nucleotide sequence reads in a single
run providing a good sensitivity (Santala and Valkonen, 2018).
However, cross-contamination can produce false positives, so it
is necessary validation with other techniques, such as PCR
(Maree et al., 2018).

Detection Levels

Detection and identification of viruses are based on assigning a
virus from a plant sample to a group of viruses sharing common
characteristics. In most cases, the level of detection is the virus
species, but it can also be set for higher taxonomic units such as
genus or family, or lower units like strain (virus variants with
distinctive biological or molecular characteristics).

Serological techniques usually detect viruses to the species
level and, in some cases, they allow discrimination between virus
strains (serotypes) using monoclonal antibodies (Permar et al.,
1990; Myrta et al,, 2000; Sheveleva et al., 2018). Molecular
hybridization has been used mostly to detect virus species
(Supplementary Table S1), but the detection level can be
modified to a certain extent by using different probes and
hybridization conditions. The stability of the hybrid complexes
depends on the probe length and G-C content, the probe type
(DNA or RNA), and the number of global or local mismatches
(nucleotide distance) between target and probe. Therefore, the
distribution of nucleotide variation along the virus genome
should be considered to modulate the level of detection and to
test for accuracy. Regarding the hybridization conditions, a
more selective detection can be attained by using more
stringent conditions (higher incubation temperature, lower salt
concentration or adding denaturing agents like formamide), that
reduce the number of mismatches permitted to occur. Thus,
probes from variable genomic regions with stringent conditions

have been used to discriminate between virus strains or isolates
(Narvaez et al., 2000; Ferrer et al., 2008). Designing probes
complementary to regions conserved within taxonomic units
higher than species is challenging given the high nucleotide
variation among species. To our knowledge, only two cases
have been reported: i) A single RNA probe derived from the 5’
untranslated of BBWV-1 was able to hybridize with other
members of the genus Fabavirus (Ferriol et al., 2015). This
genomic region contains several perfect or near-perfect repeats
of ten nucleotides that allow hybridization despite the low
nucleotide identity between these virus species. ii) A polyprobe
with seven conserved motifs of the genus Potyvirus allowed
detection of 32 viruses of this genus by hybridizing at low
stringency conditions (Sanchez-Navarro et al., 2018).

PCR techniques are the most versatile and primers have
been designed for different detection levels from families and
genera (Supplementary Table S2) to strains and genetic variants
(Ruiz-Ruiz et al., 2009b; Debreczeni et al., 2011), whereas
isothermal amplification has been limited to the species level
(Supplementary Table $3). Obtaining primers specific for
genera or families is more challenging than for virus species
given the increasing nucleotide diversity of higher taxons.
Primer design requires searching for conserved nucleotide
positions among the members of the genus or family, which
usually correspond to sequence motifs with relevant biological
functions, and therefore, subjected to strong negative selection.
The conserved positions can occur at the nucleotide level due to
structural constraints, codon usage, or at sites where regulatory
proteins bind (Koonin, 1991; Adams and Antoniw, 2004;
Watters et al., 2017), but most are at amino acid level. For
example, primers for the subfamily Comovirinae (composed of
the genera Comovirus, Fabavirus and Nepovirus) were designed
based on amino acid motifs of the RNA-dependent RNA
polymerase: (T/V)YGDDN(V/L) and TSEG(Y/F)P (Koonin,
1991; Maliogka et al., 2004).

To design primers detecting the members of a genus or
family, at least one sequence per each virus species should be
used for alignment, preferably a codon-based or amino acid
alignment. Since the genetic code is redundant, the primer must
be degenerate, that is, composed of a mixture of almost identical
primers differing in some positions and covering all possible
nucleotide combinations for that protein sequence. The
degeneracy level should be reduced as much as possible due to
its negative effect in sensitivity (only a small proportion of the
primers would bind the target) and specificity (some primers can
bind to nontarget sequences). Several approaches can be used,
such as i) limiting the degenerate sites to the last 9 to 12
nucleotides from the 3’ terminus, which are critical for PCR
amplification, whereas some mispairings at the 5’ terminus are
allowed; ii) choosing low degeneracy (one- or two-fold) codons,
particularly at the 3’ terminus; and iii) using modified
nucleotides such as inosine (I) for four-fold degenerate sites
that can base-pair with the four normal nucleotides: A, C, G and
T. As an illustration, Figure 3 shows conserved amino acid
positions in the genus Fabavirus, which can be used for a
hypothetical universal detection of viruses within this genus.
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Forward primer =
XXX XXX XXG ARG CIG GIC

BBWV-1 (AB084450) ATG CCA A CTI GCC
BBWV-1 (AY781171) ATG CCA CCG GTC
BBWV-2 (FN985164) ACG CTA ) GCC
BBWV-2 (JX183231) ATG CAA C C
CuMMV  (EU881936) ATG CCC C gic
GeMV (EU747708) ATG CAA C GTC
GeMV (AB084452) ATG CTA CTG GCC
LMMV (KC595304) ATG CCC A CTG GCC
PrvF (MH177885) ATT CGC AG CTG GAC
PrvF (KX269865) ACT CAC AG CTG GAC
GFabV  (KX241482) ACG TGC CTG GCC
GFabV  (KX962563) ATG TGC AG CCG GCcC
PLPaV  (KY867750) ATG CGC AG B GTC

3683 E A G

€ Reverse primer

CIT T TGY TGY GAY TAX XXX XX
CCT TTG AGC...... TTA TGC TGC T TAC AGT AG
CTT TTG AAG...... TTG TGC TGT T TAC AGC AG
CAT TTG ATG...... TTG TGC TGT T TAC AGC AG
CTT TTG AAG...... CTG TGT TGT T TAT AGC AG
CTT TTG ATA...... TTA TGT TGT T TAC AGT CG
CAT TTG ACG...... TTA TGT TGT T TAT AGT AG
CTT TTG ATG...... TTG TGT TGC T TAT AGT CG
CAT TCC AAG...... CTT TGC TGT T TAC AGT AG
CTT TTG ACC...... TTG TGT TGT T TAT TCC CG
CCT TTG ACC...... CTT TGT TGT T TAT TCC CG
CAT TTG AAG...... TTG TGT TGT T TAT TCC CT
CTT TTG AAG...... TTG TET TGT T TAT TCC CT
CAT TTG ATT...... TTG TGT TGT T TAT TCC AG
F 4258 C C D Y

FIGURE 3 | Multiple nucleotide alignment of RNA 1 of different members of the genus Fabavirus, showing a hypothetical design of degenerated primers based on
conserved nucleotide positions. On top are hypothetical primers with degenerate sites: R=A+G, Y= C+T and | (inosine)= A+C+G+T, and X= less restricted
nucleotides. Virus species of the genus Fabavirus are Broad bean wilt virus 1 (BBWV-1), BBWV-2, Cucurbit mild mosaic virus (CUMMYV), Gentian mosaic virus
(GeMV), Lamium mild mosaic virus (LMMV), Prunus virus F (PrVF), Grapevine fabavirus (GFabV) and the tentative member peach leaf pitting-associated virus (PLPaV).
GenBank accession numbers are between parentheses. Below are the nucleotide positions for GenBank accession AY781171 and the conserved amino acids.

The PCR products obtained with conserved primers for a genus
or family can be further purified and sequenced to identify the
viral species or discover new ones (Zheng et al., 2010). In plants
infected with two or more species of the same genus or family, it
is necessary to clone the PCR products and sequence individual
clones to identify each virus species. In some cases, the PCR
products obtained with conserved primers are of distinct size
for each virus species and can be easily discriminated by
electrophoresis (James and Upton, 1999; Ferrer et al., 2007).
Tools to detect small genetic variations are also necessary
given the great potential of viruses to generate high genetic and
biological variation (genetic variants can display different
properties, such as host range, virulence and resistance-
breakdown). Several techniques based on PCR or using
PCR products as templates have been used for genotyping: i)
Randomly amplified polymorphic DNA (RAPD)-PCR uses a
single short primer with an arbitrary nucleotide sequence (8-12
nucleotides) to produce different random segments depending
on the target amplified, which are visualized by electrophoresis.
This technique does not require knowledge of the target DNA
sequence, but its reproducibility is low and has been applied only
for few plant viruses (Williams et al., 1990; de Araujo et al,
2007); ii) Restriction fragment length polymorphism (RFLP)
analysis is based on digestion of the PCR products with
restriction enzymes and electrophoretic separation of the
resulting restriction fragments according to their length,
revealing sequence differences within the restriction sites. This
technique has been used to differentiate isolates of some plant
viruses, such as prunus necrotic ringspot virus (PNRSV), TYLCV
and CTV (Gillings et al., 1993; Hammond et al., 1998; Font
et al., 2007); iii) Single-strand conformation polymorphism
(SSCP) analysis is based on electrophoresis of denatured
dsDNA in non-denaturing gels so migration of single-stranded
DNA depends on its conformation determined by its nucleotide
sequence and the electrophoretic conditions. This technique is
very resolutive and can detect small differences, even of a single
nucleotide, but it is very sensitive to minute changes in the
electrophoretic conditions hindering reproducibility. The main

advantage of SSCP analysis is the ability to detect different
genetic variants (visualized as electrophoretic bands) within a
sample (plant), allowing to assess within-isolate genetic variation
rapidly. This technique followed by sequencing of the different
haplotypes detected has been used to evaluate the genetic
variation of some plant viruses, such as cucumber mosaic virus
(CMV), citrus psorosis virus (CPsV) and CTV (Rubio et al,
1996; Rubio et al., 1999; Vives et al., 2002; Lin et al., 2003; Martin
et al., 2006). iv) Real-time qPCR has been used to differentiate
virus strains by high resolution melting DNA curve analysis with
SYBR Green or by using TaqManTM fluorescent probes specific
for each strain (Varga and James, 2005; Ruiz-Ruiz et al., 2007;
Bester et al., 2012).

HTS techniques are the most powerful and versatile since the
nucleotide sequences can be used not only to estimate the genetic
variation and structure of virus populations but also to identify
and ascribe a virus sample to different taxonomic levels or discover
new virus species, genera or families (Kreuze et al., 2009; Wu et al.,
2015; Pecman et al., 2017; Verdin et al., 2017), according to its
nucleotide or amino acid identity with known sequences in
databases (GenBank) or the presence of sequence motifs. This
task can be easily carried out with the algorithm BLAST (https://
www.ncbi.nlm.nih.gov/BLAST/), which compares the query
sequence with all sequences from databases and find those that
are more similar.

Recombination can produce biological and genomic variants
of a virus that can be very similar in one genome region and very
divergent in other. Thus, the complete genome or different
regions of it should be analyzed for detection and
identification of recombinant variants. Recombination can be
detected by comparing nucleotide identity and/or phylogenetic
relationships along the genome, which can be performed with
different procedures implemented in the package RDP 4 (Martin
et al,, 2015). For example, identification of CTV strains requires
different sets of primers (Roy et al., 2010) as recombination has
played an important role in shaping CTV genome (Martin et al.,
2009). HTS can be useful to detect recombination since full-
length or almost full-length viral genomes are sequenced rapidly,
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in a single analysis (Akinyemi et al., 2016; Silva et al., 2019),
unlike genome walking that requires successive steps of PCR,
Sanger sequencing and primer design. Third-generation
sequencing of single molecules seems more appropriate to
identify recombination (Viehweger et al., 2019) than second-
generation sequencing methods that can produce recombinant
artifacts, as genomic sequences are assembled from short
sequences. Nevertheless, it is convenient to confirm the
recombinants by PCR followed by Sanger sequencing.

Multiplexing

Procedures to detect and identify various viruses or virus strains
in a single assay simultaneously reduce time and cost of the
analysis (see Pallas et al., 2018 for a comprehensive review), and
are especially suitable for evaluating mixed infections in
individual plants. The detection of individual viruses in a
sample is mainly based on three approaches: i) spatial
separation of detection sites (wells or spots); ii) separation of
distinctly sized amplicons by electrophoresis; and iii) using a
different label for each virus (Dincer et al., 2017).

Multiplex PCR or RT-PCR is the amplification of multiple
targets simultaneously in a single PCR by using several primer
pairs specific for each target. Development of a multiplex PCR or
RT-PCR assay is often complex since primers must comply with
several conditions: i) similar melting temperatures (similar
length and G-C content) so that all primers can function
under the same PCR conditions; ii) compatibility, avoiding
cross-binding and competition; iii) similar sensitivity; and iv)
flanking genomic regions of different sizes so that the amplicons
of each target can be separated and visualized by gel
electrophoresis. The last constriction can be avoided by using
primers labeled with different color fluorescent dyes or coupling
the PCR with hybridization with specific probes (James et al,
2006). Multiplex PCR or RT-PCR have been used to identify: i)
the main viruses infecting a particular crop, such as tomato,
tobacco, legumes, potato, ornamentals, cucumber and olive
(Bariana et al., 1994; Bertolini et al., 2001; Dai et al., 2012;
Panno et al., 2012; Ge et al., 2013; Ali et al., 2014; Pallas et al.,
2018); ii) viruses from the same genus (Uga and Tsuda, 2005; Hu
et al., 2010; Panno et al., 2014); and iii) different strains of a viral
species (Hammond et al,, 1999; Nie and Singh, 2003; Huang
et al.,, 2004; Alfaro-Fernandez et al., 2009; Bester et al., 2012).
Multiplex real-time qPCR with Taqman probes labeled with
different fluorescent dyes have been used to identify viruses from
the same crop (Abrahamian et al, 2013; Lopez-Fabuel et al.,
2013; Malandraki et al., 2017), and strains or isolates from the
same viral species (Varga and James, 2005; Debreczeni et al,
2011). The main problem of multiplex PCR is that only a limited
number of targets can be amplified simultaneously since the
more primers are used, the higher is the probability of
incompatibility between some of them. Also, there is a
limitation in the number of products of different sizes that can
be resolved by electrophoresis or the number of fluorescent dyes
that can be used (Boonham et al., 2007). Multiplex LAMP has
also been developed for the simultaneous detection of some plant
viruses (Zhang J. et al., 2018; Wilisiani et al., 2019). Molecular
hybridization with cocktails of probes or polyprobes (probes

linked in tandem) has been used to detect different viruses
affecting a crop (Sanchez-Navarro et al, 1999; Saade et al.,
2000; Herranz et al., 2005; Aparicio et al., 2009; Minutillo
et al, 2012), although further analyses are necessary to identify
each virus.

Microarray analyses can screen many samples simultaneously.
They can be based on serology, but most are based on molecular
hybridization (Boonham et al, 2007; Boonham et al, 2014;
Charlermroj et al., 2014). Capture probes corresponding to
different viruses and/or genomic regions are attached to a solid
support (usually glass) and the sample to be examined is
fluorescently labeled so the identity of the virus or viruses
present in the sample is determined by the fluorescent positions
on the array. Capture probes can be produced from PCR products
(200-1000 bp in length) or synthetic oligonucleotides (20-70
nucleotides in length). Probe design must consider probe length,
melting temperature, GC content, secondary structure caused by
self-annealing and hybridization free energy since they affect
sensitivity and specificity. Short oligonucleotides (15-25
bases) are better to discriminate small sequence differences but
exhibit reduced sensitivity. Oligoprobes can be designed for
different detection levels (genus, species and strain) by choosing
conserved or variable sequence stretches. Sensitivity and specificity
can be improved controlling the hybridization temperature and
buffer composition (Boonham et al., 2007). Microarrays have been
used to detect: i) viruses infecting a particular crop, such as
tomato, cucurbits, potato and grapevine (Bystricka et al., 2003;
Engel et al., 2010; Sip et al., 2010; Tiberini et al., 2010; Tiberini and
Barba, 2012); ii) different viral species of a genus (Wei et al., 2009);
and iii) isolates or variants of the same virus (Deyong et al., 2005;
Pasquini et al., 2008). Microarrays have been improved to detect
hundreds of plant viruses, including genus-specific oligoprobes
(Zhang et al., 2010; Nicolaisen, 2011; Nam et al., 2014).

Microsphere technology, like Luminex xMAP, can detect up
to 500 targets in a single sample. It is based on microspheres
(beads) coated with specific antibodies or oligonucleotides,
which capture respectively viruses or PCR products obtained
from their genetic material. The beads have been dyed into
spectrally distinct sets, or “regions,” allowing them to be
individually identified. After binding, the target is labeled by
specific conjugated antibodies or probes which will give a
fluorescent signal. The color code of the bead in combination
with the fluorescent signal identifies a unique combination
(Boonham et al., 2014). Luminex xMAP system has been used
to detect viruses infecting a crop (Lim et al, 2016), viruses
belonging to a genus (van Brunschot et al.,, 2014; Bald-Blume
et al., 2017a), and strains or variants within a virus species (Bald-
Blume et al., 2017b).

HTS is the most powerful technique for multiplex detection as
it can identify and discover an unlimited number of viruses and
virus variants within a plant (Jones et al., 2017).

Quantification

Estimating the amount of a specific virus provides more precise
information than just determining the presence or absence of
that virus. ELISA and molecular hybridization can be used for
rough quantification of viral particles or nucleic acids based on
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the signal intensity (Rubio et al., 2003a; Rohrman et al., 2012).
Real-time qPCR is a very accurate procedure to estimate virus
titer with a wide dynamic range and great sensitivity.
The principle is to monitor in each cycle the increase of
fluorescence. The cycle at which amplification is observed
(cycle threshold, CT) is related to the inverse Log of the
quantity of target being amplified (Boonham et al., 2014).
Real-time qPCR or RT-qPCR has been developed for several
plant viruses (Mumford et al., 2000; Pico et al., 2005; Lopez et al.,
2006; Ling et al., 2007; Hongyun et al., 2008; Ruiz-Ruiz et al.,
2009a; Debreczeni et al., 2011; Ferriol et al., 2011; Sharma and
Dasgupta, 2012; MacKenzie et al., 2015; Herrera-Vasquez et al.,
2015). It has been applied to evaluate some disease control
methods such as i) study interactions between viruses in mixed
infections (Mortimer-Jones et al., 2009; Abrahamian et al., 2013),
which can be used for control based on cross protection (Ruiz-
Ruiz et al., 2009b; Hanssen et al., 2010); ii) estimation of
correlation between virus accumulation and transmission by
insect vectors (Olmos et al., 2005; Rotenberg et al., 2009;
Ferriol et al., 2013; Debreczeni et al., 2014), which can be used
for epidemiological studies and disease control strategies based
on restricting the dispersion of viruses by vectors; iii) evaluation
of the resistance level to virus accumulation in plant breeding
programs (Gil-Salas et al., 2009; Galipienso et al., 2013; Soler
et al., 2015); and iv) estimation of fitness in competition and
evolutionary experiments (Carrasco et al., 2007; Pefia et al., 2014)
which can be used for evolutionary and epidemiological studies,
as well as for evaluation of resistance durability. HTS can be used
for a relative quantification based on the number of reads for the
same sequence, but it is still too expensive for these applications.

Feasibility and Designability
Other important features to be considered in the detection
techniques are the costs, throughput screening (number of
samples analyzed simultaneously) and easiness, not only during
the application but also during the design or development
(Table 3).

Sample processing is a critical step and affects the rapidity,
easiness and throughput of the detection process. Molecular

hybridization and PCR techniques require purification of total
RNA or DNA from plants to remove substances inhibiting the
detection process (yielding false negatives) or producing a
background signal (yielding false positives). Inhibition of PCR
can be avoided or minimized by diluting the extracts or by
immunocapture (Olmos et al., 2007). HTS also requires
purification of DNA or RNA from plants. Libraries can be
enriched in viral sequences by using as starting material
preparations from which host nucleic acids have been removed
by subtractive hybridization or using purified viral particles,
double-stranded RNAs (dsRNAs) preparations, which are
enriched in replicative intermediates of RNA viruses, or small
RNAs resulting from RNA silencing that is a plant response
to virus infection (Kreuze et al., 2009; Singh et al., 2012;
Kesanakurti et al., 2016; Pecman et al., 2017; Czotter et al., 2018).

Extracts obtained by just grinding plant tissue in buffer can be
used for ELISA and LAMP. For some viruses, tissue-prints made
by cutting leaf petioles or rolled leaf blades transversely and
gently pressing the fresh cut onto nitrocellulose membranes have
been analyzed directly with ELISA or molecular hybridization
(Narvaez et al., 2000; Rubio et al., 2003b; Ferrer et al., 2008). An
alternative to passive incubation of probes with the targets
immobilized onto membranes in solution is the flow-through
hybridization, based on directing a probe flow towards the
targets immobilized on the membrane, reducing the
hybridization time from hours to a few minutes (Ferriol
et al., 2015).

On-site detection of plant viruses is an interesting feature
allowing a prompt response. Presently, several techniques are
commercially available (Donoso and Valenzuela, 2018). Lateral
flow assay (LFA) consists of a chromatographic test strip where
crude plant extracts are dropped and move capillarily. The virus
is detected when a stained band appears by binding virions with
labeled antibodies or viral nucleic acids with labeled DNA or
RNA probes (Drygin et al., 2012; Zhang et al., 2014; Koczula and
Gallotta, 2016). This procedure takes only about 15 to 30 min.
LFA has been used for multiplex detection of potato viruses
(Safenkova et al., 2016) and relative quantification (Rohrman
et al, 2012). RPA and LAMP isothermal amplification can be

TABLE 3 | Features of technique types for plant virus detection and diagnostics.

Designability Versatility? Multiplexing” Sensitivity ~Specify Quantification

Throughput

screening®  Rapidity On-site’ Easiness

ELISA

Molecular hybridization
DNA arrays
Conventional PCR
Real-time qPCR

LAMP and RPA
Lateral flow

HTS

Color intensity is proportional to positive qualification.

ELISA, enzyme-linked immunosorbent assay, PCR, polymerase chain reaction; gPCR, quantitative PCR, LAMP, loop-mediated isothermal amplification, RPA, recombinase polymerase

amplification; and HTS, high-throughput sequencing.

AVersatility. Ability for different detection levels (family, genus, species, strain or isolate).
PMultiplexing. Ability to perform parallel analysis (analyze several viruses simultaneously).
CAbility to analyze many samples simultaneously.

9On-site. Ability to detect viruses on field with portable devices.

°Only nanopore sequencing is portable among the HTS techniques.
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performed with crude plant extracts in portable hot blocks and
results can be displayed with a portable fluorescence reader or a
lateral flow strip so the whole process can take about 45 min.
(Zhang et al., 2014; Wilisiani et al., 2019). Oxford Nanopore
Technologies has developed MinION, a portable nanopore
sequencing device, that can be used for the detection of plant
viruses in the field (Boykin et al, 2018; Filloux et al., 2018;
Shafter, 2019), but it is still too expensive for most routine uses.

The ability to develop rapidly new assays is very important
given the continuous emergence of new plant viruses. The
production of antisera for the serological techniques is lengthy,
unpredictable and costly (Boonham et al., 2014). In contrast, the
setup of molecular detection methods is a directed process that is
cheap, fast and versatile, enabling to address different detection
levels and consider the genetic variability of virus populations.
Primers and oligoprobes are synthesized and commercialized at
a low cost. They can be easily designed with many available
software algorithms, such as Prime3 (http://bioinfo.ut.ee/
primer3-0.4.0/) and Primer Express (Thermofisher) for PCR,
or Primer Explorer (https://primerexplorer.jp/e/), LAMP
Designer (Optigene) and LAVA (Torres et al., 2011) for LAMP.

DISEASE MANAGEMENT

Eradication or control of virus diseases is difficult given the
complex and dynamic nature of virus epidemics and the great
evolvability of viruses (Acosta-Leal et al., 2011; Elena et al., 2014).
For efficient and durable control, it is necessary to consider the
genetic diversity and evolution of virus populations and have
specific, fast and reliable diagnostic tools. Disease management
in agriculture is based on two approaches: immunization to get
resistant plants to viral infections and prophylactic measures to
restrain virus dispersion.

Immunization Measures

Introgression of resistance genes from cultivated or wild
species into susceptible related crops by backcrossing (plant
breeding) is the most widely-used immunization method.
There are two types: i) active resistance driven by resistance
proteins, encoded by dominant alleles, which recognize
specifically a sequence or conformational pattern of a virus
gene (avirulence determinant, Avr) and induces death of the
infected cells (hypersensitive response), precluding virus
movement to adjacent cells and systemic infection (De Ronde
et al, 2014; Peiro et al., 2014); and ii) passive resistance,
conferred by resistance recessive alleles encoding host factors
critical for viral infection, mostly eukaryotic translation initiation
factors (eIF) 4E and 4G, and their isoforms (Truniger and
Aranda, 2009; Hashimoto et al., 2016).

Plant breeders usually aim at complete resistance, in which
the virus cannot establish a systemic infection. ELISA and
molecular hybridization have been used to test germplasm and
cultivars for resistance since a good number of plants can be
analyzed simultaneously (Rubio et al., 2003a; Soler et al., 2015).
When a complete resistance is not possible, breeding for relative

or partial resistance (reduction of virus accumulation) or
tolerance (reduction of virus damage without affecting virus
multiplication) can be a good alternative. The most precise
technique to evaluate the level of relative resistance is real-time
gPCR (Gil-Salas et al., 2009; Galipienso et al., 2013; Soler et al.,
2015). Time-course assays can be used to evaluate relative
resistance (that can be measured by ELISA or molecular
hybridization) and relative tolerance (measured by observation
of symptoms as a proxy of damage). The levels of resistance or
tolerance can be estimated as the probability of no infection or
no symptoms, respectively, by survival analyses (Kaplan and
Meier, 1958).

However, breeding resistant cultivars is unsuitable for many
crops and viruses because of the scarcity of resistance genes
found in genetically compatible relatives. An alternative may be
to change the specificity or range of known resistance genes by
artificial evolution so they can confer resistance to novel viruses
or virus strains. This approach is based on generating large
populations of random mutants from a resistance gene by PCR
with a high error rate, followed by the selection of those variants
showing the desired resistance properties. Resistance is evaluated
by Agrobacterium-mediated transient co-expression of each
resistance gene mutant and the Avr from the challenge virus in
Nicotiana benthamiana leaves so the resistance response is
observed as a necrotic lesion. This approach has been used to
broaden the resistance specificity of the potato gene Rx (Farnham
and Baulcombe, 2006; Harris et al., 2013), but its use has not
become widespread since most mutants are nonfunctional and
screening is time-consuming.

Genome editing, like the CRISPR-Cas9 system, could be
used to implement in crops the resistance genes obtained by
artificial evolution and to mutagenize directly host genes
involved in recessive resistance to prevent interaction with
viruses (Piron et al., 2010; Chandrasekaran et al., 2016; Pyott
et al., 2016). However, the mutagenized plant genes could be
involved in important biological functions, so the mutations
may also have unexpected adverse effects in plant development
or physiology.

Resistance can be ineffective for some virus variants or be
overcome by i) interaction with other viruses in mixed infections
(Desbiez et al., 2003; Garcia-Cano et al., 2006), ii) positive
selection of punctual mutations (Weber et al., 1993; Hebrard
et al., 2006; Lopez et al., 2011) or iii) recombination or
reassortment events (Qiu and Moyer, 1999; Miras et al., 2014).
Plant genes conferring dominant resistance usually target viral
protein domains whose function is essential for the virus biology
(replication, movement, transmission) and are under strong
negative selection. Thus, it is difficult for the virus to fix the
mutations producing resistance breakdown. In some cases,
overcoming the resistance implemented in a cultivar by plant
breeding involves a tradeoft leading to a loss of the virus fitness in
non-resistant hosts, thus limiting the cases of emergence and
spread of resistance-breaking isolates in the field (Garcia-Arenal
and McDonald, 2003). Polygenic resistance is more durable, but
resistance implemented in most breeding programs is
monogenic because its introgression in the crops is easier
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(Palloix et al., 2009). Understanding the molecular, evolutionary
and epidemiological factors involved in the emergence of
resistance-breaking virus isolates is progressing (Garcia-Arenal
and McDonald, 2003; Elena et al, 2014), but predicting the
durability of new resistances remains elusive and it needs to be
tested in the field.

Plant breeders are keen on the host genetic variability, but
often they neglect the virus genetic variability, which should
be considered when new resistance genes are tested to minimize
the possibility of resistance breakdown. Multiplex real-time
qPCR is well-suited to evaluate the effect of mixed infections in
overcoming resistance. Detection of virus variants with punctual
mutations leading to resistance breakdown would be a valuable
tool to monitor the dispersion of these variants. However, this
has proved to be a difficult task as in most cases resistance
breakdown occurs by only one nucleotide substitution
(producing one amino acid change). The presence of other
neutral substitutions around the critical mutation hinders the
design of molecular markers for resistance breakdown. Real-time
qPCR with Tagman probes has been developed to detect single
nucleotide polymorphisms associated with resistance breakdown
for beet necrotic yellow vein virus (BNYVV) and tomato spotted
wilt virus (TSWYV) (Acosta-Leal and Rush, 2007; di Rienzo et al.,
2018);. However, there is no guarantee that these techniques are
universal for all isolates of each virus species, since other
polymorphic sites nearby can affect the detection process or
have epistatic interactions affecting resistance.

Another strategy to obtain resistant plants is based on the RNA
silencing mechanism. RNA silencing is a regulatory mechanism of
gene expression in eukaryotes and a natural antiviral defense
mechanism. The host RNA silencing machinery targets dsRNA
that arise from replicative viral intermediates or secondary
structures in the genomic RNA due to internal complementarity,
which are detected by RNases (Dicer-like proteins) and cleaved into
small RNA duplexes (siRNA or miRNAs) of 21-24 nucleotides (nt)
in length. One of the two strands of the small RNAs is recruited to
the RNA-induced silencing complex (RISC) that subsequently
cleaves cognate viral RNAs in a sequence-specific manner. These
cleaved RNAs are recognized by RNA dependent RNA polymerase
(RDR), which amplifies the dsRNA molecules, thus contributing to
the amplification of the host defense mechanism that results in
effective inhibition of local and systemic viral infection (Kaldis et al,
2017). To counteract this defensive mechanism, many viruses
encode RNA silencing suppressors (Voinnet et al., 1999), which
can act in different steps of the silencing pathway, either by binding
siRNA duplex or by directly interacting with key components of the
RNA silencing machinery. Some synergetic interactions between
coinfecting viruses (increasing viral accumulation or symptoms) are
caused by the cumulative effect of the silencing suppressors of both
viruses (Syller, 2012). Resistance can be obtained by plant
transformation, introducing into plants DNA constructs to
produce viral dsRNAs or ssRNA with some degree of secondary
structure to trigger RNA silencing. Since RNA silencing requires a
certain nucleotide identity between the targeted virus and the
transgene, it is necessary to evaluate the nucleotide variation of
the virus population as explained above. The best technique to

evaluate the efficiency of the RNA silencing-based resistances is real-
time qPCR.

Silencing resistance breakdown can occur by mutation and
selection (de Haan et al., 1992) or by mixed infection with other
viruses (Syller, 2012). Transgenic plants with multiple constructs
from different viral genomes (from the same species and/or
different species) can be used to minimize the risk of resistance
breakdown (Bucher et al., 2006; Duan et al., 2012). Another
strategy is using a transgene mimicking the secondary structure
of endogenous miRNA precursors (involved in plant gene
expression and development) to express artificial miRNAS
(amiRNAs) targeting viral sequences (Niu et al., 2006; Qu
et al,, 2007; Liu et al, 2017). The main advantage is that the
short sequence of amiRNAs makes it easier to find conserved
sequences that are more difficult to overcome (they are usually
under strong negative selective pressure) and can be used for
broad range targets (genera and families). However, the amiRNA
resistance can be also overcome by mutation and selection
(Simon-Mateo and Garcia, 2006; Lin et al., 2009; Lafforgue
et al., 2011) or interaction with co-infecting viruses (Pacheco
et al., 2012; Martinez et al., 2013). A strategy to obtain more
durable resistances is to express multiple amiRNAs to target
different regions within a single viral genome (Fahim et al., 2012;
Kung et al., 2012; Lafforgue et al., 2013; Kis et al., 2016). Synthetic
trans-acting small interfering RNAs (syn-tasiRNAs) is another
class of artificial small RNAs engineered in plants, which are
especially suited to target multiple sites within a viral genome or
different unrelated viruses (Carbonell et al., 2016; Chen et al.,
2016; Carbonell and Daros, 2019; Carbonell et al., 2019). The
durability of these resistances can be evaluated by experimental
evolution based on successive passages of the virus in the
resistant plants. Resistance-breakdown can be detected by
qPCR as an increase in virus accumulation (Carrasco et al,
2007; Pena et al.,, 2014). The mutations fixed after the passages
can be detected by PCR followed by cloning and Sanger
sequencing or HTS. Identification of the mutations leading to
resistance breakdown is possible if infectious clones exist, so
that each mutation can be tested for the increase of virus
accumulation. An alternative to transgenic plants is the
exogeneous application of in vitro-produced dsRNAs from
viral sequences onto plants (Tenllado and Diaz-Ruiz, 2001;
Kaldis et al., 2017; Niehl et al, 2018). The efficacy of this
technique of immunization can be improved by high-pressure
spraying plants (Dalakouras et al., 2016), using cell-penetrating
peptides (Numata et al., 2014) or clay nanoparticles stabilizing
dsRNAs (Mitter et al., 2017).

Another immunization method is cross-protection based on
inoculating mild or attenuated viral strains to protect plants against
severe strains of the same virus. Cross-protection has been applied
to several viruses and crops, such as PepMV in tomato and CTV in
citrus crops (Pechinger et al, 2019). The mechanism of cross-
protection is poorly understood and several models have been
proposed: prevention of virus entry into cells; competition for
host factors for replication, interference with disassembly,
translation or replication; and induction of RNA silencing leading
to sequence-specific degradation of the superinfecting virus (Ziebell
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and Carr, 2010; Folimonova, 2013). It has been suggested that cross-
protection in some viruses might be an active virus-controlled
function involving virus-coded proteins (Folimonova, 2013). A
recent model proposed that cross-protection is a mechanism that
prevents the virus progeny to replicate in the cells to minimize
mutation rate and collaterally targets highly homologous
superinfecting viruses that are indistinguishable from progeny
viruses (Zhang X. et al, 2018). To apply cross-protection it is
necessary to evaluate the genetic and biological variability of the
local virus population and search for mild isolates genetically close
to the severe ones (Hanssen et al., 2010). Mild or attenuated strains
can also be generated by thermal treatment, random mutagenesis
by using chemicals as nitrous acids and selection or directed
mutagenesis in viral RNA silencing suppressors (Ziebell and Carr,
2010). Cross-protection assays can be evaluated by real-time qPCR
with probes specific for each virus variant (Ruiz-Ruiz et al., 2009b;
Hanssen et al,, 2010) and SSCP analysis (Sambade et al,, 2002).
However, the protection exerted by the mild isolate can be
overcome and even a more severe disease can emerge by
transmission to a different host species, interaction with other
viruses in mixed infections, or recombination between divergent
strains or viruses (Fulton, 1986). Therefore cross-protection should
be used only for devastating diseases when other protection
measures fail, and the process should be monitored closely.

Prophylactic Measures

Quarantine (control of borders) and sanitary certification of virus-
free germplasm (seeds or asexual propagative tissues) are the first
measures to prevent the introduction and emergence of new viruses
in a geographical area. Virus detection should be based on sensitive
and broad-spectrum methods, since discarding healthy material is
preferable to the risk of spreading new diseases. On-site detection
devices can be useful to make decisions quickly, thus preventing
importation and exportation delays. HTS is the most powerful
detection procedure since it can detect all the viruses (known and
unknown) present in a plant in an unbiased way. Its use in
quarantine and clean plant programs is increasing as it is
becoming more economically affordable (Villamor et al., 2019).
Phytosanitary certificates should be based on propagative material
free from only harmful viruses, since plants can harbor many
viruses (Maree et al., 2018).

Since epidemiology and evolution are coupled in viruses,
phylogeographic studies, comparing genetic variation in space
and time, can provide useful information on the introduction
sites of new viruses and the dispersal paths (Gomez et al., 2012;
Davino et al., 2013). As an illustration, Figure 4 shows the
migration paths of one of the strains in the first introduction of
CTV in Sicily, Italy (Davino et al., 2013), which were inferred by
Bayesian phylogeographic analysis with the program BEAST
v1.6.2 (Drummond and Rambaut, 2007). Phylogenetic analyses
showed that these Sicilian CTV isolates were genetically close to
CTV isolates from mainland Italy and California.

Sanitation, that is, removing viruses from valuable cultivars, is
necessary when no healthy plants are available. Virus-free plants are
usually produced by thermotherapy, chemotherapy, electrotherapy,

and tissue culture alone or combined (Naik and Buckseth, 2018).
Thermotherapy could inactivate viruses by viral RNA breakage,
viral particle disruption or coat protein rupture, viral replicase
inactivation, virus movement inhibition and/or translation
reduction (Hull, 2002). Chemotherapy is based on antiviral drugs
to inhibit or disrupt specific steps of the virus life cycle, e.g,
nucleoside analogs inhibiting replication and protease inhibitors
preventing protein processing. Antiviral drugs are costly and are
used only to regenerate healthy mother plants for vegetative
propagation or seed production (Panattoni et al, 2013). The
sanitated plants must be evaluated and confirmed to be virus-free
with very sensitive techniques such as real-time qPCR. Nucleoside
analogs can also be used to increase the already high mutation rate
of RNA viruses, so that the excess of mutations would lead to a loss
of genetic information and virus extinction (lethal mutagenesis or
error catastrophe). This approach has been assayed recently with a
plant virus, tobacco mosaic virus (TMV), resulting in a loss of viral
infectivity (Diaz-Martinez et al., 2018).

An agronomical practice to limit virus dispersal consists of
removing virus-infected plants from crops or weeds acting as
inoculum source. This requires rapid and specific detection
techniques able to analyze many samples from the field, such as
ELISA and molecular hybridization, especially using tissue-prints
(Rubio et al,, 1999; Rubio et al., 2003b). Roguing is effective only
if the virus incidence is low after a recent introduction or in isolated
areas. Other practices consist of interrupting the virus transmission
chain. Many seed-borne viruses (carried on the seed coat) can be
removed with chemical disinfectants such as sodium hypochlorite,
trisodium phosphate, hydrochloric acid and ozone, whereas some
seed-transmitted viruses (infecting the seed embryo) can be
eliminated by thermotherapy (Ling, 2010; Paylan et al, 2014).
Multiplex (RT)-PCR to detect simultaneously the seed-transmitted
and seed-borne viruses for a crop can be a useful tool (Panno et al,
2012). Incidence of plant viruses mechanically transmissible by
contact, like those of the genus Tobamovirus, can be reduced by
hygienic measures such as using disposable gloves or washing hands
with disinfectant, heat sterilization of tools and debris and limiting
the access to crops (Broadbent, 1976). Most plant viruses are
transmitted by arthropod vectors, mainly aphids, whiteflies, and
thrips. Three strategies to prevent the spread of plant viruses by
vectors have been used (Antignus, 2012; Fereres and Raccah, 2015):
i) Reducing vector populations by pesticides; biological control with
natural enemies such as arthropod predators and parasitoids (Tellez
et al, 2017) or entomopathogenic fungi, nematodes, bacteria and
viruses (Kalha et al., 2014); and biotechnology-based approaches
based on protease inhibitors, neurotoxins, or RNA silencing of genes
essential for insect development or metabolism (Fereres and Raccah,
2015; Nandety et al., 2015; Vogel et al,, 2019). ii) Preventing the
vector from reaching the crop with barriers (greenhouses and barrier
plants), by interference of the insect vision with UV-absorbing
plastics and reflective surfaces, by agronomical practices such as
changing the planting or sowing dates to avoid high vector
populations, or imposing a time gap between crops and/or space
gap between plots to break the transmission cycle (Antignus, 2012;
Fereres and Raccah, 2015). iii) Interfering with the transmission
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within Sicily (Davino et al., 2013).

process by spraying mineral oils, synthetic peptides or modified
proteins to outcompete virus-encoded proteins needed for virus
attachment to insect receptors (Lecoq and Desbiez, 2012; Blanc
et al, 2014).

The rate of insect transmission can be evaluated using different
detection techniques, such as ELISA, molecular hybridization and
PCR, to detect the virus in the receptor plants and real-time gPCR
to estimate the virus titer in the source plants, which affects
transmissibility (Olmos et al., 2005; Rotenberg et al., 2009; Ferriol
et al., 2013; Debreczeni et al., 2014).

CONCLUSIONS AND FUTURE TRENDS

The main challenge of agriculture in this century is to produce
nutritious food for the growing world population in a sustainable
manner while protecting the environment and human health
(Pretty, 2008; Pretty et al., 2010). Damages caused by pests and
diseases have a considerable negative economic impact in
agriculture, being emergent viral diseases particularly important
(Anderson et al., 2004; Mumford et al., 2016).

The correct identification of viruses is critical for disease
management. However, the great ability of viruses to evolve and
generate molecular and biological variation is a major difficulty for
virus detection and disease management. Presently, when a new
virus-like disease appears, the first approach is to test for known

FIGURE 4 | Phylogenetic tree of citrus tristeza virus (CTV) isolates collected from the first outbreak of CTV in Sicily, Italy and a map showing the migration paths

viruses with well-established techniques (Figure 5A). ELISA is the
most popular for routine analysis because of historical reasons,
easiness to perform with little training and commercial availability
of antibodies specific for the main plant viruses. However,
antibody production is expensive, time-consuming, and
unpredictable, and it cannot be designed to cope with viral
variability. In contrast, the development of molecular techniques
is fast and cheap, making them more appropriate to cope with the
frequent cases of new virus emergence (Boonham et al., 2014).
PCR techniques are the most widely used because of the easy
design, versatility, and low cost of primers. Real-time qPCR is
becoming the molecular method of choice for routine virus
analysis (especially for new viruses for which antibodies are not
available or with low accumulation levels) and quantification. On-
site detection techniques by LFA and isothermal amplification
(RPA and LAMP) allow an almost immediate response and are
rapidly developing. When these techniques fail to detect the virus
causing disease, the best approach is to use HTS, which can
identify all the viruses in one plant, albeit infectivity assays or
field surveys are necessary to determine which of the viruses
detected is likely the disease causal agent (Figure 5A). In some
cases, such as quarantine, using HTS as first approach for virus
detection can be more profitable than testing many viruses with
ELISA or molecular detection techniques. However, HTS is still
too expensive for most routine analyses and it is necessary to
develop rapid and accurate detection techniques for each virus,
being PCR the easiest to develop. The design of primers or probes
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for accurate detection requires to evaluate the genetic diversity of
viral populations by analysis of nucleotide sequences. (Figure 5B).

Presently, disease management relies on preventing
introduction of new viruses by border control and certification
of virus-free propagative material (e.g., seeds) and preventing
virus dispersal in the field. Quarantine and certification require
sensitive and broad-spectrum detection methods to minimize

escapes such as the use of conserved primers specific for virus
genera or families and multiplex procedures (Figure 5C). HTS is
the best procedure and it is becoming affordable in quarantine
facilities given the devastating consequences of introducing new
pathogens. Prophylactic measures to prevent or minimize virus
dispersal require information on the virus biology (host range,
transmission way, etc.), virus incidence and epidemiology.
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Obtaining this information needs using high-throughput
screening techniques able to analyze a high number of samples
such as ELISA and molecular hybridization (Figure 5C). The
other keystone for plant disease control is the obtention of
resistant cultivars, which is performed mainly by plant
breeding and commercialized by seed companies. However,
apart from the important effort involved in breeding programs,
resistance is not available for most crops and viruses. Genetic
engineering, despite the great potential and some remarkable
successes (Fuchs and Gonsalves, 2007), faces heavy opposition in
some countries due to the public concern on the potential
ecological impact of transgenic plants (Jones, 2006). Resistant
plants should be evaluated with specific methods, as resistance
depends on host and virus genotypes. Partial resistance can be
evaluated by real-time qPCR (Figure 5C). Genome editing by
CRISPR and the application of dsRNA-loaded clay particles to
trigger RNA silencing are promising research fields. In any case,
to aim at more durable and effective protection, it is necessary to
characterize the genetic variability and relationships of plant
viruses, as well as the factors and mechanisms involved in
genetic change.

HTS excels for its broad-spectrum and multiplex detection,
sensitivity, and precise quantification. No previous knowledge is
required, enabling unbiased detection and discovery of new
viruses. The sequences obtained allow a precise taxonomic
assignation and an estimation of genetic relationships with
other viruses and viral isolates. It is reasonable to expect that
HTS, especially portable nanopore sequencing devices, will
become the standard diagnostic procedure as costs will be
dropping and analytical procedures improving.
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