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CRISPR/Cas9 gene editing technology has taken the scientific community by storm since
its development in 2012. First discovered in 1987, CRISPR/Cas systems act as an
adaptive immune response in archaea and bacteria that defends against invading
bacteriophages and plasmids. CRISPR/Cas9 gene editing technology modifies this
immune response to function in eukaryotic cells as a highly specific, RNA-guided
complex that can edit almost any genetic target. This technology has applications in all
biological fields, including plant pathology. However, examples of its use in forest
pathology are essentially nonexistent. The aim of this review is to give researchers a
deeper understanding of the native CRISPR/Cas systems and how they were adapted
into the CRISPR/Cas9 technology used today in plant pathology—this information is
crucial for researchers aiming to use this technology in the pathosystems they study. We
review the current applications of CRISPR/Cas9 in plant pathology and propose future
directions for research in forest pathosystems where this technology is
currently underutilized.

Keywords: forest diseases, tree disease resistance, filamentous pathogens, poplar rust, Dutch elm disease (DED),
sudden oak death (SOD), white pine blister rust (WPBR)
INTRODUCTION

Developed in 2012, CRISPR/Cas9 gene editing is relatively new, but research using this technology
has expanded rapidly in most scientific fields with 7,105 publications in 2019 alone (Clarivate
Analytics, 2020). Even though human health and medicine are the most prolific fields, researchers in
plant sciences are also starting to explore the applications of CRISPR/Cas9. The use of CRISPR/Cas9
in plant breeding has sparked interest in the field of plant pathology where disease resistant plant
cultivars are becoming increasingly important. The applications of CRISPR/Cas9 technology in
plant pathology have already been reviewed, especially in the context of agriculture (Langner et al.,
2018; Makarova et al., 2018; Das et al., 2019; Muñoz et al., 2019). However, literature addressing its
applications in forestry is lacking, and we believe this is because CRISPR/Cas9 is currently
underutilized in this field. The purpose of this review is to fill this literature gap while giving
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forest pathologists a deeper understanding of CRISPR/Cas9 and
its potential applications to better understand and manage tree
diseases. We focus on how native CRISPR/Cas systems function
as well as the mechanisms driving CRISPR/Cas9 gene editing
technology as this information is crucial for implementation of
this technology in forest pathosystems.

What Is CRISPR/Cas? A Primer for
Understanding CRISPR/Cas9 Gene Editing
Clustered regularly interspaced short palindromic repeats
(CRISPRs) and CRISPR associated (Cas) proteins, or CRISPR/
Cas, is a bacterial and archaeal DNA-based adaptive immune
system that defends against bacteriophages, plasmids, and other
mobile genetic invaders (Bhaya et al., 2011; Terns and Terns,
2011). The CRISPR/Cas system was first discovered by Japanese
scientists in Escherichia coli (Ishino et al., 1987), but it has now
been found in a large array of prokaryotic species. Among these
species, CRISPR/Cas DNA loci exhibit extensive genetic
diversity, but they all have a common underlying architecture
comprising a CRISPR array composed of direct repeats
interspaced with unique sequences called spacers, which are
derived from foreign nucleic acids; this array is flanked by
associated cas genes organized as an operon (Jansen et al.,
2002; Bolotin et al., 2005; Pourcel et al., 2005) (Figure 1A).
These elements of the CRISPR/Cas system work in concert to
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direct a three-stage defense response against invading phages and
plasmids (Barrangou et al., 2007; van der Oost et al., 2009)
(Figure 1B). Stage 1 (adaptation) occurs when the bacterial or
archaeal host recognizes a fragment of DNA or RNA from an
invader, named the protospacer (Deveau et al., 2008), and
integrates it into the CRISPR array as a new spacer sequence
(van der Oost et al., 2009). Protospacer selection is dictated by
the presence of highly conserved 2–3 nucleotide regions near the
protospacer sequence called ‘protospacer-adjacent motifs’, or
PAMs (Marraffini and Sontheimer, 2010). Stage 2 (expression)
involves the transcription of the CRISPR array into large RNA
transcripts called precursor CRISPR-derived RNAs (pre-
crRNAs), which are processed into smaller, mature crRNAs by
Cas proteins that are transcribed from the cas genes (van der
Oost et al., 2009). A mature crRNA contains a unique phage-
derived spacer sequence flanked by fragments of its adjacent
repeat sequences from the CRISPR array (Wiedenheft et al.,
2012). Finally, Stage 3 (interference) takes place when a
subsequent attack occurs by the same bacteriophage or
plasmid; each crRNA associates with one or more Cas proteins
to form a crRNA-protein effector complex, which conducts
surveillance of the cell for invading DNA or RNA (Terns and
Terns, 2011). The crRNA acts as a guide for the effector complex
(guide RNA), directing it to create a double-stranded break
(DSB) in the complementary protospacer sequence of the
A

B

FIGURE 1 | (A) A generalized CRISPR/Cas system consisting of a CRISPR array and a cas operon. The CRISPR array is composed of a series of identical repeat
sequences interspaced with unique sequences called spacers, which are derived from the genetic material of invading bacteriophages and plasmids. On the 5′ end
of the spacer/repeat locus is an intraspecies-conserved leader sequence likely involved in transcription of the CRISPR array. Flanking the CRISPR array is the cas
operon, which contains the CRISPR-associated (cas) genes that code for proteins involved in the CRISPR/Cas defense response. (B) The three-stage CRISPR/Cas
defense response. Stage 1, adaptation, occurs when the bacterial or archaeal host recognizes a fragment of DNA or RNA from an invader, named the protospacer,
and integrates it into the CRISPR array as a new spacer. New spacers are integrated at the leader end of the array. Stage 2, expression, involves the transcription of
the cas genes into Cas proteins, and the CRISPR array into a precursor CRISPR RNA (pre-crRNA) molecule. The pre-crRNA molecule then gets processed by Cas
proteins into smaller, mature CRISPR RNA (crRNA) molecules. In Stage 3, interference, the mature crRNAs associate with one or more Cas proteins to form crRNA-
effector complexes, which survey the cell for foreign nucleic acids and subsequently cleave them via recognition of the protospacer-adjacent motif (PAM) sequence.
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invader via recognition of the PAM (Terns and Terns, 2011). The
fragmented DNA or RNA can no longer infect the host, thus
completing successful defense by the CRISPR/Cas system. This
highly adaptable nucleotide-based activity is what makes
CRISPR/Cas gene editing technologies, which are designed
from CRISPR/Cas systems, so effective.

How Does CRISPR/Cas9 Gene Editing
Technology Work?
CRISPR/Cas9 gene editing technology is based on the Type II
CRISPR/Cas system from the human pathogen Streptococcus
pyogenes and was developed by an internationally collaborative
research group headed by Jennifer Doudna and Emmanuelle
Charpentier (Jinek et al., 2012). Type II systems are characterized
by the multidomain protein Cas9 (Makarova et al., 2011;
Makarova et al., 2015), which relies on two RNA molecules to
guide it to its DNA target: a trans-activating crRNA (tracrRNA),
and the usual crRNA (Deltcheva et al., 2011; Gottesman, 2011;
Jinek et al., 2012). The tracrRNA is complementary to the repeat
sequences in the corresponding pre-crRNA, and it base-pairs to
those sequences facilitating Cas9 to process the pre-crRNA into a
smaller mature crRNA molecule (Deltcheva et al., 2011). The
tracrRNA, mature crRNA, and Cas9 endonuclease then form an
effector complex and the two RNA molecules guide Cas9 to the
target protospacer sequence of an invader (Jinek et al., 2012).
Cas9 then uses the complementarity between the crRNA and the
protospacer as well as the adjacent PAM to create a DSB in the
target DNA (Jinek et al., 2012). The Doudna/Charpentier
research group developed a single chimeric RNA molecule that
combined the tracrRNA and crRNA, and they demonstrated that
Cas9 can be programmed to cleave any target DNA by changing
only a 20-nucleotide sequence in this single-guide RNA (sgRNA)
(Jinek et al., 2012). Their results were immediately significant for
the scientific community, allowing the editing of DNA in a broad
range of organisms and caused a surge of research in all scientific
fields that continues to this day. Additionally, the original
chimeric S. pyogenes Cas9 technology has served as a model
system from which many different CRISPR technologies
have evolved.

CRISPR/Cas9 Exploits Cellular DNA
Repair Mechanisms to Edit Genes
The success of nuclease-based technologies, including CRISPR/
Cas9, as methods to edit genes relies on the highly conserved
cellular DNA repair mechanisms present in all domains of life.
Cas9 generates blunt-end DSBs at target DNA sites, and there are
two main mechanisms that are triggered in eukaryotic cells in
response to these DSBs: end-joining and homologous
recombination, or homology-directed repair (HDR) (Ranjha
et al., 2018). Both end-joining and HDR involve complex
endogenous systems that can be divided into several sub-
pathways that are triggered under different cellular conditions
and generate very different repaired DNA products (Ceccaldi
et al., 2016; Ranjha et al., 2018). There are two end-joining
pathways, non-homologous end-joining (NHEJ) and
microhomology-mediated end-joining (MMEJ), and neither
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require a DNA template for repair (Ranjha et al., 2018). These
end-joining mechanisms are highly error prone, often resulting
in insertions or deletions (indels) that create knockout mutants
when they occur in the reading frame of a gene (Bortesi and
Fischer, 2015; Ranjha et al., 2018). Conversely, repairs by the
HDR pathways occur only in the presence of a donor DNA
template containing regions homologous to the sequences
surrounding the DSB induced by Cas9 (Bortesi and Fischer,
2015). The HDR pathway is more precise than the end-joining
mechanisms, and thus can be used for highly specific gene
modification or gene insertion. Eukaryotic organisms can use
both homologous recombination and end-joining mechanisms
to repair DNA damage in their cells, but the end-joining
pathways are more frequent because they occur regardless of
the presence of a donor DNA template and can therefore take
place in any stage of the cell cycle (Ranjha et al., 2018). However,
end-joining allows for less control in CRISPR/Cas9 gene editing
due to the randomness of the mutations it induces (Langner
et al., 2018). The less frequent HDR pathway allows for more
control, but requires a homologous donor DNA template that,
even when present, triggers HDR at a much lower rate than end-
joining (Langner et al., 2018). Consequently, researchers wishing
to activate the HDR pathway using CRISPR/Cas9 have the
additional task of designing a homologous donor template that
can be used for recombination at the target DNA site, and they
will likely have to screen larger numbers of transformants to
identify successful HDR candidates.

CRISPR/Cas9 Limitations
The major limitation of using the original S. pyogenes CRISPR/
Cas9 (SpCas9) is the requirement of the PAM sequence adjacent
to the protospacer DNA, which is used by the Cas9 complex in
conjunction with the complementary sgRNA region to recognize
and cleave the target DNA sequence (Jinek et al., 2012). The
SpCas9 complex recognizes the PAM sequence 5′-NGG-3′,
where N represents any of the four nucleotide bases (Jinek
et al., 2012). This three-base-pair sequence is a common
occurrence in most genomes, but its requirement limits the
genes that can be targeted, especially when attempting to study
genes involved in highly specific pathways of interest (Langner
et al., 2018). Additionally, research has shown that CRISPR/Cas9
can recognize alternative PAM sequences, which increases the
likelihood of off-target mutations (Zhang et al., 2014). In
response to this limitation researchers have developed three
new CRISPR/Cas9 systems from Cas9 orthologs in
other bacterial species, each of which recognizes a unique
PAM: SaCas9 from Staphylococcus aureus, StCas9 from
Staphylococcus thermophilus, and NmCas9 from Neisseria
meningitidis (Kleinstiver et al., 2015). In addition, Cas9 protein
variants are being engineered to recognize alternative PAMs
(Agudelo et al., 2020). New CRISPR/Cas nucleases from other
bacterial Type II systems have also been discovered: Cas12a,
which targets DNA, and Cas13a, which targets single-stranded
RNA (Shmakov et al., 2015; Burstein et al., 2017; Koonin et al.,
2017). While bearing some similarities to Cas9, these two
systems use slightly different mechanisms for cleaving target
nucleic acid sequences and processing of pre-crRNA and
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demonstrate advantages over Cas9 for certain applications,
including within plant pathology (Langner et al., 2018).

Another limitation of any CRISPR/Cas technology is the
occurrence of unwanted mutations (translocations, inversions,
large deletions and insertions) resulting from the complex
endogenous pathways that repair the double-stranded DNA
breaks induced by Cas nucleases (Després et al., 2018; Kosicki
et al., 2018). Additionally, Cas9-induced DSBs can be toxic to
cells, inducing cell-death pathways and resulting in low
transformation and editing efficiencies (Garst et al., 2017; Roy
et al., 2018). To avoid these DSB-related limitations, nuclease-
deficient Cas9 proteins have been engineered and fused to other
proteins such as deaminases and recombinases to achieve base
editing and site-specific recombination (Nishida et al., 2016;
Standage-Beier et al., 2019). However, Cas9 continues to be the
most commonly used CRISPR/Cas technology, has a number of
applications in plant pathology, and is a valuable untapped
resource for forest pathology; it is therefore the focus of the
remainder of this review.
CURRENT APPLICATIONS OF CRISPR/
CAS9 IN PLANT PATHOLOGY

Plant pathogenic viruses, bacteria, oomycetes, and fungi are
natural components of healthy ecosystems, but globalization,
climate change, and mismanagement have led many of these
species to cause emerging infectious diseases (EIDs) that threaten
natural and managed plant ecosystems (Anderson et al., 2004;
Fisher et al., 2012). In the context of agriculture, plant EIDs are
considered a threat to global food security (Pennisi, 2010), and in
forestry they have significant impacts from both economic and
biodiversity conservation perspectives (Anderson et al., 2004;
Fisher et al., 2012). Chemical mitigation strategies using
pesticides and fungicides have proven to be inadequate and
environmentally destructive (Andolfo et al., 2016), so research
has turned to genetic strategies: developing disease resistance in
plants and/or engineering avirulent strains of pathogens. The
development of CRISPR/Cas9 as an accurate and versatile gene
editing technology increased the scope of such genetic strategies
and has led plant pathologists to explore its disease-mitigation
applications in both hosts and pathogens.

Using CRISPR/Cas9 to Engineer Disease
Resistance in Plants
To date, most of the CRISPR/Cas9 research in plant pathology
has focused on developing systems in the hosts, namely
engineering disease resistance in agriculturally important
plants. Not surprisingly, the first plants to be engineered using
CRISPR/Cas9 were the model species Arabidopsis thaliana (Feng
et al., 2013) and Nicotiana benthamiana (Nekrasov et al., 2013),
but these were followed almost simultaneously by development
in rice (Feng et al., 2013; Jiang et al., 2013; Miao et al., 2013),
wheat (Wang et al., 2014), sorghum (Jiang et al., 2013), maize
(Liang et al., 2014), and tomato (Brooks et al., 2014). The list of
plant species engineered using CRISPR/Cas9 has expanded
Frontiers in Plant Science | www.frontiersin.org 4
rapidly in the last six years, but it has remained in the realm of
angiosperm species important in agriculture; use of this
technology in forest species is largely absent in the literature,
with the one exception of studies developing CRISPR/Cas9
systems in Populus species (Fan et al., 2015; Zhou et al., 2015).

The first CRISPR/Cas9 studies in plants were proof-of-
concept experiments demonstrating the use of this technology
in plants, but many of these species have now been engineered
for resistance to viral, fungal, and bacterial diseases (Das et al.,
2019). Engineering disease resistance in plants using CRISPR/
Cas9 has generally been executed using one of two strategies: the
pathogen–gene approach or the plant-gene approach. The
former involves engineering an sgRNA into the plant
chromosome that directs Cas9 to target a specific pathogen
gene thereby impeding pathogenesis, whereas the latter uses an
sgRNA that targets endogenous plant genes involved in pathogen
interactions and modifies them to either boost the host immune
response, or to interfere with the host-recognition pathway of the
pathogen (Makarova et al., 2018).

Pathogen-Gene Approach
The pathogen-gene approach is best demonstrated with plant-
virus pathosystems. CRISPR/Cas9-mediated virus resistance is
most commonly tackled via a transgenic approach whereby a
viral DNA sequence is used to design the sgRNA and is
transformed into the plant genome with the CRISPR/Cas9
system (Ali et al., 2015; Ali et al., 2016; Zhang et al., 2018).
This induces a response remarkably similar to that of the native
CRISPR/Cas systems in that the plant is able to use its transgenic
sgRNA-Cas9 system to target invading virus DNA, RNA, or
mRNA. This approach has been primarily used in the model
species Nicotiana benthamiana (Ali et al., 2015; Ali et al., 2016; Ji
et al., 2018; Zhang et al., 2018) and Arabidopsis thaliana (Ji et al.,
2018; Zhang et al., 2018), but it presents an intriguing paradigm
for the use of CRISPR/Cas9 to fortify plant immune systems
against invading pathogens.

Plant-Gene Approach
Engineering CRISPR/Cas9-mediated disease resistance using the
plant-gene approach has mostly focused on targeting plant
susceptibility (S) genes, a diverse group of genes with varying
roles that ultimately render plants more susceptible to invading
pathogens. The proteins encoded by S genes fall into two general
categories: those that act as negative regulators of immunity,
decreasing the plant immune response in certain contexts, and
those that are part of plant development and regulatory
pathways, which are targets for pathogen effector molecules
(Langner et al., 2018). While traditional disease-resistance
breeding has focused on disease resistance (R) genes that
generally involve ‘gene-for-gene’ interactions with pathogens, it
is thought that targeting S genes will yield more stable, broad-
spectrum disease resistance (Pavan et al., 2009). Both R-gene-
and S-gene-based resistance involve complex molecular
pathways that interact with pathogens in different ways, and
the details of these interactions have been reviewed elsewhere
(Dangl and Jones, 2001; Jones and Dangl, 2006; Pavan et al.,
2009; Lapin and Van den Ackerveken, 2013). Engineering
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resistance to viruses with CRISPR/Cas9 using the plant-gene
approach involves designing the sgRNA to target a region of the
plant genome that is used by the virus for replication (Makarova
et al., 2018). This method has been used for disrupting RNA
viruses in both Cucumis sativus (cucumber) and A. thaliana by
targeting the eukaryotic translation initiation factor gene eIF4E
in the plant (Chandrasekaran et al., 2016; Pyott et al., 2016).
However, the plant-gene approach is best demonstrated in
pathosystems involving bacteria, oomycetes, and fungi in
which the proteins encoded by plant S genes are relied upon
by these pathogens for host recognition and immune
suppression. Generating plant resistance in these systems has
predominantly been focused on designing sgRNAs to target S
genes, creating host knockout mutants that the pathogen
effectors have difficulty recognizing (Langner et al., 2018; Das
et al., 2019).

A well-studied S gene system is the mildew resistance locus O
(MLO), which renders both monocot and dicot plant hosts
susceptible to a variety of powdery mildew pathogens. The use
of CRISPR/Cas9 to disrupt the MLO gene has proven to be
effective for evading pathogen effector recognition and
generating disease resistance in these systems. One of the best
examples of this is a study by Nekrasov et al. who used CRISPR/
Cas9 to generate 48 bp deletions in anMlo gene in tomato plants
(Nekrasov et al . , 2017). The CRISPR/Cas9 mutants
demonstrated resistance to the powdery mildew fungus
Oidium neolycopersici without generating any other unwanted
phenotypic effects (Nekrasov et al., 2017). Second-generation
progeny (F1) were then cultivated by selfing the first-generation
resistant mutants (F0), which resulted in the CRISPR/Cas9
transfer DNA plasmid being segregated away (Nekrasov et al.,
2017). The F1 progeny also exhibited O. neolycopersici resistance,
and whole-genome sequencing showed that no off-target
mutations had occurred, and that no transgenic DNA was
present (Nekrasov et al., 2017). A similar study by Wang et al.
generated resistance in rice plants (Oryza sativa) to the rice blast
pathogen Magnaporthe oryzae by using CRISPR/Cas9 to induce
indels in an S gene that encodes proteins involved in sugar
transport (SWEET proteins) (Wang et al., 2016). Wang et al. also
used segregation to create non-transgenic, disease-resistant F1
progeny that exhibited all the desirable phenotypes from the
wild-type plants (Wang et al., 2016). There are now a number of
examples of CRISPR/Cas9 S gene mutants with enhanced disease
resistance to various pathogens including: broad virus resistance
in cucumber plants through disruption the eukaryotic
translation initiation factor eIF4E (Chandrasekaran et al.,
2016), resistance to bacteria and oomycete pathogens in
tomato plants through deletions in a DMR6 gene (de Toledo
Thomazella et al., 2016), bacterial canker-resistant Wanjincheng
orange plants viamutations in the CsLOB1 gene promoter (Peng
et al., 2017), and powdery mildew resistance in wheat through
Cas9-mediated mutations of the TaEDR1 susceptibility gene
(Zhang et al., 2017).

The above studies demonstrate the advantage of using the
plant-gene approach in CRISPR/Cas9 research because the
disruption of these genes with indels and the subsequent
Frontiers in Plant Science | www.frontiersin.org 5
segregation of the transfer DNA results in disease-resistant
plants that do not contain any transgenic material. However,
the backcrossing required to segregate away the CRISPR/Cas9
plasmid DNA is only feasible in annual plants with short life
cycles and is not suitable for perennial crop plants or forest
species (Kanchiswamy et al., 2015). Non-transgenic CRISPR/
Cas9 mutants can also be generated using a plasmid-free delivery
system; this involves designing a pre-assembled enzymatic
ribonucleoprotein (RNP) Cas9-sgRNA complex that is
transfected directly into plant protoplasts. The Cas9-sgRNA
RNP complex can modify the genomic target DNA but is
subsequently degraded by the cell – this results in a disease-
resistant plant mutant that contains no transgenic DNA
(Makarova et al., 2018). These non-transgenic approaches are
especially relevant in plant-based industries where the
introduction of inter-specific transgenes generates public
controversy around genetically modified organisms (GMOs)
and initiates prohibitively strict regulations surrounding the
use of such genetically modified plants. The ability of CRISPR/
Cas9 to generate highly specific disease-resistant mutants that
contain no foreign DNA allows for these plants to be used
outside of the GMO regulatory framework (Kanchiswamy
et al., 2015; Kanchiswamy, 2016; Makarova et al., 2018). It also
allows specific genetic modifications to be made in the
endogenous genomic context thereby avoiding the random
insertion of transgenes from unrelated species and removing
the risk of any unintended downstream effects from the presence
of foreign DNA (Kim et al., 2014; Kanchiswamy et al., 2015;
Kanchiswamy, 2016).

Using CRISPR/Cas9 to Target and Explore
Genes in Filamentous Plant Pathogens
While the use of CRISPR/Cas9 to engineer pathogen resistance
in plants is a promising approach to mitigating disease
outbreaks, using CRISPR/Cas9 in pathogens is of equal interest
both for the generation of avirulent strains and for increasing our
understanding of how these species interact with their plant
hosts to induce disease. So far, CRISPR/Cas9 research in plant
pathogens has been far less prolific than research on plant disease
resistance, and it has focused primarily on proof-of-concept
experiments in filamentous fungi and oomycetes. The first
successful demonstrations of CRISPR/Cas9 technology in
filamentous fungi were independently published by four
research groups in 2015, who all developed CRISPR/Cas9
systems in filamentous ascomycete species including
Neurospora crassa (Matsu-ura et al., 2015), Pyricularia oryzae
(Arazoe et al., 2015), Trichoderma reesei (Liu et al., 2015), and
multiple Aspergillus species (Nødvig et al., 2015). These studies
used Cas9 genes that were codon-optimized for filamentous
fungi, endogenous promoters for expression of the sgRNA, and
common fungal selection markers. More proof of concept studies
followed and CRISPR/Cas9 was developed in a number of
fungal species including important plant pathogens such as
Ustilago maydis (corn smut: Schuster et al., 2016), Fusarium
graminearum (Fusarium head blight of grain: Gardiner
and Kazan, 2018), F. oxysporum (Fusarium wilt disease:
July 2020 | Volume 11 | Article 1126
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Wang et al., 2018), and Sclerotinia sclerotiorum (white mold: Li
et al., 2018). The first CRISPR/Cas9 system in oomycetes was
developed in the soybean pathogen Phytophthora sojae; the study
used a Cas9 gene with human-optimized codons fused to the P.
sojae nuclear localization signal (PsNLS) and driven by the
oomycete Ham34 promoter (Fang and Tyler, 2016). CRISPR/
Cas9 has now additionally been developed in P. capsici (Miao
et al., 2018) and P. palmivora (Gumtow et al., 2018). A
comprehensive review of the CRISPR/Cas9 techniques being
used in filamentous fungi and oomycetes has been published
by Schuster and Kahmann (2019); as with the plants, the
CRISPR/Cas9 studies in filamentous pathogens have been
focused on agriculturally important species, with no studies on
forest pathogens reported in our literature search.

Targeting Pathogenicity Genes Using CRISPR/Cas9
The study on S. sclerotiorum by Li et al. (2018) is one of the few
that has used CRISPR/Cas9 to generate pathogenicity mutants in
a fungal plant pathogen. Their gene target was the oxalate
biosynthesis gene Ssoah1, responsible for producing oxalic
acid, which is involved in host tissue colonization by S.
sclerotiorum. Li et al. generated DSBs at multiple Ssoah1 target
sites and found that fragments of their Cas9 transformation
plasmid had been integrated into the S. sclerotiorum genome at
the DSB sites; this demonstrated that the transformation plasmid
was not only providing the Cas9 protein and sgRNA molecule,
but also acting as a donor DNA molecule for the NHEJ pathway
to repair the Cas9-induced DSB (Li et al., 2018). The Cas9-
generated S. sclerotiorum Ssoah1-mutant strains exhibited
significantly reduced oxalic acid production and reduced
pathogenicity on soybean, Abyssinian cabbage, and tomato
plants (Li et al., 2018). Sclerotinia sclerotiorum is a highly
aggressive, necrotrophic phytopathogen with a very broad host
range, so these results by Li et al. are very encouraging for the use
of CRISPR/Cas9 as a tool for understanding the virulence of
similar plant pathogens. Improved understanding of the specific
modes of pathogenicity employed by different phytopathogens
will subsequently improve management strategies for the
diseases they cause.

An important group of pathogenicity genes are those
encoding the effector proteins secreted by pathogens during
host interactions. Effectors are an extremely diverse group of
molecules and are found in some form in all groups of plant
pathogens; they have a number of functions including facilitating
infection, disrupting the plant immune response, and obtaining
nutrients from host tissues (Toruño et al., 2016). Their ubiquity,
as well as their dominant role in plant–pathogen interactions,
makes them excellent candidates for CRISPR/Cas9 research. This
was demonstrated by Fang and Tyler in the first study to develop
a CRISPR/Cas9 system in oomycetes; they designed an sgRNA
that targeted the RxLR effector gene Avr4/6 in the soybean
pathogen Phytophthora sojae (Fang and Tyler, 2016). RxLR
effectors are widespread in oomycetes and can enter host cells
and suppress effector-triggered immune responses (Jiang and
Tyler, 2012). They can be detected by the receptors encoded by
plant R genes (Jiang and Tyler, 2012); in soybeans the R genes
involved in recognition of the Avr4/6 effector protein are Rps4
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and Rps6 (Fang and Tyler, 2016). Fang and Tyler examined both
the pathogen and host aspects of the P. sojae pathosystem: they
used CRISPR/Cas9 to create five homozygous NHEJ Avr4/6
mutants and two homozygous HDR Avr4/6 mutants, and then
assessed the interactions of the P. sojae mutants with soybean
plants both with and without Rps4 or Rps6 resistance loci (Fang
and Tyler, 2016). Their results showed that when inoculated with
P. sojae-Avr4/6 mutants, the Rps4/Rps6 soybean plants were less
able to defend themselves against infection, exhibiting an
impaired immune response (Fang and Tyler, 2016).

The results from Fang and Tyler’s 2016 study demonstrate the
intricacy of plant–pathogen interactions and serve as a reminder
for researchers wishing to use genetic engineering technologies to
develop disease-resistant plants: using CRISPR/Cas9 to target an
effector may impede the pathogen, but it might also have
unintended consequences for the plant host depending on the
recognition pathway associated with the effector. Systems that have
coevolved for millions of years cannot be easily deconstructed, and
if CRISPR/Cas9 is to be used as a tool for mitigating plant disease
outbreaks the complexities of these systems must be considered.
However, CRISPR/Cas9 provides a perfect opportunity to
understand these complex pathosystems, and the study by Fang
and Tyler is an excellent example of the use of CRISPR/Cas9 as a
tool for elucidating the roles of pathogen genes via a functional
genomics approach.
FUTURE PERSPECTIVES FOR CRISPR/
CAS9 IN FOREST PATHOLOGY

Given the large number of studies on CRISPR/Cas9 in plant
pathology and the promises for developing disease resistance, it
is somewhat surprising that there is very little literature in the
area of forest pathology (Figure 2). Forest pathogens are as
devastating as their agricultural counterparts and can cause
landscape level mortality that results in ecosystem-wide
changes; well-known global examples include chestnut blight,
Dutch elm disease, ash dieback, myrtle rust, white pine blister
rust, and sudden oak death. However, disease management
options are more limited in forestry than in agriculture; for
example, the use of fungicides is generally confined to forest
nurseries, with chemicals rarely being applied to trees once they
have been planted. Disease resistance is one of the most
promising avenues to combat forest pathogens, especially given
the large geographical scales that these pathogens can affect.
While there is recognition of the potential applications of
CRISPR/Cas9 for forest ecosystems and a call for the use of
this technology in these systems (Tsai and Xue, 2015; Fernandez i
Marti and Dodd, 2018; Fritsche et al., 2018), no applied studies in
forest pathosystems have been performed.

From the perspective of engineering plant disease resistance,
this lack of CRISPR/Cas9 research in forest species is
understandable for three major reasons. The first is that
conifer species, which dominate forest ecosystems in the
Northern Hemisphere, have significantly larger and more
complex genomes than most agricultural angiosperms. Thus,
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there are far fewer whole genome sequences available (Nystedt
et al., 2013; Neale et al., 2017)—a requirement for CRISPR/Cas9
gene editing in order to design effective sgRNAs and minimize
off-target effects. The second reason is the increased difficulty of
transformation protocols for forest tree species; this requires not
only the transformation of DNA, but also the subsequent
regeneration of the whole plant, which is a more time-
consuming and complex process in woody perennial plants
(Peña and Séguin, 2001; Fernandez i Marti and Dodd, 2018).
The final reason is the controversy surrounding GMOs, which is
shared with the agricultural sector, but is perhaps greater for
woody forest species given their perennial nature and existence
within semi-natural ecosystems; furthermore, the regulatory
restrictions on genetically engineered trees are far stricter than
those for agricultural crops (Strauss et al., 2009; Strauss et al.,
2015; Strauss et al., 2016). Given these limitations, very few
woody perennials have been successfully engineered with
CRISPR/Cas9 relative to their annual counterparts, and the list
of those that have is almost exclusively made up of agricultural
species including Coffea canephora (coffee: Breitler et al., 2018),
Citrus sinensis (sweet orange: Jia and Wang, 2014), Citrus
paradisi (Duncan grapefruit: Jia et al., 2016), and Malus (apple:
Malnoy et al., 2016; Nishitani et al., 2016). The only forest species
for which CRISPR/Cas9 systems have been developed are those
in the genus Populus: P. tomentosa (Fan et al., 2015; Jiang et al.,
2017; Wan et al., 2017; Wang et al., 2017; Xu et al., 2017; Yang
et al., 2017; Shen et al., 2018), P. tremula × alba (Zhou et al.,
2015; Muhr et al., 2018), and P. tremula x tremuloides (Elorriaga
et al., 2018). Only two of these studies used CRISPR/Cas9 to
target genes involved in poplar disease resistance (Jiang et al.,
2017; Wang et al., 2017).

Given the paucity of studies using CRISPR/Cas9 in forest tree
species, it is not surprising that there are no published examples
of the use of this technology in forest pathogens. However, there
should be fewer obstacles for applying this approach to the
pathogens since they are often taxonomically related to the
Frontiers in Plant Science | www.frontiersin.org 7
oomycete and fungal species that cause disease on agricultural
plants. The study by Fang and Tyler on Phytophthora sojae
(2016) clearly demonstrated the power of CRISPR/Cas9 as a tool
for gaining a deeper understanding of phytopathogens and how
they interact with their plant hosts. Similar studies should be
implemented in forest pathogens, and there are some forest
pathosystems that are ideally suited for the use of CRISPR/Cas9
technology. Below, we give examples of four pathosystems that
could be used to drive CRISPR/Cas9 research development in
forest pathology (Figure 3): two using an approach of engineered
resistance in the host, and two using an exploratory approach in
the pathogen.

Proposed CRISPR/Cas9 Research in Four
Forest Pathosystems
Engineering Disease Resistance in Poplars
While CRISPR/Cas9 research in poplars has already started, its
focus has mainly been on modifying genes involved in growth,
reproduction, and lignin development with the goal of improving
Populus species for growth in plantations as well as use in the
pulp and bio-refinery industries (Fan et al., 2015; Zhou et al.,
2015; Wan et al., 2017; Xu et al., 2017; Yang et al., 2017; Elorriaga
et al., 2018; Muhr et al., 2018; Shen et al., 2018; Chanoca et al.,
2019). However, there are many potential applications for
CRISPR/Cas9 technology for developing disease resistance, and
perhaps the most promising application in forest pathology
would be the genome editing of poplar species for resistance to
their major pathogens, namely Melampsora and Sphaerulina
species. In fact, the Melampsora-Populus pathosystems (Figure
3A) have previously been proposed as a model system to further
our understanding of host–pathogen recognition mechanisms
and the infection process (Feau et al., 2007) and would therefore
be an excellent place to start CRISPR/Cas9 research in
forest pathology.

Poplars are ecologically and economically valuable trees,
playing important roles in both natural and managed forests,
A B

FIGURE 2 | The number of CRISPR publications by year since 2012 (development of CRISPR/Cas9 gene editing technology by Jinek et al.) obtained from a Web of
Science topic search with the search parameters: ‘CRISPR’ or ‘CRISPR-Cas*’, or ‘CRISPR/Cas*’. The ‘Analyze Results’ function of Web of Science was used to
determine publication numbers by year and research area. (A) The log-transformed number of CRISPR publications by research area shows the common trend of
increasing publications for CRISPR research for all areas except forestry. (B) A breakdown of the publication distribution by topic within forestry as determined by a
manual search of the Web of Science search results.
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and they have long been established as model species for
molecular and genomic studies in forest trees (Bradshaw et al.,
2000; Taylor, 2002; Wullschleger et al., 2002). Additionally,
Populus trichocarpa was the first tree species to have its
genome sequenced (Tuskan et al., 2006), which perfectly
situates poplar pathosystems for study with CRISPR/Cas9.
Melampsora leaf rusts and Sphaerulina leaf spot and stem
canker pathogens are two of the most damaging groups of
fungi affecting poplars in both natural stands and plantations,
and they have major impacts on productivity and forest health.
The barrier of entry for using CRISPR/Cas9 to engineer
resistance to these pathogens is particularly low for two
reasons, the first being that CRISPR/Cas9 protocols have
already been established in Populus species (Fan et al., 2015;
Zhou et al., 2015). The second reason is that candidate genes
associated with resistance have already been identified for both
Melampsora and Sphaerulina species (Yin et al., 2004; Duplessis
et al., 2009; La Mantia et al., 2013; Muchero et al., 2018). As
discussed previously, there have now been a number of studies
using CRISPR/Cas9 in Populus species, and while two of these
studies used CRISPR/Cas9 to explore the functions of genes in
Melampsora resistance by creating knockout mutants (Jiang
et al., 2017; Wang et al., 2017), none of them used CRISPR/
Cas9 to directly engineer disease resistance.

Dutch Elm Disease
The possibility of using CRISPR/Cas9 to control the dominant
Dutch elm disease (DED) pathogen Ophiostoma novo-ulmi
(Figure 3B) is another exciting prospect. Genome sequencing
and annotation of this pathogen has helped in identifying
multiple candidate genes involved in the infection process
(Forgetta et al., 2013; Khoshraftar et al., 2013; Comeau et al.,
2015). Of particular interest are the genes involved in regulating
the yeast-mycelial dimorphism exhibited by many Ophiostoma
species. Ophiostoma novo-ulmi uses its budding yeast phase to
travel rapidly through the tissues of its elm hosts but can also
Frontiers in Plant Science | www.frontiersin.org 8
switch to a mycelial form that can penetrate xylem tissues and
grow radially in the elm (Berrocal et al., 2012). This ability to
switch between yeast and mycelial growth forms is thought to be
involved in the pathogenicity of dimorphic fungi (Nadal et al.,
2008), and has thus been explored in the DED pathogens for a
number of years (Richards, 1994; Berrocal et al., 2012; Naruzawa
and Bernier, 2014; Wedge et al., 2016). Transcriptomic analyses
have identified candidate genes involved in this yeast-to-hypha
transition (Nigg et al., 2015; Nigg and Bernier, 2016). These
genes are excellent candidates for CRISPR/Cas9 gene editing:
triggering the NHEJ pathway could create knockout mutants
with reduced ability to switch to the yeast form thereby impeding
translocation of the fungus throughout the elm tree.

Another group of interest as candidate genes involved in O.
novo-ulmi pathogenicity are the secondary metabolite clusters. In
plant pathogenic fungi, secondary metabolites such as host-
selective toxins are well known to play an important role in
disease development (Macheleidt et al., 2016). Bioinformatic
annotations have identified O. novo-ulmi gene clusters
putatively involved in biosynthesis of secondary metabolites,
and interspecific comparative genomic analyses uncovered a
fujikurin-like gene cluster (OpPKS8), found in the DED
pathogens (O. ulmi and O. novo-ulmi) but absent in related
non-phytopathogenic species (Sbaraini et al., 2017). According
to phylogenetic analyses the authors suggested that this toxin-
related cluster may have been horizontally acquired by DED
pathogens (Sbaraini et al., 2017). Genes in the OpPKS8 cluster
are good candidates for exploration with CRISPR/Cas9, which
could be used as an additional tool to elucidate the functions of
this secondary metabolite cluster and its potential role
in pathogenicity.

Finally, a recent pangenomic analyses of a collection of strains
from O. ulmi andO. novo-ulmi species showed that introgression
has been the main driver of genomic diversity and has impacted
fitness-related traits, with many of the introgressed regions
containing genes involved in host–pathogen interactions and
A B DC

FIGURE 3 | The four forest pathosystems proposed for future CRISPR/Cas9 research: (A) uredinia of the poplar leaf rust pathogen Melampsora medusae f. sp.
deltoidis, a basidiomycete fungus, on eastern cottonwood (Populus deltoides) leaves in Montréal, Quebec, CA (photo: Richard Hamelin, 2015); (B) flagging
symptoms typical of Dutch elm disease, caused by the ascomycete fungal pathogen Ophiostoma novo-ulmi, on an American elm (Ulmus americana) in Québec,
Quebec, CA (photo: Philippe Tanguay, 2016); (C) sudden larch death caused by the oomycete pathogen Phytophthora ramorum in a larch plantation in Galloway
Forest Park, Scotland, GB (photo: Richard Hamelin, 2019); (D) aecia of the basidiomycete fungal pathogen Cronartium ribicola, causal agent of white pine blister
rust, on a limber pine (Pinus flexilis) in Rocky Mountain National Park, Colorado, US (photo: Erika Dort, 2019).
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eproduction (Hessenauer et al., 2020). Hessenauer et al. (2020)
further demonstrated that the virulence of O. novo-ulmi was
positively or negatively affected depending on the location of the
introgressed genes in the genome. As with the secondary
metabolites, CRISPR/Cas9 could be used as a means of exploring
the functions of some of these introgressed genes that appear to
play a role in virulence. Development of a CRISPR/Cas9 system
in O. novo-ulmi has already begun (Tanguay, 2019), which
makes implementing such pathogenicity-related strategies an
impending reality.

Sudden Oak/Larch Death
Some filamentous plant pathogens exhibit virulence via their
ability to suddenly switch lifestyles. This is the case in many
fungal and oomycete species that are hemibiotrophs, meaning
they can transition from an asymptomatic biotrophic phase to an
aggressive necrotrophic phase in which they begin releasing
toxins and killing host tissues (Lee and Rose, 2010; Koeck
et al., 2011). The genes enabling this dual lifestyle could be
effective targets for CRISPR/Cas9 in order to better understand
how hemibiotrophic pathogens cause disease. Research in the
oomycete pathogen, Phytophthora infestans, showed that
effectors are the mediators of this lifestyle transition (Lee and
Rose, 2010), which is not surprising given the dominant role
these molecules play in plant–pathogen interactions. These
results are very encouraging as CRISPR/Cas9 systems have
already been developed in P. sojae (Fang et al., 2017), P. capsici
(Miao et al., 2018), and P. palmivora (Gumtow et al., 2017), and
it has proven successful in disrupting effector genes (Fang and
Tyler, 2016; Gumtow et al., 2017). The invasive forest pathogen
Phytophthora ramorum (Figure 3C), causal agent of sudden oak
death in the United States (Rizzo et al., 2002a; Rizzo et al., 2002b)
and sudden larch death in the United Kingdom (Webber et al.,
2010), is another hemibiotrophic oomycete pathogen that causes
devastating disease outbreaks in a broad range of woody hosts
(Rizzo and Garbelotto, 2003). Phytophthora ramorum is
classified as a highly aggressive pathogen given its ability to
infect woody stems as well as foliar tissues, however, its
hemibiotrophic nature allows it to remain asymptomatic
anywhere from months to years before it transitions to its
aggressive necrotrophic lifestyle (Rizzo and Garbelotto, 2003).
It would therefore be an excellent candidate for CRISPR/Cas9
research exploring the role of effectors in mediating this lifestyle
switch that influences virulence so significantly.

White Pine Blister Rust
White pine blister rust (WPBR), caused by the basidiomycete
rust fungus Cronartium ribicola (Figure 3D), has severely
affected North American populations of many economically
and ecologically important pine species such as eastern and
western white pines, sugar pine, and whitebark pine (Sniezko
et al., 2014). In many white pine species both complete and
partial resistance to WPBR have been detected. Complete
resistance is mediated by a dominant R gene named Cr,
which causes a hypersensitive response to C. ribicola and
enables the pine host to survive by restricting the infection
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to the needles (Kinloch et al., 2003; Sniezko et al., 2014).
Partial resistance appears to be a more complex response that
is likely mediated by multiple genes, but the exact mechanisms
driving this response are not yet known (Sniezko et al., 2014).
While the Cr genes mediating complete resistance in white
pines seem like the perfect candidates for CRISPR/Cas9-
generated disease resistance, these R genes are likely not
stable in the long-term because only a single mutation in a
corresponding C. ribicola effector gene would be required to
overcome this resistance (Sniezko et al., 2014). However, plant
R gene immune receptors can be mutated to provide resistance
to phylogenetically divergent pathogens (Segretin et al., 2014;
Giannakopoulou et al., 2015), and CRISPR/Cas9 could be used
to engineer such synthetic genes in tandem in order to create
stable multi-resistance plant systems (Andolfo et al., 2016).
Another option to obtain more durable long-term resistance
in WPBR pathosystems is to focus CRISPR/Cas9 research on
partial resistance. Cas9 can be co-expressed with many
sgRNAs to simultaneously target multiple genes; this
multiplex gene editing could facilitate the discovery of the
genes involved in partial resistance, and it could also
eventually be used to target those genes simultaneously in
engineered WPBR-resistant pine populations. This partial
resistance strategy may be less effective than complete
resistance to a single C. ribicola strain, but it would be
more stable in the long-term against a constantly evolving
C. ribicola population exhibiting diverse mutations and
could also protect pine hosts against other encroaching
pathogen species.

The four suggestions above demonstrate the scope of utility
of CRISPR/Cas9 gene editing technology and highlight how this
tool has been underutilized in forest pathology. CRISPR/Cas9 is
a relatively recent development, and there are clear obstacles to
its use in forest pathosystems. However, given the large number
of fungal and oomycete species for which CRISPR/Cas9 systems
have now been established, the barrier of entry for pathologists
studying filamentous forest pathogens has been lowered, and
there is a generalized research pipeline that they can follow to
implement this gene editing technology in their study
organisms (Figure 4). This pipeline can comprise various
approaches for developing a CRISPR/Cas9 system, including
using different Cas9 delivery methods (RNP vs. plasmid) and
genetic targets (DNA vs. RNA). Figure 4 shows a generalized
schematic of one such approach based on the CRISPR/Cas9
system being developed in the Dutch elm disease pathogen
Ophiostoma novo-ulmi (Tanguay, 2019). We hope this gives
forest pathologists a better understanding of the logistics
involved in developing CRISPR/Cas9 systems in filamentous
forest pathogens.

As sequencing technologies continue to improve and lower in
cost, forest pathologists should aim to increase their exploration
of the genetic basis of plant disease resistance via CRISPR/Cas9
gene editing. The power of this technology to aid our
understanding of the intricacies of plant–pathogen interactions
and generate effective strategies of disease resistance in forest
pathosystems is much too great to ignore.
July 2020 | Volume 11 | Article 1126

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Dort et al. CRISPR/Cas9 in Forest Pathology
CONCLUSIONS

Since the discovery of CRISPR/Cas systems in 1987 (Ishino
et al., 1987), our understanding of this adaptable immune
response has come a long way, and the development of
CRISPR/Cas9 gene editing technology in 2012 (Jinek et al.,
2012) resulted in an explosion of research with wide-reaching
implications for most biological systems. Despite the
development of Cas9 tools in many pathosystems, there are
still limitations to the use of CRISPR/Cas technology in plant
pathology, especially concerning off-target effects. However,
careful design of sgRNAs and modifications of the Cas
proteins prevent most of these effects, and the use of RNP
delivery systems has reduced off-target mutations to zero in
many systems (Das et al., 2019). Additionally, the continued
development of CRISPR/Cas technology in plant pathosystems
will only improve efficiency as this technology is adapted to
function in a diversity of organisms. To date, most CRISPR/Cas9
research in plant pathology has been focused on agricultural
pathosystems, with little to no research in forest pathology. This
is understandable given the availability of genomic resources for
most major crops as well as the shorter generation times of crop
plants relative to their forest counterparts, which makes for a
quick feedback loop on any genetic modifications made with
Frontiers in Plant Science | www.frontiersin.org 10
CRISPR/Cas9. However, forest pathogens are wreaking equal
havoc in the forestry sector and represent a global threat to
forest ecosystems that needs to be addressed immediately. The
time is now to adopt CRISPR/Cas9 in forest pathology, at the
very least to improve our understanding of host–pathogen
interactions, but ideally to begin integrating it into forest
improvement programs to generate more effective disease
resistance strategies for long-term forest sustainability.
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FIGURE 4 | Example of a generalized CRISPR/Cas9 workflow and timeline for a filamentous forest pathogen based on the protocol being developed for the Dutch
elm disease pathogen Ophiostoma novo-ulmi (Onu). (A) Transformation of fungal protoplasts with a plasmid containing (see inset): a Cas9 gene fused to nuclear
localization signal (NLS), a single-guide RNA (sgRNA) scaffold with a 20-nucleotide (nt) region designed to base-pair with the target genomic DNA, an antibiotic
resistance gene for transformant selection, and gene promoters and terminators active in the target species. Alternatively, protoplasts can be co-transformed with a
combination of Cas9-sgRNA ribonucleoprotein complexes (RNPs) and a plasmid for antibiotic transformant selection. (B) In successful transformants, Cas9 forms a
complex with the sgRNA molecule, which guides the complex to the protospacer (a genomic DNA target in this example) with an adjacent PAM (protospacer
adjacent motif) sequence. The sgRNA–Cas9 complex is analogous to the crRNA-effector complexes of native CRISPR/Cas systems, shown in Figure 1 of this
review. In the RNP approach, this sgRNA–Cas9 complex is pre-assembled and transfected directly into the protoplasts. (C) Transformants are selected by growth
on antibiotic selective medium (picture shows Onu hygromycin-resistant transformants: pink colonies are CRISPR/Cas9 ade2 mutants). (D) Successful CRISPR/Cas9
mutants are confirmed through sub-culture of the putative transformants from the previous step, PCR screening, and Sanger sequencing.
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La Mantia, J., Klápsťě, J., El-Kassaby, Y. A., Azam, S., Guy, R. D., Douglas, C. J.,
et al. (2013). Association Analysis Identifies Melampsora ×columbiana Poplar
Leaf Rust Resistance SNPs. PLoS One 8, e78423. doi: 10.1371/
journal.pone.0078423
Frontiers in Plant Science | www.frontiersin.org 12
Langner, T., Kamoun, S., and Belhaj, K. (2018). CRISPR Crops: Plant Genome
Editing Toward Disease Resistance. Annu. Rev. Phytopathol. 56, 479–512.
doi: 10.1146/annurev-phyto-080417-050158

Lapin, D., and Van den Ackerveken, G. (2013). Susceptibility to plant disease:
more than a failure of host immunity. Trends Plant Sci. 18, 546–554.
doi: 10.1016/j.tplants.2013.05.005

Lee, S.-J., and Rose, J. K. C. (2010). Mediation of the transition from biotrophy to
necrotrophy in hemibiotrophic plant pathogens by secreted effector proteins.
Plant Signaling Behav. 5, 769–772. doi: 10.4161/psb.5.6.11778

Li, J., Zhang, Y., Zhang, Y., Yu, P.-L., Pan, H., and Rollins, J. A. (2018).
Introduction of Large Sequence Inserts by CRISPR-Cas9 To Create
Pathogenicity Mutants in the Multinucleate Filamentous Pathogen
Sclerotinia sclerotiorum. mBio 9, e00567–e00518. doi: 10.1128/mBio.00567-18

Liang, Z., Zhang, K., Chen, K., and Gao, C. (2014). Targeted Mutagenesis in Zea
mays Using TALENs and the CRISPR/Cas System. J. Genet. Genomics 41, 63–
68. doi: 10.1016/j.jgg.2013.12.001

Liu, R., Chen, L., Jiang, Y., Zhou, Z., and Zou, G. (2015). Efficient genome editing
in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell
Discovery 1, 15007. doi: 10.1038/celldisc.2015.7

Macheleidt, J., Mattern, D. J., Fischer, J., Netzker, T., Weber, J., Schroeckh, V., et al.
(2016). Regulation and Role of Fungal Secondary Metabolites. Annu. Rev.
Genet. 50, 371–392. doi: 10.1146/annurev-genet-120215-035203

Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J. J., Charpentier, E.,
Horvath, P., et al. (2011). Evolution and classification of the CRISPR–Cas
systems. Nat. Rev. Microbiol. 9, 467–477. doi: 10.1038/nrmicro2577

Makarova, K. S., Wolf, Y.II, Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J.,
et al. (2015). An updated evolutionary classification of CRISPR–Cas systems.
Nat. Rev. Microbiol. 13, 722–736. doi: 10.1038/nrmicro3569

Makarova, S. S., Khromov, A. V., Spechenkova, N. A., Taliansky, M. E., and
Kalinina, N. O. (2018). Application of the CRISPR/Cas System for Generation
of Pathogen-Resistant Plants. Biochem. Moscow 83, 1552–1562. doi: 10.1134/
S0006297918120131

Malnoy, M., Viola, R., Jung, M.-H., Koo, O.-J., Kim, S., Kim, J.-S., et al. (2016).
DNA-Free Genetically Edited Grapevine and Apple Protoplast Using
CRISPR/Cas9 Ribonucleoproteins. Front. Plant Sci. 7, 1904. doi: 10.3389/
fpls.2016.01904

Marraffini, L. A., and Sontheimer, E. J. (2010). CRISPR interference: RNA-directed
adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 11, 181–190.
doi: 10.1038/nrg2749

Matsu-ura, T., Baek, M., Kwon, J., and Hong, C. (2015). Efficient gene editing in
Neurospora crassa with CRISPR technology. Fungal Biol. Biotechnol. 2, 4.
doi: 10.1186/s40694-015-0015-1

Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., et al. (2013). Targeted
mutagenesis in rice using CRISPR-Cas system. Cell Res. 23, 1233–1236.
doi: 10.1038/cr.2013.123

Miao, J., Chi, Y., Lin, D., Tyler, B. M., and Liu, X. (2018). Mutations in ORP1
Conferring Oxathiapiprolin Resistance Confirmed by Genome Editing using
CRISPR/Cas9 in Phytophthora capsici and P. sojae. Phytopathology 108, 1412–
1419. doi: 10.1094/PHYTO-01-18-0010-R

Muchero, W., Sondreli, K. L., Chen, J.-G., Urbanowicz, B. R., Zhang, J., Singan, V.,
et al. (2018). Association mapping, transcriptomics, and transient expression
identify candidate genes mediating plant–pathogen interactions in a tree.
PNAS 115, 11573–11578. doi: 10.1073/pnas.1804428115

Muhr, M., Paulat, M., Awwanah, M., Brinkkötter, M., and Teichmann, T. (2018).
CRISPR/Cas9-mediated knockout of Populus BRANCHED1 and
BRANCHED2 orthologs reveals a major function in bud outgrowth control.
Tree Physiol. 38, 1588–1597. doi: 10.1093/treephys/tpy088

Muñoz, I. V., Sarrocco, S., Malfatti, L., Baroncelli, R., and Vannacci, G. (2019).
CRISPR-Cas for Fungal Genome Editing: A New Tool for the Management of
Plant Diseases. Front. Plant Sci. 10, 135. doi: 10.3389/fpls.2019.00135
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