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Image-based phenotype data with high temporal resolution offers advantages over end-
point measurements in plant quantitative genetics experiments, because growth
dynamics can be assessed and analysed for genotype-phenotype association.
Recently, network-based camera systems have been deployed as customizable, low-
cost phenotyping solutions. Here, we implemented a large, automated image-capture
system based on distributed computing using 180 networked Raspberry Pi units that
could simultaneously monitor 1,800 white clover (Trifolium repens) plants. The camera
system proved stable with an average uptime of 96% across all 180 cameras. For analysis
of the captured images, we developed the Greenotyper image analysis pipeline. It
detected the location of the plants with a bounding box accuracy of 97.98%, and the
U-net-based plant segmentation had an intersection over union accuracy of 0.84 and a
pixel accuracy of 0.95. We used Greenotyper to analyze a total of 355,027 images, which
required 24–36 h. Automated phenotyping using a large number of static cameras and
plants thus proved a cost-effective alternative to systems relying on conveyor belts or
mobile cameras.

Keywords: deep learning, plant phenotyping, image detection, Raspberry Pi, greenness measures, object
detection, segmentation, software
INTRODUCTION

Understanding plant genetic effects driving phenotypic differences requires extensive amounts of
phenotypic data. Traditional phenotyping approaches are often limited by the time required for data
collection and can suffer from batch effects if multiple people are involved in phenotype assessment.
In contrast, automated phenotyping systems can potentially generate large amounts of unbiased
phenotype measurements in a cost-effective manner.

Quantifying yield and growth rate is instrumental for identifying productive genotypes in plant
breeding (Wang et al., 2004; Lee and Tollenaar, 2007; Rahman et al., 2009; Fischer and Edmeades,
2010; Rivano et al., 2013). Plant yield can relatively easily be quantified by registering biomass or
grain weight post-harvest (Serfaty et al., 2013). Assessing growth rate is more difficult as it requires
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multiple measurements during plant cultivation (Walter et al.,
2015), and manual daily measurements may be impractical in
large-scale studies.

Complex plant phenotyping systems that rely on advanced
robotics can help to address this issue by providing large
amounts of high-quality image data from advanced cameras.
Many of these systems use conveyor belts to move plants to a
high-quality camera (Tisné et al., 2013; Fujita et al., 2018),
whereas others rely on a mobile camera (Lee et al., 2018).
However, parts for such systems are expensive, their maintenance
and construction is challenging, and they often require expert
assembly and manufacturing.

Recently, single board embedded computers with camera
modules, such as the Raspberry Pi (RPi), have been used as
customizable, scalable, and inexpensive solutions for image
capture in plant phenotyping (Minervini et al., 2017; Tovar
et al., 2018; Grindstaff et al., 2019). Phenotyping systems with
networked RPis are modular in nature, and their operation can
be automated with simple software solutions, allowing
continuous collection of large amounts of phenotypic data.
RPis have also been coupled with environmental monitoring
components to combine image capture with measurements of
temperature, humidity, and light intensity (Grindstaff et al., 2019).

Once images have been captured, the next challenge is to
extract relevant plant features, such as the projected plant area,
through image segmentation. In large-scale experiments,
multiple plants will often be monitored by one camera,
necessitating detection and segmentation of multiple plants
from each image. This is accomplished by a number of image
analysis pipelines developed for quantification of Arabidopsis
thaliana rosette growth (De Vylder et al., 2012; Gehan et al.,
2017; Minervini et al., 2017), but these are not necessarily easily
applied to other plant species. Methods also exist for segmentation
of complex canopies, but these are not capable of handling multi-
plant images (Guo et al., 2017; Zhang and Xu, 2018).

Machine learning-based approaches provide interesting
alternative approaches to image segmentation. Supervised
segmentation approaches such as EasyPCC (Guo et al., 2017)
and ilastik (Sommer et al., 2011) require supervision to separate
the object of interest from the background. Supervised
methods perform

well but require a comprehensive set of training data to match
the variation expected in real-life data. An unsupervised plant
segmentation method that uses k-means clustering with an EM
(expectation and maximization) algorithm has also been
reported (Al-Shakarji et al., 2017). In addition, deep learning
general object detection approaches, such as R-CNN networks
(Huang et al., 2017), have been used for disease quantification
(Fuentes et al., 2017) and for detection of maize plants in field
trials using Lidar-imaging (Jin et al., 2018).

Following successful segmentation, a wide range of features
can be extracted from the individual plant masks. For instance,
plant color has previously been used to estimate nitrogen
deficiency in legumes (Wiwart et al., 2009). Different
approaches using indices based on RGB (Tewari et al., 2013)
Frontiers in Plant Science | www.frontiersin.org 2
or estimating euclidean distances using HSL and CIELAB color
spaces have been applied (Wiwart et al., 2009), and the mean of
the hue component from the HSV/HSL/IHLS color spaces has
previously been found to correlate strongly with nitrogen content
in tomato seedlings (Mata-Donjuan et al., 2012).

Here, we present our solution for building and managing a
large-scale RPi camera system and the development of the
accompanying deep learning–based Greenotyper image analysis
pipeline. We used the system for continuous monitoring of the
projected area and hue of 1800 white clover plants in a
greenhouse setting.
METHODS

The methods section is divided into three sections; the camera
system, the image analysis pipeline, and the experimental setup.
The camera system refers to the physical camera setup in the
greenhouse and the management of this system. The image
analysis pipeline includes the processing of the produced
images and production of the final results. The experimental
setup describes the experiments performed to test the camera
system and the image analysis system, and the experimental
setup the system was used to monitor.

Camera System
Introduction
The system consisted of a 100Mbit network of 180 embedded
computers with cameras (RPi 3 Model B with RPi Camera
module version 2.1), suspended from the ceiling 2 m above 45
tables with 1,800 clover plants (Figure 1 and Supplementary
Figures 1 and 2). A separate internet-connected central
computer was also connected to this network, centralizing the
control of all 180 cameras. It received commands via the
internet-connection to schedule picture-taking jobs that make
all cameras take a picture and transfer it to the central computer.
The file name of each image was annotated with a QR code read
from the table. The image files were then compressed into a
timestamped archive and transferred to a server outside the
greenhouse for safe backup and analysis. The system was
automated, provided periodical diagnostics information, and
was set up to reboot and reconfigure itself after loss of
electrical power. The materials and cost of the components
used can be found in the system documentation (see link in the
Code Availability section).

Environmental Hazards
The greenhouse can be a harsh environment for sensitive
electrical equipment. Temperature and humidity varies a lot
during a day cycle, with humidity being generally high. To
minimize damaging effects mainly from oxidation/corrosion of
exposed circuitry, precautionary measures should be taken to
keep moisture from building up on the computers and camera
modules. Ventilation and keeping a constant temperature will
August 2020 | Volume 11 | Article 1181
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help against condensation and excess moisture. We kept the
cameras running constantly so that the heat generation of 1–3
watts from their components would function as built-in radiators
within their RPi plastic enclosures (Supplementary Figure 1B).

Camera System Software
The cameras are installed with Raspbian, the most common
GNU/Linux based operating system for the RPi. The central
computer runs scheduled bash scripts to operate the cameras via
SSH. It updates scheduling from data found on a specified
internet address, enabling remote control. When installed and
configured, the system should require no user operation other
than remote control. If a power cut occurs, the system will power
on, self-repair file systems, and resume a productive state without
human intervention.
Frontiers in Plant Science | www.frontiersin.org 3
Camera System Scale
The system can be grown or shrunk in size with minimal
adaptation. However, the picture taking script has not been
tested beyond 180 cameras. More cameras inevitably mean
more physical maintenance and more points of failure as time
progresses. Going beyond 250 cameras, depending on the image
transfer size, additional steps should be taken to provide
adequate network bandwidth availability. Transfers should be
segmented into time slots or be of limited size to minimize
congestion. Heterogenous scalability is possible, as newer or
cheaper components become available.

Camera System Operation
The system used RPi 3 Model B computers with RPi Camera
module version 2.1. These computers have the specification to
A

B C

FIGURE 1 | Schematic showing the general setup of the phenotyping system and experimental setup. The schematic corresponds to the physical setup in the
greenhouse. The grey boxes are moveable tables. The pink boxes are RPi camera modules fixed (2 m) over the tables in a fixed position. The blue box indicates the
location of the central computer, which all of the camera modules were connected to. Green indicates locations of clover plants that were studied in the experiment.
The camera modules are only shown for a single table, but camera modules were mounted over all tables with four per table. (A) A full schematic layout of the
greenhouse with relative table placements. EW (East-West) coordinates and NS (North-South) coordinates in the greenhouse describing the physical locations of
each plant. (B) Close-up schematic of a single table with the division of clover plants for the cameras. (C) A further close up of a picture from a camera. EW
coordinates and NS coordinates for the individual pots used to identify the placement of each plant. Box (1) includes the raw number of tables, plants, and cameras,
describing the full setup.
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support video streaming from the camera over a network, so
getting still images was no problem performance wise.

The storage medium for RPi 3 Model B (a 16 GB MicroSD
flash card) had to be acquired separately. Unfortunately, these
cards have limitations in durability inherent to the current state
of the technology. MicroSD cards (flash memory) are prone to
data integrity loss and reduced function or failure when many
write/erase operations occur to the medium or when subject to
unexpected power loss. The conditions in a greenhouse
environment increase the frequency of these errors. We
recommend that you buy the MicroSDs from a reputable
source. For further information, look in the systems guide (see
link in the Code Availability section).

We acquired power supplies rated for a sufficient amperage to
supply the RPi 3 B (2.5 A) and short USB power supply cables to
prevent a drop in voltage and subsequent loss of current. During
the testing phase, using power supplies with a lower specification
resulted in data corruption and system failure.

Camera System Data
Images were taken by the RPi cameras with settings “–nopreview
-w 3280 -h 2464 -q 12 -e jpg.” After image acquisition, they were
transferred to the central computer and deleted from the local
storage on the RPi cameras. Storing the images on a single
medium in the greenhouse would pose the risk of losing all the
images, so we moved the images off-site following acquisition.
The images were transferred over a mobile broadband connection
into a data center for stable storage and backup. Additionally,
periodic backups were performed of images on-site as they were
compressed into zip archives. These periodic backups were
performed by a separate image taking schedule, which would
run automatically and only be interrupted by the main scheduled
events. The zip compressed archives yielded a compression ratio
of about 12% to reduce the time required for transferring the
archives over the mobile broadband, which had a weak outgoing
connectivity from within the greenhouse.

Automatic Report System
The camera system was fully automated and designed to be
remote controlled, which reduced the need for manual operation.
Due to the system being fully automated, error reporting and off-
site monitoring was essential. In case of problems occurring in
the phenotyping system, we developed a system to report
inconsistencies and reduce the amount of physical presence
needed to diagnose and prevent failures. This system is divided
into two parts.

Firstly, diagnostics data was periodically sent to the off-site
cluster from the greenhouse. The data included timestamps and
the status of the connections to all cameras. Most essential was
reporting whether the expected amount of images were taken and
transferred to the computing cluster in the expected timeframe.

Secondly, the off-site cluster produced a report webpage
including all of the received information to evaluate problems
in the phenotyping system. It also provided an email-warning, in
case of failures needing immediate attention, such as loss of
contact to the greenhouse server or if the schedule was not being
met. Here is a list of the parameters provided for web-based view:
Frontiers in Plant Science | www.frontiersin.org 4
• Amount of images taken per camera each day
• Camera status (checking whether every camera was

responding to the network test)
• Integrated image analysis pipeline information
• The ability of the pipeline to process images
• QR code detection

The reports were automatically generated and uploaded to
GitHub every day and were checked frequently to monitor
incoming data.

Pot Setup and Design
Each camera was placed so that they covered 10 pots in the
greenhouse. The pots were arranged in two rows and each image
captured five columns, containing 10 pots in total (Figure 1).
The pots had dark plates underneath to allow the spread of the
plants to be captured by the camera, and to provide contrast
between the plates and the plants. In total, there were 45 tables,
each with four cameras mounted above, tallying 180 cameras.

To conserve space in the greenhouse, the tables were
moveable to allow for passage and work in between them
(Supplementary Figure 3). During the course of the
experiment the tables were moved, while work was done in the
greenhouse. Due to the moveable tables, the images could not be
guaranteed to have the plants located in the same place over time.
Some movement of a few cameras was also observed and
corrected during the course of the experiment. The unstable
locations of the plants meant that the plant detection methods
had to be flexible. We added QR codes to each group of 10 plants
to make identification of these groups easier (Figure 1). All the
pots were arranged in such a way that the groups were clearly
visible to each camera (Figure 1C).

Image Analysis Pipeline
Plant Location Detection Using Deep Learning
The previously detected positions of plants were not useful for
plant tracking because plants could move over time (Supplementary
Figure 3). Providing a list of fixed pot positions for each image was
therefore not possible. Attempts of clustering to find each individual
pot on the images proved to be unreliable due to the unequal size of
individual neighbouring plants. The plants have pronounced
differences in growth patterns with some growing very densely
and others very dispersed. Clustering methods had a tendency of
splitting individual plants into two separate clusters while joining
other plants into the same cluster depending on their growth pattern
or overlap (Supplementary Figure 4).

To help identify the group of plants desired on the images, QR
codes were placed. The QR codes were placed in the center of the
groups, and the pots typically were placed in the same way
relative to the QR codes. A method based on using the QR code
location while including the fixed positions in respect to the QR
code was attempted. Using clustering methods locally at each
expected position seemed to fix the main problems of the
clustering methods but was very dependent on the location of
the QR codes. If the QR code was not centered properly, then the
fixed markers were skewed with erroneous detection as a result
(Supplementary Figure 5A). Visibility of the QR codes either
August 2020 | Volume 11 | Article 1181
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from overgrowth of the surrounding plants or from objects
obscuring the QR code could also prevent correct detection of
the plants (Supplementary Figures 5B, C).

For a more reliable detectionmethod, we looked to TensorFlow
Object Detection API, designed to locate and find objects in an
image and classify them (Huang et al., 2017). The API was ideal to
solve the problem of detecting the locations of the plants. The
object detection API is flexible to use, featuring several deep
convolutional neural networks. The network we chose was
“faster r-cnn inception resnet v2,” which has been shown to
have the highest accuracy (Huang et al., 2017). The object
detection was included as the first step in the image analysis
pipeline (Figure 2A) to determine the exact location of each plant.

To train the neural network on the image setup, a visually
diverse set of images capturing the diversity of the full dataset
was divided into a training dataset and test dataset. The training
and testing dataset consisted of 51 and 14 images, respectively.
The images were selected from 10 time points with 7–10 days
intervals across all cameras. We included cases where some of the
pots were empty, making the plant/plate combination of the
non-empty pots the target. Even if all of the plants had not been
potted yet, the existing plants in the image could still be correctly
identified. The training and test image datasets, which were
chosen, can be seen on the Greenotyper github (https://github.
com/MarniTausen/Greenotyper).

The images were labeled and classified using the tool
Labelimg (Tzutalin, 2018). Three classes were defined: the first
class was the POT, which should cover all of the plants and
plates, the second class was the Positional QR code (QRCode),
Frontiers in Plant Science | www.frontiersin.org 5
and the third was QR with ColorChecker chart (QRColor)
(Supplementary Figure 6). The POT class was made to
specifically identify the plates underneath the plants due to
their clear edges. The data was trained using the provided
training and evaluation scripts in the object detection API;
specific pipeline settings can be found in data section training
data. The training ran with 50,000 iterations and was run on a
NVIDIA Tesla V100 16GB GPU using 1 GPU core, which took
approximately 3 h to complete. Tensorboard (https://www.
tensorflow.org/tensorboard) was used to extract the evaluated
bounding accuracy of classes and the convergence of the classes.
The network was exported as a frozen inference graph, which
could then be used in TensorFlow for inference on newly
introduced images.

The object detection was used to find all potential plants on
the image, which could be more than the expected amount of 10.
The QR code was used to check whether the correct group was
found. All potential rows of plants were permuted into groups of
10 plants. For each group, it was checked whether they contained
the QR code and the most likely group was kept. Afterwards, the
group of 10 plants could be sorted and identified.

Organization and Pot Identification
Keeping track of each individual sample in a phenotyping system
is important. To reduce the amount of bias due to environmental
factors, all of the pots were randomly placed in the greenhouse.
In our experiment, there were 1,800 pots to keep track of and
identify. Each pot was given a unique barcode name, which could
be identified using specific coordinates in the greenhouse. We
FIGURE 2 | (A) The raw image goes through the deep neural network, which detects the pots on the image. (B) Color correction is applied to the image, using
white balance based on the white of the center QR code. (C) When the pots have been identified, a segmentation algorithm is applied to the image to get area
measurements of the plants. Each individual pot is cropped from the image. The plant area and greenness are measured in the cropped image. The greenness is
displayed as a circular histogram. The individual crops between the pots are identical in size, making the measurement of area comparable between pots.
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used a NS (North-South) and EW (East-West) coordinate system
as illustrated in Figure 1A. For each coordinate in the NS and
EW space, we had 1 pot. Each camera contained a block of 10 NS
and EW coordinates. Two files were called camera map, and ID
map was created. The ID map contained the unique barcodes
and positional NS and EW coordinates for the pot. The camera
map contained every camera ID name tied to a specific block of
NS and EW coordinates, and in which orientation the camera
was relative to the NS and EW coordinate space. This
relationship is demonstrated on Supplementary Figure 7.

The camera IDs, based on the IP address, were stored in the
filename of the images produced by the camera. Each filename
also contained a timestamp of when the image was taken using the
following format: “MT%Y%m%d%H%M%S”, (%Y: year, %m:
month, %d: day, %H: hour, %M: minute, %S second). The format
of the timestamp ensured that the images were sorted in
chronological order. The camera IDs from the images were
extracted from the filename and looked up in the camera map to
get the NS and EW coordinate ranges. The plants were then labeled
and ordered with the barcodes based on the given orientation.

Color Correction
Light intensity and brightness changes from day to day and
throughout the day. To minimize the effects of this natural
variation on the data output, the images had to be color
corrected. ColorChecker charts were added as a possible aid in
the color correction process. These unfortunately proved to be
unreliable, since the lamination on the ColorChecker charts used
was reflective in natural day light obscuring the colors.
Furthermore, the color was shown to fade due to the UV
exposure in the greenhouse, resulting in differences in color
correction over time.

Color correction requires a reference point; in this case,
simply using the QR codes as a color reference seemed
sufficient. The white background allows for the QR code to be
used as a white color reference. White balancing is therefore
possible by estimating what the value of white color is and then
stretching the color channels to correct the white balance. The
color correction is not as precise, as it would have been if a
proper ColorChecker chart was used, but the color correction
across the cameras is uniform. The same can be done using a
black reference; however, the black color on the QR code is
unreliable due to reflective lamination on the QR code.
Demonstration of the white balancing is shown in
Supplementary Figure 8. Color correction was applied after
the plants had been found using the object detection API as the
second step in the pipeline (Figure 2B).

Plant Segmentation Using Thresholding
and Deep Learning
Segmentation is necessary when measuring the area of the plant
on the individual images. For this, we tried a traditional approach
using thresholding to define masks and a deep learning
approach. The main benefit of a thresholding approach over a
deep learning approach is the running time. Thresholding
Frontiers in Plant Science | www.frontiersin.org 6
defines thresholds for what is accepted as a “plant” on the
image. For better accuracy, thresholding was done on both the
HSV and CIELAB color spaces. The masks from both of the color
spaces were joined, and if both masks agreed on a pixel, then this
was regarded as a plant. The thresholds were adjusted by eye and
were tuned to best find what were considered green/yellow pixels
resembling live tissue. The CIELAB color space lends itself very
well to filtering down to green/yellow pixels. The color system
divides the colors into three values, L for luminosity, a* for the
green-red component, and b* for the blue-yellow component.
Both a* and b* color spaces range from -128 to 128. Thresholds
were set to -128 to -4 and 4 to 128 for the a* and b* color spaces,
respectively, keeping only green and yellow pixels and the
mixture of the two.

The HSV (hue saturation value) color space is a cylinder
shaped color space. Hue is the radial slice described in angular
dimensions from 0° to 360° (0°, red; 120°, green; 240°, blue).
Value is the vertical dimension, which describes the brightness of
the color, with 0 corresponding to black and 1 corresponding to
full color. Saturation is the horizontal dimension from the center
of the cylinder to the sides of the cylinder, with the center of the
cylinder being colorless and the sides corresponding to the color
of the hue. We defined the HSV thresholds from 30° to 150° in
the Hue component, capturing yellow and green colors without
going into orange and blue colors. The saturation and value
components were set to 0.2 to 1, excluding pale gray and dark
colors. Thresholding alone is only applicable to image analysis
when the surrounding setup does not include any colors, which
are similar to the plants.

Instead of defining strict thresholds in HSV or CIELAB, we
define slightly less strict thresholds. The problems introduced in
the HSV threshold were not detected in the CIELAB threshold
and vice versa. These thresholds therefore cancel each other out,
leaving only certain pixels (Supplementary Figure 9). The area
detection was included as a final step in producing the projected
area measurement of the detected plants (Figure 2C).

Fifity ground truth masks were produced using images of
both small and large plants, with different colors and light
conditions to capture as much of the variation in the dataset as
possible. The ground truth masks could be used in a deep
learning approach to improve the segmentation over the
simple thresholding method. The U-net method was chosen
due to its high applicability on a small set of training data
(Ronneberger et al., 2015).

The U-net was implemented using Keras (Chollet et al., 2015)
in python using the TensorFlow backend, and the architecture of
the model requires the resolution of the image to be a multiple of
2. The ground truth examples were split into 40 training dataset
and 10 testing images. The training dataset was further split with
a 20% validation split into training (32) and validation (8). To
increase the size of the datasets, augmentations could be applied.
As the convolutional layers are very particular about the edges
they can find, rotating or moving the object on the image will be
treated as a new case. Augmentations performed were not
random to avoid exact repeats. The augmentations performed
August 2020 | Volume 11 | Article 1181
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were flipped and not flipped, rotated (0°, 90°, 180°, and 270°) and
cropped from each of the four corners with size of 460 × 460 and
rescaled to 512 × 512. This increased the datasets by 40 times,
training with 1,280 images and validating with 320 images. The
architecture of U-net requires that the resolution images passed
through the network are a multiple of 2; therefore, we used the
crop size of 512 × 512. Training was done using 30 epochs using
a NVIDIA Tesla V100 16GB GPU using 1 GPU core, which took
around 1 h to complete. Inference of the U-net on a single
cropped image is slow when using CPUs, taking around 2 s;
therefore, we highly recommend running U-net using a GPU,
which reduces the running time 100-fold.

Segmentation Accuracy
Segmentation accuracy could be assessed using the ground truth
test dataset of 10 images. Different accuracy measures were
applied. When comparing between the predicted mask and the
ground truth, we can define true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN). The Jaccard
index, commonly known as the intersection over union (IoU), is
a strict measure to compare the overlap between predicted mask
and ground truth. It can be estimated by TP

TP+FP+FN . The
Sørensen-Dice coefficient measures similarity between the
ground truth and predicted masks, which can be calculated by

2TP
2(TP+FP+FN). The pixel accuracy can be estimated by TP+TN

TP+TN+FP+FN .

Precision, which estimates how large a fraction of the predicted
mask is correct, is calculated using TP

TP+FP . Recall, which finds how
much of the ground truth was found by the prediction, is
calculated by TP

TP+FN . The F1 score was calculated using the

precision and recall, 2(precision·recall)
preecision+recall . The PASCAL VOC

challenge described an average precision (AP) over recall
measurements (Everingham et al., 2010). AP is estimated by
calculating the area under the curve (AUC) from the maximum
precision for increasing recall. Precision and Recall have an
inverse relationship. You obtain higher precision with low
recall or low precision with high recall. The measure is filtered
for cases with IoU less than 0.5 for the AP@0.5IoU measure. This
measurement was also used as the bounding box accuracy for the
object detection.

Greenness Measure
Greenness measurements can be used to assess the state of the
plant. When white clover is grown without a nitrogen source, the
plants will turn yellow due to nitrogen starvation (Carter and
Knapp, 2001). With the introduction of a symbiont biological
nitrogen fixation is established, and the white clover will start to
turn green and grow again (Sloger, 1969).

The color (hue) of the plant is captured by the hue channel in
the HSV colorspace. The hue of tomato seedlings have previously
been found to correlate with nitrogen content (Mata-Donjuan
et al., 2012). The change in hue can be visualized using circular
histograms of the hue channel. To visualize the greenness of the
plants, we used the hues of the pixels labeled by the thresholding.
The circular histograms clearly indicate if there is a change in
color going from one hue distribution to another (Figure 5G).
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However, proper estimation of nitrogen content using the hue
must be validated using true nitrogen content measurements.

To provide a quantitative measure of greenness, we take the
mean and variance of the hue distribution of the plant area. A
change in the mean over time indicates a change in the color of
the plant. The hue channel is sensitive to the light conditions of
the images, making the data noisy. With proper color correction,
the hue can become less noisy and a more precise measure of
greenness. In our case, using only white balancing, there was still
quite a lot of noise in the data, but the signal could still be
captured. To reduce the effect of the noise, we took a rolling
mean with a three day window of the means in the window.

The experimental setup was focused on the effectiveness of
nitrogen fixation, where each plant is dependent on the nitrogen
provided from the rhizobia symbiont. To assess this
quantitatively, we created a measure for quantifying the rate at
which the symbiotic nitrogen fixation is established. We fitted a
linear regression on the first 20 days after inoculation, when the
change in color is expected to occur. The slope of the regression
was defined as the RateOfHue, which was used to compare the
rate at which the hue changed. A rate (slope) of zero or negative
values implies that effective symbiotic nitrogen fixation has not
been established and/or the plant would be dying. Positive rates
imply that effective symbiotic nitrogen fixation has been
established and the plant has changed color as a result. The
higher the positive value of the rate, the faster the nitrogen
fixation has been initiated. The estimated rate depends on the
starting conditions of the plant. The possible values of the slopes
depend on the differences between the starting conditions and end
conditions. The rates can be corrected by the starting conditions,
or they can be corrected using the starting conditions as fixed
effects when modelling in linear mixed models.
Greenotyper Software
The image analysis pipeline has been integrated into a tool
named Greenotyper. Greenotyper is both available as a
command line tool and as a program with a graphical user
interface (GUI). The interface is designed to make the setup of an
experiment easier and test whether the pipeline works on the
setup. There is a dedicated pipeline planner interface designed to
make setting up the experiment/pipeline flexible and easy to use
(Supplementary Figure 10). The pipeline planner allows the
user to test the image analysis pipeline with their own images and
customize the pipeline to their own experiment. The
Greenotyper pipeline process begins with taking the raw image
and applying the neural net model to the image to identify all of
the plants. Color correction is then applied to the image if
applicable. Plant area detection is then applied to the image
and the measurements are taken for each individual plant. The
Greenotyper pipeline is illustrated in Figure 2.

Greenotyper can provide four kinds of outputs: the cropped
image, the masked image used in estimating plant area, the
projected plant area, and the measure of greenness for each plant.
The output files can be subdivided into directories based on time
of capture or by sample/individual ID. The plant area estimates and
measure of greenness are written into their own respective files.
August 2020 | Volume 11 | Article 1181
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To enable scalability of the pipeline, multithreading/
multiprocessing is implemented in Greenotyper. In the GUI,
multithreading is handled by the PyQt library, while the
command line interface uses the standard library multiprocessing,
specifically the pool command. Multiprocessing enables the use of
the full capacity of cores available in the computer. For large scale
analysis, like the one performed here, running the analysis on a large
computing cluster can significantly reduce the running time. File
locking was used to ensure that the plant area, and greenness data
were not concurrently written to the file; therefore, none of the data
was lost or corrupted.

When using U-net for segmentation in Greenotyper, the
pipeline was divided into three parts. First, object detection and
color correction are applied as a preprocessing step saving the
images as numpy matrices (.npy) on disk. Afterwards the U-net is
applied, where this step can be run using the GPU to reduce the
running time 100 times (Figure 3A). The last step is a
postprocessing step using the masks produced by the U-net and
the image data to write all of the outputs to disk. Using thresholding
runs everything in a single pass and runs approximately in the same
time as the preprocessing and postprocessing step together.

The object detection training is not included in the
Greenotyper tool; however, a guide to perform the training is
found in the GitHub repository (https://github.com/MarniTausen/
Greenotyper). U-net training with data augmentation is
implemented in the Greenotyper tool.
EXPERIMENTS

Experimental Design
To test the genotype-genotype interactions of white clover
(Trifolium repens) and its symbiont Rhizobium leguminosarum
symbiovar trifoliii (Rlt), 148 clover genotypes were grown
Frontiers in Plant Science | www.frontiersin.org 8
(Griffiths et al., 2019) in a binary setup with one of 170 natural
genetically characterized Rhizobium isolates (Cavassim et al.,
2020). A total of 3,600 plants were grown under nitrogen limited
conditions in two rounds in irradiated peat (round 1, 1,800
plants) and vermiculite (round 2, 1,800 plants). Clover genotypes
were propagated from cuttings produced in a separate greenhouse
to ensure the replicates were genetically homogenous. No nitrogen
was applied in the fertilizer. There were two to three replicates of
each clover-rhizobium combination grown per round, which had
been randomly selected. Ten plants were used as uninoculated
controls. The plants were harvested after a growth period of 42 to
52 days for round 1 and 68 to 70 days for round 2. Genotype-
genotype interactions, genomic prediction, and genome wide
association studies will be explored in detail in a future manuscript.

Growth Measurements
The output data can be formatted and sorted by Greenotyper,
with each individual sample in a column and the recorded time
points in rows. The data for each individual plant can be
converted into a growth curve by averaging the size of the
daily measurements. There is variation in the plant size
estimates throughout each day, and to avoid the effects of
strong outliers, we used the median instead of the mean. The
variance per day was used to filter out days with unusually high
variance by eliminating all points with variance greater than
three times the standard deviation.

The area under the growth curve was standardized by
subtracting the initial size of the plant, which varied greatly
between genotypes since plants were grown from cuttings and
not seeds. AreaPerDay was calculated by dividing the
standardized area under the growth curve by the growth
period in days. To normalize AreaPerDay, the standardized area
under the growth curve was calculated in a 30-day window for
all samples.
A B

FIGURE 3 | (A) Running time of U-net using CPU versus GPU. Color indicates which processor was used and the shapes of the points represent how many
threads were used for the running time measurement. (B) Running time of thresholding and U-net (GPU) with increasing number of images. Each run was done with
3 replicates and the median was taken. The colors represent which method was used and the shapes of the points represent how many threads were used for the
running time measurement.
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Heritability Estimates
Heritability estimates for AreaPerDay and RateOfHue (rate of
change in greenness over time) were calculated to test whether
some of the variation measured could be explained by the
genotypes in the experiment. The heritability is calculated from
the variance estimates from the fitted linear mixed models. For
the estimation, we used the lme4 R package and the lmer
function (Bates et al., 2015). Twenty-two plants were manually
filtered out due to abnormal growth patterns, and all controls
labeled “NO” (uninoculated plants) were filtered out. Plants
inoculated with a confirmed contaminated rhizobium strain
were also filtered out. The AreaPerDay was corrected using the
initial size of the plants. The model estimation for AreaPerDay
was run as follows, with only clover and Rhizobium as random
effects:

lmer (AreaPerDay  ∼ NS  +  EW  + Round  +  Replicate +

(1 Clover)  +  (1j jRhizobium) ,  data = growth _ data)

This accounts for the variation of location (NS and EW
coordinates), period of growth round, and replicate
information. RateOfHue was estimated using the following
model:

lmer (RateOfHue  ∼ NS  +  EW  + Round  +  Replicate +

(1 Clover)  +  (1j jRhizobium)  +  StartHue,  data = growth _ data)

The RateOfHue includes the StartHue, which is
strongly correlated.

The broad sense heritabilities for Clover would be estimated
as: (varclover)/sum(var). In this case, sum(var) would be estimated
as (varclover +varrhizobium +varresidual). These estimates do not
correspond to the narrow sense heritability, the amount
explained by genetic information (SNP/variant information),
instead the broad sense heritability is the maximum heritability
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that can be estimated since it captures the total amount of
variation that can be explained by the genotype information
including genotype × environment effects.

Running Time Experiments
Running time tests were performed using thresholding and using
U-net. The U-net runs were divided into two categories using
either CPU or GPU for the U-net. All running time experiments
were run using the same approach. Samples sizes were 50, 100,
200, and 400 images, and each were run with one, two, four, and
eight threads. Each was run with three replicates, and the median
running time was used. All of the CPU tests were run on a 2015
mid Macbook Pro with a 2.2 GHz Intel Core i7 processor. The
GPU tests were run on a NVIDIA Tesla V100 16GB GPU.
RESULTS

Camera System and Image Acquisition
The experiment was carried out over 146 days in two separate
rounds, during which the camera system was active. There was a
26 day break between the two rounds, where the camera system
was still active, but the images acquired during this period were
not used in the analysis. The camera system was configured to
take images within the time interval 10.00 to 17.00 every half
hour (14 images per day). The success rate of the camera system
across all cameras, with and without backup, is summarized in
Table 1. The expected number of images was calculated by
taking the days of operation (146) times the number of images
taken per day (14). For a single camera, the resulting expected
value was 2,044 images, and for all cameras, it was 367,920. The
total uptime was calculated by comparing the number of
expected images to the number of images included in the final
analysis. Without backup represents the number of images taken
TABLE 1 | Summary of the stability of the phenotyping camera system.

Transferred images without backup

All Cameras Average camera Worst camera Best camera

Operation time (days) 146 146 146 146
Uptime (%) 86% 86% 78% 89%
Pictures 316,790 1,759.94 1,591 1,815
Space usage 346 GB 1.97 GB 1.6 GB 2.2 GB
Expected amount pictures 367,920 2,044

Transferred images with backup

All cameras Average camera Worst camera Best camera

Operation time (days) 146 146 146 146
Uptime (%) 96% 96% 88% 99%
Pictures 355,027 1,972.37 1,803 2,027
Space usage 380.4 GB 2.11 GB 1.7 GB 2.4 GB
Expected amount pictures 367,920 2,044
August 2020 | Volume 11
The operation time is the amount of days the experiment was running. Uptime was calculated based on the camera’s ability to produce images, and the percentage is the fraction of images
taken in the experiment divided by the expected amount of pictures given the time frame. Pictures: The number of pictures taken. Space usage is the total storage space usage of the
images. Expected amount of pictures is the amount of images we expected based on the length of the experiment. The tables have been subdivided into two groups, without backup and
with backup. Without backup represents the number of images taken and successfully transferred to the main cluster for storage. The backup included all images taken at the greenhouse
which later were added into the main storage.
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and successfully transferred over the network to the computer
cluster for storage (316,790). With backup includes this number
plus all images recovered from the autonomous backup routine
(355,027). Without backup, the average camera had an uptime of
86% compared to an uptime of 96% with backup. Without the
backup 10% of the data would have been lost due to connection
issues between the greenhouse and the storage cluster, and the
remaining 4% of the data loss was due to internal problems in the
camera system. Without the backup, 161 out of 180 cameras had
an uptime of approximately 85%. Including backup, 168 of the
cameras had an uptime above 95% (Supplementary table 1).

Object Detection Bounding Box
Accuracies
The neural net was trained with 51 training images and 14
evaluation images. Each image contained at least 10 pots and
three QRcodes, meaning that it included several instances of each
class (Table 2). Bounding box accuracy was estimated as the AP
over recall or PASCAL VOC AP@0.5IoU (Everingham et al.,
2010), which evaluates how precisely the network can reproduce
bounding boxes from the testing dataset. The bounding box
accuracies for three different models are shown in Table 2.
Model clover_v1 only contained one class, POT, which was
used for the plants/plates. The bounding box accuracy for POT
in clover_v1 was 97%. Model clover_v2, which included the
classes POT, QRColor, and QRCode, had the bounding box
accuracies 97.80, 97.20, and 100%, respectively, improving
slightly on the POT accuracy from clover_v1. The clover_v3
model was further run on the clover_v2 adding 50,000 extra
steps. Running it with more steps did not improve much on the
accuracies, resulting in 97.98% Pot, 97.27% QRColor, and 100%
QRCode, showing that 50,000 steps are sufficient to reach
good accuracies.

Running Time of Greenotyper
The running time of Greenotyper increases linearly with the
increase in the number of input-images, and the speed can be
improved with the use of more threads or processes (Figure 3).
U-net is highly dependent on access to a GPU for reasonable
running times (Figure 3A). Running times using U-net on a
CPU are much higher than on a GPU, spending 2 s versus 20–
30ms per cropped image. The running time on a CPU is highly
unstable and depends on the file system, because reading and
writing temporary files to conserve memory are required. Using
Frontiers in Plant Science | www.frontiersin.org 10
the U-net on a GPU accelerates the prediction, with 100 images
taking around 5 min using a GPU and taking around 38 min
using a CPU, both using eight threads (Figure 3A). Running U-
net on a GPU also runs faster than using thresholding (Figure
3B). Increasing the number of threads or cores that Greenotyper
uses reduces running time in all cases (Figures 3A, B).

Using a large computing cluster to distribute the images into
batches allowed the processing of all 355,027 images to be run in
approximately 24–36 h. The computing cluster GenomeDK
(genome.au.dk) allowed for 100–200 images to be processed
simultaneously. To put the scale and size into perspective,
analyzing all of the images on a single quad-core i7 processor
with four to eight threads would take approximately 2 weeks.
Running U-net on all images using GPU processing when
applying the U-net could also be completed in approximately
24–36 h. Running U-net on large-scale data using CPUs would
be expected to result in an approximately 100-fold increase in
running time.

Segmentation Accuracy
Segmentation accuracies for the thresholding method and U-net
were assessed on 10 testing images from the ground truth
dataset. The thresholding method was split into three
categories, HSV, LAB, and HSV/LAB, with the thresholds on
their own and the combined thresholds (Table 3). The HSV
threshold alone showed the poorest performance with low
precision (0.66), Jaccard index (0.65), Sørensen-Dice coefficient
(0.76), and pixel accuracy (0.89). The recall was very high (0.97),
which means that there are very few false negatives (Table 3).
The LAB threshold alone performed better with a much higher
precision (0.8). However, the combined HSV/LAB threshold
performed better in nearly all categories, with the exception of
the recall (Table 3).

The U-net performed very well with a high Jaccard index
(0.84), Sørensen-Dice coefficient (0.91), pixel accuracy (0.95)
(Table 3). The U-net had the highest precision (0.89), finding
fewer false positives while still having high recall (0.93). The AP
over recall was the highest among all of the methods (0.96). The
largest increase was in the Jaccard index or the intersection over
union (IoU), with an increase from 0.77 when using HSV/LAB to
0.84 when using U-net.
TABLE 2 | Bounding box accuracy (PASCAL VOC AP@0.5IoU Everingham
et al., 2010) measured on 14 testing images.

Dataset Images Pots QR codes QRColor

Training 51 510 51 102
Evaluation 14 140 14 28
Model/class POT QRColor QRCode Total Steps
clover_v1 97% 50,000
clover_v2 97.80% 97.20% 100% 100,000
clover_v3 97.98% 97.27% 100% 150,000
The accuracy is shown for two versions of the model. Clover_v1 only contained the class
POT, while clover_2 and clover_v3 contained the classes POT, QRColor and QRCode.
TABLE 3 | Segmentation accuracy of the thresholding methods (HSV only, LAB
only, and combined HSV and LAB) and the U-net method and finally the
difference between HSV/LAB and U-net.

HSV LAB HSV/LAB U-net Diff

Jaccard index (IOU) 0.65 0.75 0.77 0.84 +0.07
Sørensen-Dice coefficient 0.76 0.85 0.86 0.91 +0.05
Pixel accuracy 0.89 0.93 0.93 0.95 +0.02
Precision 0.66 0.80 0.83 0.89 +0.06
Recall 0.97 0.93 0.91 0.93 +0.02
AP [0.5 IoU] 0.91 0.93 0.94 0.96 +0.02
F1 score 0.78 0.86 0.87 0.91 +0.04
A
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Segmentation accuracy measures, Jaccard index or intersection over union (IoU), the
Sørensen-Dice coefficient, pixel accuracy, precision, recall, F1 score estimated from the
precision, and recall and AP for predictions over 0.5 IoU as described by the PASCAL
VOC challenge (Everingham et al., 2010).
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U-net detects the plants more accurately than thresholding,
and is capable of detecting the stems where thresholding
struggles (Figures 4A–C). The segmentation using thresholding
is also inaccurate in cases where the plants were hit directly by
sunlight, which occurred during a limited time period on sunny
days (Figures 4A–C).

Growth Measurements
Visual examples of growth curves produced for the same four
replicates from two rounds are shown on Figures 4D, F.
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Thresholding (Figures 4D, F) and U-net (Figures 4F, G)
produced consistent results. The AreaPerDay measurements
estimated from the growth curves were highly consistent
between U-net and thresholding, with a pearson correlation of
0.983 (Supplementary Figure 11A). Comparing from 1 day to
its consecutive day across all growth curves showed stable plant
size measurements over time (Figures 4E, G). Most of the
change in size to the following day is an increase in size, with
few cases deviating with a small decrease and a small number of
outliers with large variation (Figures 4E, G). The daily variation
A B

D E

F G

C

FIGURE 4 | (A) Three example images from the test set for segmentation. (B) Masks produced to the corresponding examples from (A), showing the ground truth
mask and the predictions from U-net and thresholding. Corresponding Jaccard index (intersection over union) statistics between the ground truth and predicted
masks are displayed. (C) Zoomed in examples on the masks showing regions in which the U-net improved the prediction compared to thresholding. (D, F) Growth
curve examples from the same replicates from the two different rounds, with replicates 2,464 and 3,004 from round 1 and replicates 3,766 and 5,016 from round 2.
Growth curves made using thresholding (D) and U-net (F). The units are the size of the plant area measured in the number of pixels from the predicted masks.
(E, G) Change in plant size from the current day to the consecutive day across all days and plants using thresholding (E) and using U-net (G). The red line
corresponds to a 1:1 relationship. Pearson correlations are shown on bottom right corners (E, G).
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in area measurements were mostly due to the movement of the
plants throughout the day (Supplementary Figure 12A). The
distribution of the variation of the size per day generally shows
low variation 1,500 pixels with a mean of 2,500 (Supplementary
Figure 12B). The CVs show that for small plants (<20,000
pixels), the variation is higher (Supplementary Figures 12C,
D). For images measuring plants with very small sizes, there is a
large amount of variation, likely caused by the noise of the
segmentation. U-net has lower variation for small plants than
thresholding, suggesting less noise (Supplementary figures 12C,
D). Data from days that showed variation more than three
standard deviations from the mean were filtered out as they
were deemed too noisy to include.
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Greenness Measurements
In addition to plant area, we were also interested in quantifying
plant greenness, since this is an indication of the nitrogen
fixation status of white clover. The experiment was run in two
rounds, one after the other. The greenness measured using
Thresholding (Figure 5A) and U-net (Figure 5B) were very
similar, showing the same patterns and similar correlations in
both rounds. Comparing the mean of the hue from round 1 to
round 2, there is a clear difference between the two rounds
(Figures 5A, B). In round 1, the plants clearly started with a
more yellow hue (Figures 5A, B) than the round 2 plants,
suggesting that the round 2 plants likely did not become as
nitrogen starved prior to inoculation with rhizobia (Figures 5A,
FIGURE 5 | (A, B) Correlation between the mean of the hue and the size of the plant. Y-axis shows the hue ranges from Yellow (50°) to Green (100°). All time points
across all plants are included on the figure. Comparison between Thresholding (A) and U-net (B) showing the difference between round 1 and round 2 for each
method. (C) Example of how the RateOfHue was estimated. The grey area corresponds to the mean hue values fit with a linear regression. The regression curve is
drawn with a blue line. The rate of hue corresponds to the slope of the regression. (D, E) Pearson correlations between the rate of hue and the starting hue value of
round 1 and round 2 for Thresholding (D) and U-net (E) across all plants. (D) Round 1 has a -0.24 Pearson correlation and round 2 has a -0.57 Pearson correlation.
(E) Round 1 has a -0.39 Pearson correlation and round 2 has a -0.57 Pearson correlation. (F) Graphical example of a single plant changing color over time. The
masks were produced using U-net. (G) Circular histograms of the hue distribution from the corresponding masks above. The scales around the histogram are the
degree value of the hue, and the scale within is the percentage of the count with a particular hue value. The gray area of the circular histogram corresponds to the
hues filtered by the mask. The colors of the bars in the histogram indicate the hue of the pixels in the corresponding mask.
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B). The rate of change in hue (RateOfHue) was calculated as the
slope of a linear regression based on the first 20 days, starting
from day 3 due to the rolling mean applied (Figure 5C). The
RateOfHue estimates produced from U-net and thresholding
were highly correlated (r = 0.948), implying that the rates
estimated between the two methods are highly concordant
(Supplementary Figure 11B). The starting hue value was
negatively correlated to the rate of the hue estimates (Figures
5D, E). The replicates in round 2 were not different, but the
second replicate from round 1 seemed to estimate lower rates
than other replicates (Figure 5D). The most likely reason, this
replicate performed worse, was that the greenhouse temperature
peaked during the time when round 1 replicate 2 was set up. This
would likely have stressed both the plants and rhizobia, causing
them to deviate from their normal interactions and growth
patterns. When using U-net, rates of the second replicates in
round 1 were slightly improved (Figure 5E). The change in hue
clearly corresponds to the change in color, and during the phase
of changing color, the distribution of hues is more variable
(Figures 5F, G).

Heritability Estimates
To evaluate if the area and greenness traits we had derived from
the image data were controlled by the clover and rhizobium
genotypes, we calculated heritabilities. The heritability was
calculated from the data estimated from thresholding and U-
net (Table 4). Heritabilities estimated for both of them were
similar, but U-net had slightly lower heritability in nearly all
cases (Table 4). For AreaPerDay using thresholding, the clover
broad sense heritability was 33.92%, and for rhizobium it was
3.64%, indicating that clover and rhizobium genotypes together
explain 37.56% of the phenotypic variation (Table 4).
Heritability was also estimated for the two rounds separately,
which resulted in combined clover and rhizobium heritabilities
of up to 55.77% (Table 4). RateOfHue heritability was 9.69% for
clover, 5.99% for rhizobium, and 15.68% in total when all rounds
were included (Table 4). The RateOfHue heritability was higher
when the data were separated into rounds, with the second round
having a combined heritability of 32.37% (Table 4). Removing
the second replicate of round 1 increased the heritability to a
combined heritability of 22.79%, and only looking at the first
replicate of round 1 had the highest heritability of 37.85%. For
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the RateOfHue trait, the rhizobium heritability was higher than
that of clover, but the combined heritability was markedly lower
than for the AreaPerDay trait (Table 4).
The Greenotyper Pipeline
Out of 3,600 monitored plants, 3,562 plants were successfully
included in the image data analysis using thresholding, and 3,568
plants were successfully included in the image analysis when
using U-net. The remaining plants were removed because of too
much missing data. The missing data was caused by the cameras/
plants being moved during the course of the experiment. This
meant some of the intended plants of the experiment were not on
the image, which caused problems in the detection/filtration step
when looking for a group of 10 plants (Supplementary Figure
13). However, 99.1 and 98.9% of the plants were measured when
using U-net and thresholding, respectively, providing a near-
complete dataset for downstream analysis.
DISCUSSION

Camera System and Image Acquisition
The RPi camera system remained very stable despite a humid
greenhouse environment with occasional extreme temperatures
of up to 46°C. Our setup included monitoring of data transfer
coupled with automatic alerts that were issued in case of issues
with the greenhouse camera system. As unexpected problems
can occur, we highly recommend generating a daily report,
which is automatically distributed to the camera system
administrators. Similar automatic reporting, in this case using
Slack messaging, has previously been used to report when
temperature and light conditions fall outside certain thresholds
(Grindstaff et al., 2019). Our system did not require much
maintenance, and maintenance could be performed outside of
camera operating hours.

Recently, camera systems using RPi units have been described
by Minervini et al. (2017); Tovar et al. (2018), and Grindstaff et al.
(2019). Different configurations of RPis have been proposed,
including overhead fixed cameras, units attached to a camera
arm, and units arranged inmulti-image octagons to capture three-
TABLE 4 | Broad sense heritability estimates for the measurements produced from the image data for both U-net and thresholding (HSV/LAB).

Clover Rhizobium SUM

Measure Filter U-net HSV/LAB U-net HSV/LAB U-net HSV/LAB

AreaPerDay None 33.02% 33.92% 3.71% 3.64% 36.73% 37.56%
AreaPerDay Round 1 only 41.95% 42.39% 5.31% 4.92% 47.26% 47.30%
AreaPerDay Round 2 only 44.67% 50.78% 1.85% 4.99% 46.52% 55.77%
AreaPerDay No round 1 rep 2 38.60% 40.09% 1.16% 1.16% 39.76% 41.25%
RateOfHue None 9.40% 9.69% 4.93% 5.99% 14.33% 15.68%
RateOfHue Round 1 only 10.84% 11.37% 8.07% 8.80% 18.91% 20.17%
RateOfHue Round 2 only 20.83% 20.13% 7.63% 12.24% 28.46% 32.37%
RateOfHue No tound 1 rep 2 17.08% 16.95% 5.60% 5.84% 22.68% 22.79%
August 20
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For AreaPerDay and RateOfHue filters, none (four replicates), round 1 only (two replicates), round 2 only (two replicates), and no round 1 rep 2 (three replicates) were applied. The models
used are described in the Heritability Estimates section.
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dimensional information (Tovar et al., 2018). RPi units can be
modified to allow recording of temperature, light, and humidity in
addition to image data (Grindstaff et al., 2019), while Phenotiki
offers camera systemmanagement and provides an image analysis
pipeline (Minervini et al., 2017). These different setups were tested
in growth chambers as proof of concepts, but have not been used
to monitor large-scale experiments.

Neural Net Training Bounding Accuracies
The neural net plant detection accuracy was very high. The
training of the POT classifier was designed to focus on the plate
beneath the plant. This enabled identification of the future
position of the plant before potting the plant itself, facilitating
registration of relative positions for plant identification.

The QR codes also proved very easy to detect. The QRCode
class had an accuracy of 100%, whereas the QRColor squares
were less efficiently detected because the ColorChecker QR codes
were obscured by the plates in some cases. It proved sufficient to
run the training for 50000 steps. Adding an additional 50,000
steps to the training provided only miniscule improvements.

Using our trained network on a different setup will likely be
unsuccessful, as it will be trained at finding the particular
patterns of plate and clover morphology in general. However,
with LabelImg (Tzutalin, 2018) and the object detection API,
training is not difficult to set up. The classification in LabelImg is
done manually, while the training is then further processed in the
object detection API. The running time of the training is highly
dependent on access to a GPU. Running it on a CPU is possible,
but the runtimes should be expected to increase significantly.

Deep learning approaches have been implemented in other
phenotyping experiments. A CNN network for identifying and
classifying Arabidopsis genotypes used a long short-term
memory (LSTM) structure to include temporal information for
all of the individual genotypes, allowing them to incorporate
individual genotype identifiers for training (Taghavi Namin
et al., 2018). How such a system would work with data from a
large-scale experiment as presented here is currently unknown.
Using object detection only for identifying the location of the
plants makes detection simple and reliable. Identification of
plant individuals is then carried out based on camera IDs and
the relative locations of the plants.

Running Time of Greenotyper
The Greenotyper pipeline can be run using simple thresholding
or a deep learning-based U-net with similar running times,
provided that U-net can be run on a GPU. Running the U-net
analysis on a CPU is possible, but results in greatly increased
running time. Running U-net using a GPU is slightly faster than
thresholding on a CPU, but if access to multiple GPUs is limited,
the thresholding pipeline is potentially much faster for large scale
experiments. Using more threads/cores can be used to speed up
the pipeline; however, the decrease in running time when using
too many threads can be limited.

A major bottleneck in large scale runs is the file writing.
Writing to the same file with multiple processes comes with the
risk that processes can write to the same file at the same time. File
writing by default is not “thread-safe”; therefore, we used file
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locking to keep the data intact. File locking makes the file
writable by a single process at the time, while the other
processes must wait until the file can be opened again. This
has a major impact on the running time, as a writing time of only
0.01 s adds up to 1 s for every 100 processes in line.

Our recommended way of running a large-scale analysis of
the images is using a distributed computing cluster. Being able to
run 100 images at a time greatly decreases the running time. Each
image can be processed as a separate process, or images can be
grouped into batches of several images running under the same
batch process. When running with U-net and having access to a
GPU, the pipeline is divided into three steps: (1) preprocessing
and object detection, (2) U-net, and (3) post-processing (results
and outputs). Pre- and post-processing can be run using the full
capacity of the distributed computing cluster, and the U-net step
can be run on the GPU for prediction after preprocessing. If the
number of GPUs is limited while CPUs are abundant, then this
strategy can be used to speed up the pipeline substantially.

Phenotiki has a fast running time using 5.5 s per image
(Minervini et al., 2017). Greenotyper using U-net on a GPU or
using thresholding achieves comparable speeds of around 3 s per
image. Training Phenotiki is substantially faster (3.5 min) than
U-net (50 min) and does not require a GPU. How phenotiki
performs on large scale experiments is unknown, and its
parallelization capabilities are not described. An unsupervised
machine learning method, ULCRF, has been described for
segmentation but has longer running times of 95.25 s per
image (Zhang and Xu, 2018).

Segmentation Accuracy
The combined HSV/LAB thresholding strategy improves the
segmentation accuracy over using the individual HSV or LAB
thresholds. However, it is clear the majority of the accuracy of the
thresholding masks comes from using the CIELAB threshold.
The CIELAB threshold is very simple, choosing only the color
dimensions that include green and yellow colors. The CIELAB
threshold has recently also been found to provide higher
accuracy in thresholding segmentation methods compared to
the HSV or RGB color spaces (Riehle et al., 2020).

U-net improves the segmentation accuracy, being capable of
capturing the whole plant much better than thresholding. It
performs better in general by having a more precise overlap
between the ground truth and the prediction than thresholding.
The U-net requires quite extensive and diverse training data, and
time must be spent to produce ground masks that can be used for
training, validation and testing. To increase the size of the
datasets, augmentations can be applied to simulate “new” data.
The only requirement is that the images augmented are not too
similar, which may lead to overfitting to the training data. Data
augmentations have also been applied in other plant
phenotyping deep learning approaches, where rotations were
applied to increase the number of training images three-fold
(Taghavi Namin et al., 2018).

Phenotiki uses an incremental learning approach to train a
plant appearance model using past segmentations to improve the
current one (Minervini et al., 2014). The method achieved very
high accuracies with a Jaccard index of 0.932 and 0.964 in the
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Sørensen-Dice coefficient (Minervini et al., 2014). Lee et al.
(2018) proposed a different approach using super pixels to
enlarge regions of interest and using a random forest classifier.
The method got F1 scores of around 0.795 on average on the
testing data, but found a very high AP of 0.95, which was
comparable to the AP of our U-net analysis of 0.96. Both
methods were trained and tested on Arabidopsis rosette plants.
How these scores would translate to the white clover is unclear,
but they provide possible alternative segmentation approaches.
Unsupervised approaches, which do not require training, can
also be explored. The unsupervised learning method ULCRF
performed fairly well with an average pixel accuracy of 0.75 in
segmenting both plant and fruit of tomatoes (Zhang and
Xu, 2018).

Growth Measurements
U-net and thresholding produced very similar growth curves and
plant size estimates. The growth curves were generally stable,
showing gradual daily increases in plant size. The AreaPerDay
measurements from U-net and thresholding were also
consistent. To account for the variation each day, the median
is a robust estimate, reducing the effect of any strong outliers.
The variation within each day seemed largely influenced by the
movement of the plants throughout the day. Previously, the
movement of plants has been observed due to changing wind
conditions, which added variation to the measurements each day
and between days (Guo et al., 2017). The shape or area of the
plants visible on the images is altered and therefore adds
variation to the measurements. A few of the days had higher
variation, and many of these were due to poor detection, often
caused by a failure to return the mobile greenhouse tables to their
original position, which resulted in a different plant being
labelled and detected.

The growth curves have a tendency to show an increase and
then reach a plateau towards the end. The plateau occurs when
the plants have grown beyond the area measured, which
corresponds to the area of the plate. The plateau can be
avoided by increasing the dimensions of the crop, but in our
case that also caused an increase in the likelihood of erroneously
measuring the neighboring plants. Training a mask R-CNN
network to detect the boundary boxes of the individual plants
could remove the plateau altogether (He et al., 2018), but would
possibly still fail when the plants become so large that they
overlap with their neighbours.

The loss of quantitative image data from 32 to 38 out of 1,800
plants was attributed to positioning of the cameras in relation to
the plants. These errors can occur as the cameras may move due
to disturbances in the greenhouse or ongoing work in the
greenhouse requires moving the plants. U-net was capable of
capturing slightly more of the problematic cases than
thresholding, including data from six additional plants.

The heritability estimates from using thresholding or U-net
were largely very similar, suggesting that both methods are able
to capture the same growth dynamics properly. The U-net would
be preferred due to its higher accuracy of the segmentation, but if
the U-net cannot be run due to the lack of a GPU, then
thresholding is capable of generating nearly the same results.
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Other morphological features can be extracted from the
produced image masks. For instance, the images output by
Greenotyper can be used to extract the leaf count using PlantCV
(Gehan et al., 2017). Joining the Greenotyper pipeline with other
tools thus enables the construction of new custom pipelines.

Greenness Measurements
The mean of the hue distribution has previously been shown to
correlate with laboratory measurements of plant nitrogen
content (Mata-Donjuan et al., 2012). Direct estimation of
nitrogen levels is not possible unless it can be calibrated using
a SPAD chlorophyll meter (Turner and Jund, 1994) or in a
laboratory. Other greenness measurements can be applied but
may depend on the setup of the experiment. For example,
comparing the hue between measurements from different time
points using Euclidean distances can be used to detect early
stages of macronutrient deficiencies (Wiwart et al., 2009).

Comparing the greenness levels between plants was deemed
unreliable, as the variance of the hue is high unless there is a high
degree of certainty in the color correction. Instead, we used
relative changes in greenness, RateOfHue, as a proxy for plant
nitrogen status. It proved to be a heritable trait, suggesting that it
may reflect a relevant biological process, but direct comparisons
to leaf nitrogen content dynamics would be required for
confirmation. The hue dynamics varied across the greenhouse
experiment rounds with round 2 seeming to not reach a
nitrogen-starved yellow state. The heritability for the whole
experiment was lower than for each round analyzed separately,
suggesting that hue measurements are sensitive to the specific
setup of the individual experiments.
CONCLUSION

A phenotyping system based on a network of RPi computers
proved to be a useful and affordable method of measuring plant
growth. The image analysis pipeline provided a reliable detection
method for plant area with multiple plants on the same image. The
analysis was robust under the challenging conditions in the
greenhouse, such as variable locations of the plants and
unpredictable and overlapping growth patterns. In addition, it
proved possible to quantify the rate of change of plant hue, or
greenness, which could facilitate genetic mapping of plant nitrogen
status and fixation. The GUI of the Greenotyper tool provides a
guide for setting up an image analysis pipeline for a large and
complex experiment, facilitating future large-scale studies.
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