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Reactive oxygen species (ROS) are toxic by-products of aerobic metabolism. In plants,
they also function as important signaling molecules that regulate biotic and abiotic
stress responses as well as plant growth and development. Recent studies have
implicated ROS in various aspects of plant reproduction. In male gametophytes, ROS
are associated with germline development as well as the developmentally associated
programmed cell death of tapetal cells necessary for microspore development. ROS have
a role in regulation of female gametophyte patterning and maintenance of embryo sac
polarity. During pollination, ROS play roles in the generation of self-incompatibility
response during pollen-pistil interaction, pollen tube growth, pollen tube burst for
sperm release and fertilization. In this mini review, we provide an overview of ROS
production and signaling in the context of plant reproductive development, from female
and male gametophyte development to fertilization.
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INTRODUCTION

Reactive oxygen species (ROS; e.g., O2
.−, H2O2, OH., and 1O2) are constantly generated in various

cellular compartments as by-products of aerobic metabolism (Mittler, 2017). Major sources of ROS
generation in plant cells include mitochondrial respiration, photosynthesis in chloroplast,
photorespiratory reactions in peroxisomes, and NADPH oxidases localized to the apoplast
(Mhamdi and Van Breusegem, 2018). Each ROS species is unique with a distinct half-life and
biochemical reactivity. For example, singlet oxygen (1O2) and superoxide (O2

.−) both have a half-life
(t1/2) of 1 to 4 ms, but have different modes of action. 1O2 oxidizes lipids, proteins, and guanine
residues of DNA; while O2

.− reacts with Fe-S proteins. Hydroxyl radicals (OH.) are the most
unstable ROS with a t1/2 of 1 ns and react with all biomolecules in a cell including DNA, RNA, lipids,
and proteins. Hydrogen peroxide (H2O2) is more stable with a t1/2 of 1 ms and hence involved in
cellular signaling (Mittler, 2017). While ROS have the potential to be toxic and must be neutralized
to prevent damage to cellular components, plants have also evolved mechanisms to utilize ROS for
their development (Mhamdi and Van Breusegem, 2018). In order to use ROS as signaling molecules,
their levels are balanced between production and breakdown via complex redox networks
.org August 2020 | Volume 11 | Article 11991
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comprised of several antioxidant enzymes and non-enzymatic
reactions (Mittler, 2017). Catalases, peroxidases, ascorbate
peroxidases, glutathione peroxidases, and peroxiredoxins are all
involved in H2O2 metabolism (Mittler, 2017). O2

.− is detoxified
by the enzyme superoxide dismutases (SODs) and other
molecules like flavonoids and ascorbate (Mittler, 2017). OH.

are detoxified by molecules like flavonoids, proline, sugars, and
ascorbate; while carotenoids and a-tocopherol are involved in
detoxification of 1O2 (Mittler, 2017). ROS function as important
signaling molecules in plants through their crosstalk with
phytohormones and other pathways modulate plant growth
and development, responses to biotic and abiotic stress,
autophagy, and programmed cell death (PCD) (Considine and
Foyer, 2014; Noctor et al., 2018; Huang et al., 2019). Here, we
discuss the emerging evidence supporting roles for ROS in
several stages of plant reproduction (Figure 1).
INVOLVEMENT OF ROS IN MALE AND
FEMALE GAMETOPHYTE DEVELOPMENT

Gametophytes are multicellular haploid structures that contain
the gametes. The male gametophyte is the pollen grain, a three-
celled structure made up of the vegetative cell and two sperm
cells. The female gametophyte, also known as the embryo sac, is a
seven-celled structure consisting of the gametes (the egg and
central cell), two synergid cells, and three antipodal cells. ROS
homeostasis is essential for both male and female gametophyte
development. Respiratory burst oxidase homologs (Rboh;
NADPH oxidase) dependent O2

.− production occurs during
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both male and female gametophyte development (Jiménez-
Quesada et al., 2016).

ROS in Male Gametophyte Development
The tapetum is a layer of cells in the anther that provides
nutrients for pollen development and materials for pollen wall
formation and is, therefore, essential for male gametophyte
development. Pollen mother cells or meiocytes are encased
within a tapetum-derived callose wall and undergo meiosis to
produce tetrads of haploid microspores (Gómez et al., 2015).
Developmentally regulated PCD leads to tapetum degeneration
that results in microspore release into the anther locule. Post-
meiotic male gametophyte development then proceeds with two
rounds of mitotic divisions to produce the vegetative cell and two
sperm cells and subsequent pollen wall formation (Gómez et al.,
2015). Thus, PCD of the tapetum is essential for proper pollen
development. ROS have been shown to play a key role in tapetum
function and death in model dicots and in rice. NADPH oxidases
encoded by the gene family contribute to the production of ROS
(Lamb and Dixon, 1997; Jiménez-Quesada et al., 2016). In
Arabidopsis, RbohE is expressed in the anther tapetum during
microspore development. Loss-of-function rbohE mutants had
defective pollen development that was associated with reduced
ROS levels and delayed tapetal degeneration (Xie et al., 2014).
Conversely, overexpression of RbohE in tapetal cells led to
increased ROS and precocious tapetal degeneration that also
interfered with pollen development, indicating that precise
regulation of ROS levels in the tapetum is essential for pollen
development (Xie et al., 2014). Similarly, several Rbohs are
preferentially expressed in tobacco and tomato anthers.
Manipulation of ROS levels by treatment with the NADPH
FIGURE 1 | ROS is involved in different aspects of plant reproduction. ROS has been shown to regulate female and male gametophyte development, pollen-pistil
interaction, pollen tube growth, and pollen tube rupture. Dark blue color indicates superoxide (the same color as NBT staining used for superoxide detection) and
brown indicates hydrogen peroxide (the same color as DAB staining used for detection of hydrogen peroxide). mmc, megaspore mother cell; syn, synergid cells;
cc, central cell; an, antipodal cells; mp, mature pollen.
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oxidase inhibitor diphenyleneiodonium chloride (DPI) during
anther development in tomato and tobacco impaired both
tapetal degeneration and pollen development (Yu et al., 2017).

While the Rboh proteins seem to have a direct influence on
ROS generation in the tapetum, indirect regulators have also
been implicated. For example, the homeobox transcription
factor, OsMADS3, regulates ROS homeostasis during anther
development in rice. OsMADS3 is expressed in the tapetum
and microscopes during late anther development. Osmads3
mutant had increased accumulation of O2

.−, defective anther
walls and pollen sterility (Hu et al., 2011). OsAGO2, a member of
ARGONAUTE (AGO) family, is involved in epigenetic
regulation of anther development by modulating DNA
methylation in the Hexokinase (OsHXK) promoter region to
downregulate OsHXK expression (Zheng et al., 2019).
Knockdown of OsAGO2 led to the upregulation of Rboh gene
expression, overaccumulation of ROS, and abnormal anther
development with premature initiation of PCD and pollen
abortion. Similarly, overexpression of OsHXK also led to
increased ROS production, tapetal degeneration, and pollen
abortion (Zheng et al., 2019).

Either too much or too little ROS can disrupt tapetum-
regulation of pollen development, indicating that ROS may
have a role in normal development through their participation
in carefully balanced redox reactions. Class III peroxidases
constitute one of the major redox gene regulation networks in
plants (Oliveira et al., 2019). The class III peroxidases can
function as catalytic enzymes that consume hydrogen peroxide
to oxidize phenolic compounds and/or generate ROS.
Peroxidases have been implicated in diverse aspects of
plant development and response to the environment,
often involving cell wall modifications (Shigeto and Tsutsumi,
2016). In Arabidopsis, two class III peroxidase-encoding
genes, PEROXIDASE9 (PRX9) and PRX40 are required for
maintaining tapetum and microspore cell wall integrity during
anther development in Arabidopsis (Jacobowitz et al., 2019).
PRX9 and PRX40 were confirmed to be H2O2-dependent
peroxidases that are capable of crosslinking extensins in the
cell wall. prx9prx40 double mutants displayed tapetum
hypertrophy and pollen degeneration consistent with a lack of
extensin cross-linking and compromised cell wall integrity
(Jacobowitz et al., 2019). There are several members of class III
peroxidases which are expressed in pollen (Table 1), suggesting a
possible role for this gene family in pollen development by
modulation of ROS levels. Taken together, it can be concluded
that ROS dynamics regulates various aspects of male
gametophyte development, including microspore development,
pollen maturation, and tapetal degradation.

ROS in Female Gametophyte Development
Most angiosperms have polygonum-type female gametophytes
composed of seven different cells: the egg cell, the central cell,
two synergid cells, and three antipodal cells (Yadegari and Drews,
2004). ROS levels are tightly regulated during the process of
megagametogenesis. In mature female gametophytes, superoxide
and peroxide are detected in the central cell and absent from the
antipodal cells (Martin et al., 2013a; Martin et al., 2013b). ROS
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generated by the mitochondria have an important role in
regulation of cell fate and embryo sac polarity (Martin et al.,
2013a; Martin et al., 2013b). Crucial roles of mitochondrial ROS
during embryo sac development were demonstrated using oiwa, a
female gametophytic mutant impaired in mitochondrial
manganese-superoxide dismutase (MSD1) (Martin et al., 2013a;
Martin et al., 2013b). In oiwa, high levels of ROS accumulate in the
central cell as well as the micropylar cells. The high levels of
peroxide and mitochondrial superoxide in oiwa mutants were
correlated with a range of female gametophyte phenotypes,
including mitotic arrest during megagametogenesis and mis-
specification of egg apparatus cells leading to partial central cell
identity (Martin et al., 2013a; Martin et al., 2013b).

A second link to mitochondrial ROS homeostasis and
gametophyte development was provided by athemn1, a mutant
defective in tetrapyrrole biosynthesis. athemn1 mutant had
increased ROS accumulation in developing anthers and embryo
sacs (Pratibha et al., 2017). athemn1 mutants displayed defects in
gametophyte development, including nonviable pollen and embryo
sacs with unfused polar nuclei. Central cell differentiation was also
impaired in this mutant resulting in a defective endosperm
development and an embryo developmental arrest (Pratibha
et al., 2017). Transcriptomic data have revealed the presence of
several genes involved in ROS regulation in the earliest stage of
Female gametophyte (FG) development, the megaspore mother
cell (MMC), and also in different cell types of mature female
gametophyte (Table 1). For example, the main generators of
mitochondrial ROS, NDUFV1 and NDUFS4 (NADH
dehydrogenase subunits) (Zeng et al., 2017), are expressed in the
MMC as well as in the cells of mature female gametophyte (Table
1). However, the roles of these genes in female gametophyte
development is yet to be uncovered. Nevertheless, the research
reviewed here strongly supports a role for ROS in female
gametophyte development.
ROS AS MEDIATOR OF POLLEN-PISTIL
INTERACTIONS

Successful pollination depends on a series of pollen-pistil
interactions that initiate after compatible pollen lands on a
receptive stigma. Pollen recognition, adhesion, hydration,
germination, foot formation, and pollen tube growth need to
occur before the pollen tube can be guided to the ovule for sperm
delivery to the female gametes. Stigmas of several angiosperms
accumulate ROS (mainly H2O2) constitutively (McInnis et al.,
2006; Zafra et al., 2016). Stigmatic ROS is thought to be involved
in signaling networks that promote pollen germination and
pollen tube growth on the stigma (Lan et al., 2017). In
ornamental kale (Brassica oleracea var. acephala), ROS-
scavenging flavanoids and ROS play antagonistic roles in
mediating pollination. Flavonoid levels decline as the stigma
reaches maturity resulting in ROS accumulation in the stigma
and allowing compatible pollination to occur (Lan et al., 2017).
ROS has also been implicated in Self-Incompatibility (SI), the
reproductive barrier that plants utilize to prevent self-pollination
August 2020 | Volume 11 | Article 1199
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TABLE 1 | Annotation and expression of ROS production and scavenging genes in Arabidopsis reproductive cells.
The darkness of blue color indicates the likelihood of gene expression based on the number of experimental replicates with a present (P) call. 4 P, presence in four replicates; 3 P, presence
in three replicates; 2 P, presence in two replicates; 1 P, presence in one replicate; A, absence of expression; MMC, megaspore mother cell; Syn, synergid; CC, central cell. Note that the
total replicates for MMC are 4, and the total replicates for the rest cell types are 3. These data were compiled using the gene expression data obtained from Schmidt et al., 2011
(transcriptome), Wuest et al., 2010 (transcriptome), and Lin et al., 2014 (translatome).
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to promote genetic variability (Sankaranarayanan et al., 2015).
Gametophytic SI in poppy (Papaver rhoeas L.), pear (Pyrus
pyrifolia L.), and olive (Olea europaea L.) results from PCD of
the self-pollen triggered by an increase in ROS levels inside the
pollen tubes (Bosch and Franklin-Tong, 2008; Wilkins et al.,
2011; Jiang et al., 2014; Serrano et al., 2015).
ROS in Male Gametophyte Function
Tight regulation of ROS homeostasis is necessary for both pollen
germination and tip growth. For example, ROS generation in the
pollen is correlated with the initial event of pollen hydration on
the stigma (Gao et al., 2016). KINBg is a subunit of SNF1-related
protein kinase 1 complex involved in the biogenesis of
mitochondria and peroxisomes in Arabidopsis pollen. kinbg
mutant pollen accumulates less ROS than wild-type pollen and
is compromised in its ability to hydrate and germinate on the
stigma (Gao et al., 2016). ROS has also been shown to play a role
in pollen germination in kiwifruit and blue spruce (Speranza
et al., 2012; Maksimov et al., 2018).

ROS has also been implicated in tip growth of pollen tubes
through the reproductive tract. Pollen tube growth is largely
dependent on the distribution of ions through the plasma
membrane as well as free inorganic ions like Ca2+,K+, Cl-, H+

in the cytoplasm termed “ion zoning” (Podolyan et al., 2019).
Recent studies have revealed that H2O2 can control membrane
potential in pollen tubes by regulating Ca2+ sensitive channels
and ion transport during tip growth (Breygina et al., 2016;
Maksimov et al., 2016).

NADPH dehydrogenases and NADPH oxidases are key
enzymes for ROS generation in plant cells. ROS accumulates at
the subapical and apical regions of growing pollen tubes where
mitochondria are most abundant (Cárdenas et al., 2006).
Inhibition of either NADPH dehydrogenases or NADPH-
oxidases with DPI or NADPH oxidases-specific antisense
oligodeoxynucleotides resulted in an inhibition of pollen tube
growth (Cárdenas et al., 2006; Potocký et al., 2007). RbohH and
RbohJ are NADPH oxidases that have Ca2+-induced ROS-
producing activity and localized to the plasma membrane of
the pollen tube tip (Kaya et al., 2014). The rbohH rbohJ double
mutant pollen tubes exhibit high frequency growth oscillations
correlated with growth-dependent Ca2+ bursts and increase in
the rate of cell-wall exocytosis (Lassig et al., 2014). The double
mutant is also defective in pollen tip growth and show reduced
fertility as a consequence of defective ROS accumulation in the
pollen tube cell wall (Kaya et al., 2014; Lassig et al., 2014; Kaya
et al., 2015). Other Rboh family members, including RbohC,
RbohD, RbohF are expressed in pollen tubes growing through the
female tissues, suggesting their potential involvement in ROS
generation in pollen tubes (Table 1). Rboh-induced ROS
production was proposed to activate Ca2+ channels such as the
cyclic nucleotide gated channels (CNGC) in the pollen tube
(Wudick and Feijó, 2014). Interestingly, the CNGC family
functions in pollen tube growth and cngc7,8 double mutant has
a similar pollen tube bursting and sterility phenotype as observed
in the case of rbohH rbohJ double mutant (Tunc-Ozdemir et al.,
2013). Further experiments are required to test this hypothesis
Frontiers in Plant Science | www.frontiersin.org 5
and uncover any link between ROS and the CNGC in the
pollen tube.

Receptor like kinases (RLKs) localized at the pollen tube tip
are involved in maintaining cell wall properties of growing pollen
tubes. Among the RLKs, ANXUR1 and 2 (ANX1 and 2) which
are members of Catharanthus roseus RLK-1–like subfamily
(CrRLK1L) coordinate cell wall integrity through NADPH
oxidase-mediated ROS production (Boisson-Dernier et al.,
2013). anx1anx2 double mutants are sterile because pollen
tubes rupture prematurely, preventing them from growing to
fertilize the female gametophyte. A similar phenotype was
observed in rbohH rbohJ double mutants. Over-expression of
both ANX1-YFP and GFP-RbohH triggered over-accumulation
of membrane and cell wall materials. Further experiments
revealed that the NADPH oxidases function downstream of
the ANX RLKs in the pollen tube integrity pathway (Boisson-
Dernier et al., 2013). A recent study revealed that ANX1/2
interact with related RLKs BUDDHA’S PAPER SEAL1 and 2
(BUPS 1/2) and LORELEI-like GPI-anchored proteins 2 and 3
(LLG2/3) to form a receptor complex in the pollen tube. This
receptor complex interacts with RAPID ALKALIZATION
FACTORs 4 and 9 (RALF4/9) to regulate tip integrity and has
also been linked to ROS production for pollen tube growth (Feng
et al., 2019).

Maintenance of ROS homeostasis in pollen tubes is
dependent on the availability of precursors and the abundance
of antioxidant scavengers. An ABC transporter, ABCG28 was
shown to be required for the apical accumulation of ROS in
growing pollen tubes (Do et al., 2019). ABCG28 is involved in
accumulation of secretory vesicles containing polyamines,
precursors of ROS, at the growing tip of pollen tubes. abcg28
mutant pollen tubes have altered hydrogen peroxide distribution
and fail to localize polyamine to the growing tip, resulting in
defective pollen tube growth (Do et al., 2019). Flavanols and
anthocyanins are secondary metabolites that function as ROS
scavengers in plants. The anthocyanin reduced (are) tomato
mutant has reduced flavanol accumulation in pollen grains and
tubes. In consonance, are mutant displayed elevated levels of
ROS in pollen grains and impaired pollen viability, germination,
tube growth, and tube integrity, resulting in reduced seed set
(Muhlemann et al., 2018). ROS levels increase in pollen tubes in
response to heat stress, thus flavanols are particularly important
for protecting pollen tubes from the damaging effects of high
ROS levels (Muhlemann et al., 2018). In pollen tubes, ROS
functions a double edge sword in regulating cell wall integrity
and tip growth. ROS levels must be tightly regulated in the pollen
tubes to prevent it from reaching inhibitory levels.
ROS in Female Gametophyte Function
After crossing the stigmatic barrier, the pollen tube grows
through the style and transmitting tract, exits and navigates
along the ovule funiculus, enters through the ovule micropyle,
and bursts to release two sperm cells into the female
gametophyte. Double fertilization occurs when one sperm fuses
to the egg cell, and the other with the central cell (Johnson et al.,
2019). The role of ROS in pollen tube growth through the pistil
August 2020 | Volume 11 | Article 1199
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and during pollen tube reception has been reviewed in detail
recently (Zhang et al., 2020). We will focus on ROS and female
gametophyte function for the remainder of this review.

The major links between ROS and female gametophyte
function come from studies of the synergid cells in
Arabidopsis. The two synergids are accessory cells whose main
function is to communicate with the pollen tube. Synergids
secrete small cysteine-rich peptides LUREs to guide the pollen
tube toward the ovule (Okuda et al., 2009; Higashiyama and
Takeuchi, 2015). Receptors localized to the pollen tube tip
perceive these LURE peptides secreted from the synergid cells
to guide it toward the ovules (Takeuchi and Higashiyama, 2016;
Wang et al., 2016). After being attracted to the female
gametophyte, pollen tubes pause outside the synergids, near
the filiform apparatus, a membrane-rich region that contains
important signaling proteins, so that signals from the synergid
can be perceived and translated to changes in the pollen tube tip
that will allow the pollen tube to burst and deliver the sperm cells
to the female gametes (Kessler and Grossniklaus, 2011). This
process is known as pollen tube reception.

The female gametophyte has been proposed to prepare for
pollen tube arrival by creating an oxidative environment
required for pollen tube reception at the synergids (Martin
et al., 2013a). Evidence for this hypothesis comes from ROS
staining experiments. Hydrogen peroxide was detected in
synergid cells after pollen was applied to the stigma, but before
pollen tubes reached the ovules, suggesting that pollination
triggers an oxidative burst in the embryo sac (Martin et al.,
2013a). In addition, staining with H2DCF-DA, a general ROS
stain, revealed high ROS levels in the ovule micropyle, at or near
the synergid filiform apparatus (Duan et al., 2014). Pistil feeding
experiments with ROS scavengers and inhibitors led to defects in
pollen tube reception, with the pollen tubes attracted normally to
ovules but continuing to grow and failing to burst and release the
sperm for double fertilization (Duan et al., 2014). This
pollen tube overgrowth phenotype is very similar to that
seen in mutants of synergid-expressed genes that are necessary
for communication between the female and male gametophytes.
Three synergid-expressed CrRLK1L genes have been implicated
in pollen tube reception: FERONIA (FER), HERKULES1
(HERK1), and ANJEA (ANJ) (Galindo-trigo et al., 2020). As
discussed previously in this review, the pollen tube-expressed
CrRLK1L genes ANX1/2 have been directly linked to Rboh
(Boisson-Dernier et al., 2013). FER has also been linked to Rho
of Plants (ROP) protein-signaling and RboH-mediated ROS
production in root hairs (Duan et al., 2010). fer mutants have
pollen tube overgrowth and do not accumulate ROS in the
micropyles of ovules, consistent with the inhibitor feeding
experiments and suggesting that micropylar ROS is an
important component of normal pollen tube reception.
However, herk1 anj double mutants have pollen tube
overgrowth but still accumulate micropylar ROS (Galindo-
trigo et al., 2019), indicating that the link between micropylar
ROS and synergid control of pollen tube behavior may be more
complex than previously thought. Higher resolution imaging of
ROS dynamics during pollen tube arrival to the synergid cells in
Frontiers in Plant Science | www.frontiersin.org 6
fer, lre, herk1, and anjmutants and a better understanding of the
effects of ROS on pollen tube bursting are essential to further
clarify the role of ROS during pollen tube reception.

The synergid-expressed mildew resistance locus o (MLO)
gene NORTIA (NTA, also known as MLO7) also participates in
pollen tube reception, with nta mutants displaying pollen tube
overgrowth (Kessler et al., 2010). Other members of the MLO
gene family play a role in powdery mildew infection and have
been proposed to negatively regulate localized ROS production at
powdery mildew penetration sites and to play a role in
modulating the threshold for ROS-induced cell death (Cui
et al., 2018). The biochemical function of NTA is not known,
but it accumulates in the Golgi during synergid differentiation
and then at the filiform apparatus during pollen tube reception
(Jones et al., 2017), consistent with a possible role in regulating
the synergid response to extracellular ROS in the micropyle.
MLOs could also be indirectly linked to ROS during pollen tube
reception. A recent study reported that pollen tube-expressed
MLOs regulate pollen tube growth direction by recruiting and
interacting with the calcium channel CNGC18 to the plasma
membrane in order to modify Ca2+ gradients in the pollen tube
(Ju and Kessler, 2020; Meng et al., 2020). NTA regulates Ca2+

oscillations in synergids during pollen tube reception (Ngo et al.,
2014). Micropylar ROS and NTA could both play roles in
regulating calcium flux at the filiform apparatus.

The final stage of pollen tube reception is pollen tube bursting
to release the sperm cells. Pollen tube discharge also completes
the process of synergid degeneration that is initiated by
interaction of pollen tube with the synergid (Leydon et al.,
2015). Synergid degeneration occurs as a PCD response (Li
et al., 2009) and ROS is known to drive PCD responses in
plants cells (Van Breusegem and Dat, 2006). ROS could have a
role in initiation of synergid cell degeneration by initiating a PCD
response, though direct evidence is still lacking. In animals, ROS
and NO have been implicated in sperm activation, acquisition of
hyperactivated motility, acrosome reaction, egg activation and
fertilization (Kuo et al., 2000; Ford, 2004; de Lamirande and
O’Flaherty, 2008). However, ROS functions as a negative
regulator of sperm-egg fusion by oxidation of sperm sulfhydryl
proteins in mice (Mammoto et al., 1996). A role for ROS in
sperm activation, motility and sperm-egg fusion has yet to be
uncovered in plants.
CONCLUSIONS AND PERSPECTIVES

Research carried out over the past few decades has revealed
critical roles for ROS in plant reproduction (Figure 1). ROS-
producing and scavenging enzymes have been directly
implicated in male gametophyte development and function.
Up to this point, links between female gametophyte function
and ROS accumulation have been based solely on detection of
ROS by staining of wild-type and signaling mutant ovules, but no
genetic evidence has been reported to directly link ROS to
pollen tube reception and fertilization. Single cell transcriptase
and translatome analysis of gametophytic cells revealed the
August 2020 | Volume 11 | Article 1199
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expression of several genes involved in ROS production and
scavenging, suggesting a tight regulation in synthesis and
breakdown of ROS in these gametophytic Table 1; (Wuest
et al., 2010; Schmidt et al., 2011; Lin et al., 2014). Reverse
genetic analysis using T-DNA mutants of these genes will
further shed light into the role ROS in plant reproduction.

Quantitative data on ROS levels in gametophytic cells has
been limited due to the lack of tools and methodologies to
quantify various ROS species in real time. The commonly
used small molecule ROS detectors (DAB, NBT, H2DCFA, etc)
are irreversible and only amenable to single timepoint
quantifications and are often sensitive to environmental
conditions such as pH, which can give misleading results
(Erard et al., 2018). The application of genetically encoded and
reversible ROS sensors, HyPer and roGFP2-Orp1 (Hernández-
Barrera et al., 2013; Fichman et al., 2019; Nietzel et al., 2019), to
detect intracellular ROS and the development of new sensors to
Frontiers in Plant Science | www.frontiersin.org 7
detect extracellular ROS will enable real-time monitoring of ROS
production and distribution during plant reproduction.
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