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The plant-pathogenic bacterium Xylella fastidiosa was first reported in Europe in 2013, in
the province of Lecce, Italy, where extensive areas were affected by the olive quick decline
syndrome, caused by the subsp. pauca. In Alicante, Spain, almond leaf scorch, caused by
X. fastidiosa subsp. multiplex, was detected in 2017. The effects of climatic and spatial
factors on the geographic distribution of X. fastidiosa in these two infested regions in
Europe were studied. The presence/absence data of X. fastidiosa in the official surveys
were analyzed using Bayesian hierarchical models through the integrated nested Laplace
approximation (INLA) methodology. Climatic covariates were obtained from theWorldClim
v.2 database. A categorical variable was also included according to Purcell’s minimum
winter temperature thresholds for the risk of occurrence of Pierce’s disease of grapevine,
caused by X. fastidiosa subsp. fastidiosa. In Alicante, data were presented aggregated on
a 1 km grid (lattice data), where the spatial effect was included in the model through a
conditional autoregressive structure. In Lecce, data were observed at continuous
locations occurring within a defined spatial domain (geostatistical data). Therefore, the
spatial effect was included via the stochastic partial differential equation approach. In
Alicante, the pathogen was detected in all four of Purcell’s categories, illustrating the
environmental plasticity of the subsp.multiplex. Here, none of the climatic covariates were
retained in the selected model. Only two of Purcell’s categories were represented in
Lecce. The mean diurnal range (bio2) and the mean temperature of the wettest quarter
(bio8) were retained in the selected model, with a negative relationship with the presence
of the pathogen. However, this may be due to the heterogeneous sampling distribution
having a confounding effect with the climatic covariates. In both regions, the spatial
structure had a strong influence on the models, but not the climatic covariates. Therefore,
pathogen distribution was largely defined by the spatial relationship between geographic
locations. This substantial contribution of the spatial effect in the models might indicate
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that the current extent of X. fastidiosa in the study regions had arisen from a single focus or
from several foci, which have been coalesced.
Keywords: hierarchical Bayesian models, integrated nested Laplace approximation, stochastic partial differential
equation, Xylella fastidiosa, species distribution models, olive quick decline, almond leaf scorch
INTRODUCTION

Xylella fastidiosa (Wells et al., 1987) is a gram-negative plant-
pathogenic bacterium of the Xanthomonadaceae family. It
colonizes the xylem tissues of a wide range of plant species:
The latest update of the host plants database includes 595 species
belonging to 85 different families (EFSA, 2020). However, it is
only in some combinations of host plant and bacterial strain that
infections can result in some of the most destructive diseases,
such as Pierce’s disease (PD) of grapevine and olive quick decline
syndrome (OQDS), threatening several crops of great economic
importance. Hence, to preserve the European Union (EU)
territory from its introduction from areas where the presence
of the bacterium is known, X. fastidiosa is regulated as a
quarantine organism by Regulation (EU) 2016/2031 and
Implementing Regulation (EU) 2019/2072. Recently, it has
been included in the list of the priority pests for the EU
(Regulation 2019/1702).

A total of six subspecies of X. fastidiosa have been proposed to
date, although based on genetic differences, host ranges, and
associated diseases, the majority of the bacterial strains fall into
four main subspecies. X. fastidiosa subsp. fastidiosa causes,
among others, PD and almond leaf scorch; X. fastidiosa subsp.
pauca has been identified as the cause of citrus variegated
chlorosis (CVC), leaf scorch of coffee, and OQDS. X. fastidiosa
subsp.multiplex has been found in about 140 plant species and is
associated with leaf scorch diseases in numerous tree species,
including almond (EFSA, 2020). X. fastidiosa subsp. sandyi has
been associated with oleander leaf scorch (Schaad et al., 2004;
Janse and Obradovic, 2010). Nevertheless, the Committee on the
Taxonomy of Plant Pathogenic Bacteria of the International
Society of Plant Pathology (ISPP) only considers as valid
subspecies names fastidiosa and multiplex (Bull et al., 2012). In
addition to these, the subsp. tashke (Randall et al., 2009) and
subsp.morus (Nunney et al., 2014b) have been proposed. Indeed,
recently, the X. fastidiosa strain isolated from Pyrus pyrifolia in
Taiwan has been proposed to form a distinct species in the genus
Xylella: the X. taiwanensis sp. nov (Su et al., 2016).

Xylem sap-feeding insects represent the only natural means of
spreading X. fastidiosa between plants. The bacterium colonize
the foregut of the insects that act as vectors. The human-assisted
spread of X. fastidiosa, however, is mainly through the
movement of infected plants and grafting. Therefore, two
habitats are distinguished in the life cycle of X. fastidiosa, one
is the foregut of the insect vectors, and the second is the xylem
tissue of the host plant (Almeida and Nunney, 2015). All
confirmed vectors of X. fastidiosa are hemiptera belonging to
two groups of insects: sharpshooters (Cicadellidae family and
Cicadellinae subfamily) (Almeida and Purcell, 2003) and
.org 2
spittlebugs (Aphrophoridae, Cercopidae, and Clastopteridae
families) (Cornara et al., 2018). The transmission efficiency of
X. fastidiosa by vectors depends on several factors, such as the
ecology and abundance of the insects present in the area and the
population density of the bacterium in the host plants (Almeida
et al., 2005).

In the American continent, species of sharpshooters are the
main vectors of X. fastidiosa. Most of the available information
on these vectors is based on studies conducted with Homalodisca
vitripennis (Germar) (Hemiptera: Cicadellidae), also known as
Homalodisca coagulata (Say). It is an invasive species and
currently considered the main vector of PD in California, US.
In Europe, sharpshooters are not abundant or widespread.
Different species of spittlebugs have been found to play, or
potentially play, a major role in the transmission of X.
fastidiosa (Cornara et al., 2018). In particular, Philaenus
spumarius L. (Hemiptera: Aphrophoridae) has been considered
the main vector of X. fastidiosa subsp. pauca in Italy (Cavalieri
et al., 2019). This species of spittlebug is widely distributed and is
characterized by its color polymorphism and the secretion of
foam by nymphs.

Xylella fastidiosa was first described as the cause of PD in
California. For decades, the geographic distribution of X.
fastidiosa was restricted to the American continent, but in
2013, it was first reported in Europe as causing OQDS in
southern Italy, with thousands of hectares infected and
millions of trees killed. Two years later, X. fastidiosa subsp.
multiplex was reported in Corsica and Provence-Alpes-Côte
d’Azur in France, where, in this latter case, X. fastidiosa subsp.
pauca was also recently detected (DG SANTE, 2020). Three
subspecies of X. fastidiosa (i.e., multiplex, pauca, and fastidiosa)
were reported in the Balearic Islands. Outbreaks associated with
X. fastidiosa subsp. multiplex were detected in Alicante and
Madrid, Spain, Porto District, Portugal, and Tuscany, Italy. In
2019, the presence of X. fastidiosa subsp. fastidiosa was officially
reported in Israel (EPPO, 2019a). After the first detection of X.
fastidiosa in the EU, emergency phytosanitary measures were
laid down under Decision (EU) 2015/789 in all EU Member
States with the aim of preventing further introduction and spread
within the EU territory.

The current geographical distribution of X. fastidiosa
comprises areas with different climate types (EFSA, 2019).
Although the highest prevalence of the pathogen occurs in
tropical and subtropical climates, it is also found in regions
that are much colder and/or drier. Despite the relatively wide
temperature range where X. fastidiosa develops, it should be
noted that its performance at low temperatures depends largely
on the interaction between the subspecies and the host plant.
This would explain the differences in the geographical range and
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prevalence of the different X. fastidiosa subspecies on their
associated hosts. For instance, in California, US, the severity of
almond leaf scorch is much lower than that of Pierce’s disease in
grapevines, although they are caused by the same subspecies of X.
fastidiosa (Purcell, 1997). Similarly, in North America, X.
fastidiosa subsp. multiplex is present in areas that are colder
than those where X. fastidiosa subsp. fastidiosa is prevalent
(EFSA, 2015). It is not known whether the geographic
distribution of the different X. fastidiosa subspecies is
associated with their ability to thrive at low temperatures, to
the distribution and abundance of their host plants and vectors,
or simply because they have not reached their maximum
geographical and/or environmental extent.

In this context, species distribution models (SDMs) can be a
useful tool to study the geographic range of X. fastidiosa,
given that they link spatial occurrence data with multivariate
environmental data that can be used to estimate the relationship
between the species and its habitat and subsequently predict
spatial occurrence in unsampled locations or time periods
(Martıńez-Minaya et al., 2018a). SDMs have been used in
previous works in order to describe the relationship between X.
fastidiosa and climatic variables. Bosso et al. (2016) used the
Maxent model to estimate the potential distribution of X.
fastidiosa in the Mediterranean Basin based on climatic
variables, including climate change scenarios. Godefroid et al.
(2019) analyzed the potential effect of climate change on different
subspecies of X. fastidiosa. The SDMs Bioclim and Domain were
fitted using presence data of the subspeciesmultiplex and pauca to
estimate their potential geographic distribution under current and
future climate conditions. Furthermore, the severity of PD and its
relationships with climatic variables were modeled by means of
ordinal regression using the PD risk maps proposed by Purcell
(Anas et al., 2008). Hernández and Garcıá (2019) used ecological
niche models to estimate the potential distribution of X. fastidiosa
on a global scale. EFSA, 2019 used SDM ensemble modeling to
asses the potential establishment of X. fastidiosa in the EU. All
these previous studies with SDMs for X. fastidiosa have two
characteristics in common: They used presence-only data or
generated pseudo-absences such as Maxent and did not include
spatial autocorrelation. Models based on presence-only data are
indeed a useful tool when absence data are not available (Franklin,
2010). However, without the absence data, the accuracy of the
models can be overestimated (Brotons et al., 2004). In addition,
when the spatial dependence of the data is ignored, the degree of
uncertainty can be underestimated, generating imprecise
estimations of the parameters and providing relatively low
predictive capacity (Latimer et al., 2006; Martıńez-Minaya
et al., 2018b).

In this study, the geographic distribution of X. fastidiosa was
analyzed in two affected regions in Europe: Alicante (Spain) and
the province of Lecce in the Salento peninsula (Apulia, Italy).
These two study regions were selected due to them having
different but relatively simple scenarios with regard to the
prevalent subspecies of X. fastidiosa and the main hosts
affected. In Alicante, only X. fastidiosa subsp. multiplex ST6
was identified, mainly affecting almonds (Landa et al., 2020).
Frontiers in Plant Science | www.frontiersin.org 3
On the other hand, in Apulia, only X. fastidiosa subsp. pauca
ST53 was identified, mainly affecting olives (Saponari et al., 2013).
The presence/absence data of X. fastidiosa were analyzed in each
study region with Bayesian hierarchical models, which allowed us
to include different spatial dependencies of each dataset.
Furthermore, in Bayesian statistics observations and parameters
are considered as random variables and so their uncertainty can be
incorporated in a natural way via Bayesian hierarchical models
(Banerjee et al., 2004). Computational advances have made it
possible to approximate the posterior distribution of the
parameters involving these complex models by means of
integrated nested Laplace approximation (INLA) (Rue et al., 2009).
The primary scope of this study was to determine the influence of
climatic variables on the geographic distribution of the pathogen, as
well as the spatial relationship between the positive locations in each
region. Results in the form of risk maps will help Plant Health
Authorities to optimize the official delimiting surveys forX. fastidiosa
as well as to implement control strategies, such as eradication or
containment, as established by the Decision (EU) 2015/789.
MATERIALS AND METHODS

Databases
As the kind of spatial data gathered defines the final hierarchical
spatial model used, it is necessary to describe in detail the two
different databases available. A georeferenced dataset was
provided by the Plant Health Authority (Sanitat Vegetal) of
the Generalitat Valenciana, including the results of the official
delimiting surveys for X. fastidiosa in 2017 in the demarcated
area in the province of Alicante, Spain. Surveillance (i.e.,
inspection and sampling) in the demarcated area was based
on the specifications established by Decision (EU) 2015/789,
according to which, a visual examination of the plants specified
as susceptible and, in case of suspicion of infection by the
pathogen, the collection of samples and laboratory testing. A
total of 3203 samples were considered, 206 of them were positive
(i.e., presence) for X. fastidiosa, and 2997 were negative (i.e.,
absence) based on real-time PCR (EPPO, 2019b) (Figure 1A).
Only X. fastidiosa subsp. multiplex ST6 was detected. Samples
were taken from 57 different plant species, but all the positives
were in almond (Prunus dulcis). Nevertheless, all sampled plant
species were included in the analysis, as they were considered
susceptible to X. fastidiosa (EFSA, 2020). The total number of
samples was presented aggregated on the 1 km × 1 km spatial
grid used by Sanitat Vegetal. Non-sampled grid cells were
removed, since most of them corresponded to mountain peaks
with difficult access and/or the absence of host plants; thus, the
study area had an extension of 638 km2.

Data on the distribution of X. fastidiosa in Apulia (Italy) were
obtained from the official surveillance program conducted by the
Plant Health Authority of the Regione Puglia from 2013 to 2018.
Due to the different surveillance strategies each year, only data
from the province of Lecce (2,766 km2) during the first sampling
campaign (from November 2013 to December 2014) were
considered for further analysis. Samples were first tested by
August 2020 | Volume 11 | Article 1204
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enzyme-linked immunosorbent assay (ELISA), and all samples
yielding positive reactions were confirmed by a second round of
assay using real-time PCR (EPPO, 2019b). The selected dataset
included a total of 4,205 samples, 224 of them were positive (i.e.,
presence) for X. fastidiosa and 3,981 were negative (i.e., absence)
(Figure 1B). Only X. fastidiosa subsp. pauca ST53 was detected.
In this case, data were not presented aggregated on a grid
structure as before. As a result, samples were considered as
georeferenced observations in a continuous space.

Climatic data for the demarcated area in Alicante and the
province of Lecce were obtained from the WorldClim v.2
database with a resolution of 30” arc sec (Fick and Hijmans,
2017). This database contains monthly average data of
temperature and precipitation from 1970 to 2000 and 19
derived bioclimatic variables. In addition, accumulated degree
days (Tbase,15°C) during the vegetative growth period of the main
host species in each region were also considered, i.e., from
February to October for almond in Alicante (Pou, 2004) and
from April to October in olive in Lecce (Rallo and Cuevas, 2017).
The UTM coordinate system was used in all the spatial datasets
with the raster package for R software (Hijmans and van Etten,
2012; R Core Team, 2019).

For Alicante, the climatic variables considered relevant by
Martinetti and Soubeyrand (2019) for explaining the presence of
X. fastidiosa in areas of France where subsp. multiplex is
prevalent were also included in the analysis. These variables
were the average minimum temperature in winter from
December to March (tmin), the average precipitation during
the dry season from July and August (precd) and the solar
radiation (srad).

Purcell’s classification, based on the minimum winter
temperature was proposed in the US to estimate the risk of PD
(Anas et al., 2008). This classification consists of four categories:
severe (>4.5°C), moderate (1.7 to 4.5°C), occasional (-1.1 to 1.7°C),
and negligible (<-1.1°C). A categorical variable considering these
Frontiers in Plant Science | www.frontiersin.org 4
four categories based on the minimum temperature of the coldest
month (bio6) in WorldClim v.2 was included in the analysis in
both study regions.

Due to the nature of the climatic variables, high linear
correlations were found among most of them (Figure S1). In
order to minimize potential problems of multicollinearity, a
variable selection was performed based on the Pearson’s
correlation coefficient excluding pairs of variables with |r| > 0.7
(Dormann et al., 2013). Alternatively, principal component
analysis (PCA) was conducted to reduce the number of
variables and obtain new uncorrelated variables. Since the
climatic variables had different metrics, PCA was performed
based on the correlation matrix. The correlation of each variable
with the principal components (PCs) was expressed by a rotation
with the Varimax method. The variable temperature annual
range (bio7) was excluded from PCA because it is a linear
combination of the variables maximum temperature of the
warmest month (bio5) and minimum temperature of the
coldest month (bio6).

Models
Two different Bayesian hierarchical spatial models were used to
analyze the variation of the presence of X. fastidiosa in the
study areas. Bayesian hierarchical models allow the incorporation
of sources of variability and non-observed uncertainty.
Nevertheless, computational methods, such as Markov chain
Monte Carlo (MCMC) and INLA are generally required in order
to obtain posterior distributions of the parameters and
hyperparameters. In particular, the INLA methodology (Rue
et al., 2009) is designed for latent Gaussian models (LGMs), a
large class of models including the hierarchical spatial models used
here, and provides accurate results in shorter computing times
compared with MCMC (Blangiardo and Cameletti, 2015).

LGMs can also be considered as a particular case of the
structured additive regression models (STAR), (Fahrmeir et al.,
A B

FIGURE 1 | Presence (•) and absence (•) of X. fastidiosa. (A) Sampled grid cells (1 km2) in the demarcated area in Alicante, Spain, in 2017; (B) sampling in the
province of Lecce, Italy, during the 2013–2014 campaign.
August 2020 | Volume 11 | Article 1204
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2013), where the mean of the response variable Yt is linked to a
structured predictor that accounts the various effects in an
additive way:

hi = g(mi) = b0 +o
Nb

j=1
bjxji +o

Nf

k=1

fk(zki) + vi,  i = 1,…,  n, (1)

where hi enters the likelihood through a link function, b0 is the
intercept of the model, bj are the fixed effects of the model, fk
denote any smooth effects, and vi represents any random effect,
such as a spatial effect. The models which we deal with in this
work include only fixed effects and in some cases a structured
spatial term. The prior knowledge of the additive predictor is
expressed using Gaussian prior distributions. In this context, all
the latent Gaussian variables can be seen as components of a
vector known as the latent Gaussian field. This class of models
have several applications due to their flexibility and can be fitted
using the INLA methodology with the R package R-INLA.

In both case studies, logistic regressions were performed. In
the case of Alicante, as we considered the total number of
positives of the total number of samples in each grid cell, the
response variable (yi) was assumed to be a Binomial distribution,
i.e., yi ~ Binomial (ni, pi), where pi is the probability of a sample
being positive in the grid cell i, and ni is the total number of
samples in that grid cell. On the other hand, the response variable
yi in Lecce was assumed to follow a Bernoulli distribution, where
0 indicates the absence and 1 the presence of X. fastidiosa at
location i, that is, yi ~ Bernoulli (pi), pi being the probability of
presence at location i. But as the samples were not collected in
the same way, different structures for the spatial random effect
were employed in each case.

Model for Alicante
Data in Alicante come from a sampling carried out in a
georeferenced regular lattice. A common way to deal with the
spatial dependence amongst the grid cells is to consider an
intrisic Gaussian Markov random field (GMRF) model, also
known as the Besag model presented by Besag (1974). The
main idea is to construct a model where each random effect vi
conditionally to its neighbor random effects has a Gaussian
distribution with a mean equal to the average of the neighbors
and a precision proportional to the number of neighbors:

vijv−i ∼ N
1
ki
o
i∼j
vj,

1
tvki

 !
,  i ≠ j, (2)

where tv is the precision of the random effect and ki the number
of neighbors corresponding to the grid cell i, which has a set of
neighbors j≠i. As some grid cells did not have any adjacent ones,
the neighborhood relation was established at a distance of
2.5 km, that is, two grid cells were considered neighbors if the
distance between their centroids was ≤2.5 km. Due to the 1 km ×
1 km resolution of the data, 2.5 km was the minimum distance
resulting in at least one neighbor for all grid cells. However, this
kind of effect only accounts for similarities between grid cells,
and it does not take into account the individual variability of each
grid cell. Then, the Besag, York and Mollié model (Besag et al.,
Frontiers in Plant Science | www.frontiersin.org 5
1991) was used, simply adding an independent random effect to
the model. In this way, hi = b0+Xib+vi+ui, where b0 is the
intercept, b represents the effect of the covariates Xi, vi is the
spatial effect, and ui is the independent random Gaussian effect.
Simpson et al. (2017) proposed a reparameterisation of this
model that allows an straightforward incorporation of
penalized complexity priors (PC-prior) (Riebler et al., 2016;
Simpson et al., 2017) to the model hyperparameters, including
a standardized spatial component v*:

hi = b0 + Xib +
1
t

ffiffiffiffiffiffiffiffiffiffi
1 − f

p
ui +

ffiffiffi
f

p
v*i

� �
; (3)

where t controls the marginal variance of v* and u. In addition, it
incorporates the mixing parameter 0 ≤ f ≤ 1, which measures the
proportion of variance explained by v*, so values close to 1 would
imply a strong weight of the spatial component, while f = 0 only
that of the independent random effect.

Consequently, the complete model with covariates, random
effects and all the necessary prior distributions for the parameters
and hyperparameters involved had the following structure:

            yi ∼ Binomial(ni,  pi),  i = 1,  …  ,   638,

logit(pi) = b0 + Xib + 1
t

ffiffiffiffiffiffiffiffiffiffi
1 − f

p
ui +

ffiffiffi
f

p
v*i

� �
,

P(b0) ∝ 1,

          bm ∼ N(m = 0,  t = 10−3),  m = 1,  …  ,Nb

            t ∼ PC-prior(0:5=0:31, 0:01),

            f ∼ PC-prior(0:5, 2=3),

(4)

where ni is the total number of samples for each cell i, pi is the
probability that a sample taken in cell i is positive, and b is the
vector of coefficients of covariates Xi, to which a non-informative
prior has been assigned in the form of a Normal distribution with
mean 0 and precision of 10-3. The scaled spatial effect v*i is
specified by an intrinsic conditional autoregressive (ICAR)
distribution, and ui is the independent random effect, where
ui~N(0,I). Following Simpson et al. (2017), a PC-prior for the
precision t was defined as P(1=

ffiffiffi
t

p
> 0:5=0:31) = 0:01. On the

other hand, a prior distribution was assigned for the mixing
parameter f that assumes that the independent random effect
explaining more variability than the spatial component, where P
(f < 0.5) = 2/3.

Model for Lecce
Another Bayesian hierarchical spatial model, more specifically a
Bayesian geostatistical model, was used to analyze the presence of
X. fastidiosa in Lecce. As mentioned above, this was based on the
fact that data were not presented aggregated on a grid structure
as in the other dataset, therefore samples were considered as
georeferenced observations in a continuous space. In this case,
the spatial dependence is expressed via the spatial effect w
(geostatistical term) that is assumed to follow a multivariate
Gaussian distribution whose covariance matrix s 2

wH(f) depends
on the distance between locations, and the hyperparameters s 2

w

and f, the variance, and the range of the spatial effect,
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respectively. In order to fit and predict using this kind of model,
where an indexed continuous Gaussian field (GF) is included in
the formula, Lindgren et al. (2011) proposed an explicit link
between GMRF and GF with a Matérn covariance structure via a
weak solution to a stochastic partial differential equation (SPDE).
With this approximation, the spatial term is reparametrized as
w ∼ N(0,  Q−1(k ,  t)), depending on two different parameters, k
and t. More precisely, the range is approximately f =

ffiffiffi
8
k

q
and

the variance is s 2
w = 1

4pk 2t2 Lindgren et al. (2011). However,
instead of using the default parametrization, Krainski et al.
(2019) recommended using the one that is more intuitive to
control the parameters through the marginal standard deviation
and the range.

Lastly, we specified prior distributions for the parameters and
hyperparameters. In particular, Normal vague priors with mean
and precision were used for the regression coefficients. Following
Fuglstad et al. (2019), PC-priors were used for the range and the
standard deviation of the spatial field.

Taking all this into account, the final model with covariates,
random effects, and all the necessary prior distributions for the
parameters and hyperparameters involved had the following
structure:

            yi ∼ Bernoulli(pi),  i = 1,  …  ,  4205,

logit(pi) = X ib + wi,

            w ∼ N(0,  Q−1(f,sw)),

P(b0) ∝ 1,

          bm ∼ N(m = 0, t = 10−3),  m = 1,  …  ,  Nb

            f ∼ PC-prior(mf ,   0:5 ),

         sw ∼ PC-prior(1,   0:5 ),

(5)

where pi is the probability of the presence of the pathogen in the
location i and b is the vector of the coefficients of the covariates
Xi and w is the spatial effect. The PC-priors were defined as P(f <
mf = 0.5) and P(s>1)=0.5 for the range and standard deviation,
respectively, where mf was chosen as 50% of the diameter of the
geographic region under study (Fuglstad et al., 2019).

Model Selection
Given the large number of models resulting from all the possible
combinations of covariates, model selection was carried out. As
indicated, Pearson’s correlation coefficients among covariates
were previously calculated to assist in variable selection and
minimize potential problems of multicollinearity. If the
correlation between two variables was greater than 0.7, one of
those covariates was taken out of the analysis (Dormann et al.,
2013). With the resulting covariates, all possible 2k (where k
represents the number of components of the model: covariates
and the random effects) models were evaluated and the best one
was chosen according to information criteria (Heinze et al.,
2018). In this work, we used the Watanabe Akaike information
criterion (WAIC) (Watanabe, 2010; Gelman et al., 2014), which
is the sum of two components, one quantifying model fit and
other evaluating model complexity. The predictive capacity of
Frontiers in Plant Science | www.frontiersin.org 6
the models was evaluated by cross validation using the
logarithmic conditional predictive ordinate (LCPO) (Pettit,
1990; Roos and Held, 2011). Models with the lowest values of
WAIC and LCPO were selected. When several models presented
similar information criteria, the parsimony criterion was applied
and models with fewer covariates were selected.
RESULTS

Alicante
All the 23 climatic variables included in the analysis showed high
linear correlation (Figure S1A). Nevertheless, annual mean
temperature (bio1), temperature annual range (bio7), and
precipitation of the wettest month (bio13) had r < |0.7|. These
covariates presented low variability in the study area, minimum
and maximum values of bio1 were 10.49 and 17.69°C,
respectively. The covariate bio7 varied between 24.70 and
30.93°C, and bio13 between 46 and 67.31 mm. Furthermore,
the distribution of X. fastidiosa in the study area was not
coincident with those covariates (Figure S2). Despite the
relative climatic homogeneity, the four categories defined by
Purcell based on the minimum winter temperature were
represented in the study area. Nevertheless, X. fastidiosa was
detected in all of them. Moreover, the proportion of positive
samples in the area for each category was similar with 1.78% in
the severe category (>4.5°C), 8.28% in the moderate category (1.7
to 4.5°C), 6.03% in the occasional category (-1.1 to 1.7°C), and
2.29% in the negligible category (<-1.1°C) (Figure S2D).

All model combinations (n = 32) with the three selected
climatic covariates (bio1, bio7, and bio13), Purcell’s categories,
and the spatial effect were fitted. The model with the lowest
WAIC value was the one including only the spatial effect, with a
WAIC of 617.627 and an LCPO of 1.638 (Table S1).

The posterior distribution of the spatial effect was in the linear
scale, meaning that positive values imply a higher probability of
the presence of X. fastidiosa and negative values were associated
with a lower probability, and it was related to the data according
to the neighborhood structure defined. The posterior mean of the
spatial effect took positive values in areas where there was a high
proportion of positives, while negative values were concentrated
where X. fastidiosa was not detected (Figure 2A). The standard
deviation of the posterior distribution of the spatial effect varied
between 0.32 and 2.44, with lower uncertainty in areas where the
spatial effect was greater, and the highest values in the isolated
cells (Figure 2B). The posterior mean of the mixing parameter f
was 0.931, indicating that most of the variability was explained
by the spatial effect (Table 1).

The mean of the predictive posterior distribution of the
response variable was expressed in terms of probability (0–1),
in our case with values ranging from 0.01 to 0.36. The highest
probability of the presence of X. fastidiosa was in grid cells where
the posterior distribution of the spatial effect was also highest. In
grid cells where the pathogen was not detected nor in their
neighboring cells, the probability of presence was close to zero
(Figure 2C). The standard deviation of the predictive posterior
August 2020 | Volume 11 | Article 1204
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distribution increased with the probability of presence, with the
highest value of 0.22 (Figure 2D).

PCA was performed with the original covariates, resulting in
96.4% explained variance with the first three PCs (Table S2). The
covariates mean temperature of coldest quarter (bio11) and
precipitation seasonality (bio15) had a strong influence on
PC1, with positive coefficients greater than 0.97. PC2 was
mainly defined by the precipitation in the wettest month
(bio13), which had a coefficient of 0.94. In PC2, the covariates
related with temperature had negative coefficients, whereas other
covariates of precipitation were positive. In PC3, the covariate
with the highest weight (0.97) was the mean diurnal range (bio2).
Nevertheless, when plotting the PCs there was no clear
coincidence with the distribution of X. fastidiosa (Figure S3).
All model combinations were fitted (n = 32) considering the
three PCs, Purcell’s categories, and the spatial effect. Again, the
model including only the spatial effect was selected based on
WAIC and LCPO values, and it was also found to be the most
parsimonious (Table S1).
Frontiers in Plant Science | www.frontiersin.org 7
Province of Lecce
All the 20 climatic variables included in the analysis showed
high linear correlation (Figure S1B). Among them, annual
mean temperature (bio1), mean diurnal range (bio2), mean
temperature of the wettest quarter (bio8), mean temperature of
the driest quarter (bio9), annual precipitation (bio12), and
precipitation of the driest month (bio14) had r<|0.7|. Most of
the positives were observed in the southwestern area of Lecce,
coinciding with low values of bio2, bio9, bio12, and bio14, and
high values of bio1 and bio8 (Figure S4). Some positives were
observed in the eastern part of the province, where bio8
and bio14 had the lowest values and bio12 displayed the
highest. Climatic variables had low variability, for instance,
with bio1 ranging from 16.07 to 17.23°C and bio12 from
506.6 to 679.7 mm. With regard to Purcell’s categories
based on minimum winter temperatures, only two (moderate
and severe) were represented in the province of Lecce
(Figure S4G). Hence, this categorical variable was not
further considered in the models.

All model combinations (n = 128) with the selected climatic
covariates (bio1, bio2, bio8, bio9, bio12, and bio14), and the spatial
effect were fitted. The model selected was the one including the
covariates bio2 and bio8 and the spatial effect. This model was
chosen because it was the most parsimonious of those with the
lowest values of WAIC and LCPO, meaning good model fit and
predictive capacity with fewer covariates (Table S3).

In the selected model, the posterior mean of the parameters of
bio2 and bio8 was negative (Table 2). Regarding the spatial effect,
positive values of the mean posterior distribution were associated
with a higher probability of the presence of X. fastidiosa, while
A B

DC

FIGURE 2 | Model with the spatial effect. (A) Mean and (B) standard deviation of the posterior distribution of the spatial effect. (C) Mean and (D) standard deviation
of the posterior predictive distribution of the probability of X. fastidiosa presence in the demarcated area in Alicante, Spain.
TABLE 1 | Mean, standard deviation (sd), quantiles (Q), and mode for the
parameters and hyperparameters (t, f) of the best model for the distribution of X.
fastidiosa in the demarcated area in Alicante, Spain.

Parameters Mean sd Q0.025 Q0.5 Q0.975 Mode

b0 -3.524 0.173 -3.884 -3.516 -3.208 -3.500

Hyperparameters Mean sd Q0.025 Q0.5 Q0.975 Mode

t 0.936 0.264 0.529 0.898 1.557 0.827
f 0.931 0.063 0.763 0.949 0.996 0.989
b0 is the intercept, t is the precision of the spatial effect and f the mixing parameter.
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negative values were related to a lower probability. The mean of
the posterior distribution of the spatial effect had higher values
and lower variability in the areas where X. fastidiosa was first
detected on the southwestern coast (Figure 3). The posterior
predictive distribution of the response variable showed that
the model was strongly influenced by the spatial effect.
Consequently, the probability of the presence of X. fastidiosa
Frontiers in Plant Science | www.frontiersin.org 8
was much higher in the areas around positive findings, along
with higher values of the spatial effect, but practically null in the
areas farther away from the positives (Figure 3). In addition, the
standard deviation (uncertainty) of the predictive posterior
distribution increased with the probability of presence.

The three PCs with climatic covariates explained an
accumulated variance of 87.7% (Table S2). PC1 was strongly
A B

DC

FIGURE 3 | Model with the covariates mean diurnal range (bio2), temperature of the wettest quarter (bio8), and the spatial effect. (A) Mean and (B) standard
deviation of the posterior distribution of the spatial effect. (C) Mean and (D) standard deviation of the posterior predictive distribution of the probability of X. fastidiosa
presence in Lecce, Italy.
TABLE 2 | Mean, standard deviation (sd), quantiles (Q), and mode for the parameters and hyperparameters (f, sw) of the best model for the distribution of X. fastidiosa
in Lecce, Italy, based on mean diurnal range (bio2) and mean temperature of wettest quarter (bio8).

Parameters Mean sd Q0.025 Q0.5 Q0.975 Mode

b0 17.465 11.509 -4.153 17.087 41.300 16.413
bio2 -1.149 0.744 -2.639 -1.144 0.313 -1.133
bio8 -1.216 0.706 -2.727 -1.177 0.064 -1.107

Hyperparameters Mean sd Q0.025 Q0.5 Q0.975 Mode

f 5609.527 1112.976 3858.475 5455.545 8202.005 5132.501
sw 4.837 0.753 3.527 4.778 6.480 4.662
Augus
t 2020 | Volume 11 | A
b0 is the intercept and bio2 and bio8 represent the parameters of the covariates mean diurnal range and mean temperature of wettest quarter, respectively. f and sw are the range and
variance of the spatial effect, respectively.
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influenced by two covariates: the mean diurnal range (bio2) with
a positive coefficient of 0.96 and minimum temperature of the
coldest month (bio6) with a negative coefficient of -0.96. The
precipitation of the wettest month (bio13), the wettest quarter
(bio16), and the coldest quarter (bio19) were the covariates that
made a greater contribution in PC2, all of them with positive
coefficients higher than 0.95. PC3 was mainly driven by the
accumulated degree days over 15°C (ADD), with a coefficient of
0.97. The Ionian coast in Lecce, where most of the positives were
located, showed the lowest values of PC1, although X. fastidiosa
was also found in areas with high values for PC1. Similarly, the
pathogen was detected in areas with both positive and negative
values of PC2 and PC3 (Figure S5).

All model combinations (n = 16) with the three PCs and the
spatial effect were fitted. The best model based on the WAIC
criteria was the one including the three PCs and the spatial effect.
Considering that WAIC values were virtually equivalent, the
model including PC2, PC3, and the spatial effect was selected as
the best one. Since the estimated parameters associated with PC2
and PC3 were negative in the model including the spatial effect
(Table 3), higher values of these covariates were associated with a
lower probability of the presence of X. fastidiosa. Nevertheless,
the spatial component had the strongest effect on the model.
Mean and standard deviation of the posterior distribution of the
spatial effect were similar to those obtained with the model
including climatic covariates, with higher values and lower
variability in areas where the pathogen was detected (Figure
4). The predictive posterior distribution was also similar to that
obtained with the model including climatic covariates. However,
due to the effect of the PCs, in this case the highest probability of
the presence of X. fastidiosa was concentrated on the Ionian
coast and was lower in other areas of the province. Moreover, the
standard deviation (uncertainty) of the predictive posterior
distribution was higher in the areas with a higher probability.
DISCUSSION

The climatic covariates presented low variability in both regions,
probably due to the limited extent of the study areas. Despite this,
the four categories defined by Purcell based on the minimum
winter temperature (Anas et al., 2008) were all represented in
Alicante. This was noteworthy, since it is not common to find all
Frontiers in Plant Science | www.frontiersin.org 9
four categories in the same study area, andmade it possible to infer
whether the geographic distribution of the pathogen was somehow
constrained by the low temperatures (Purcell, 1980; Lieth et al.,
2011). Several studies have shown that successful X. fastidiosa
infections (i.e., systemic host colonization) depend on certain
factors like the temperature. For example, exposure of infected
grapevines to low temperatures can effectively reduce or eliminate
the pathogen, this phenomenon is known as “cold curing” (Purcell,
1980; Feil and Purcell, 2001). Actually, the climatic variables
(temperature, precipitation) have a great influence on shaping
the ecological conditions, which can (i) be more or less favorable
for the insect vectors, in terms of population abundance, seasonal
fluctuation, and attitude for dispersal and (ii) influence the abiotic
stresses and consequently the severity of the symptoms associated
with X. fastidiosa infections.

Given the results obtained in Alicante, X. fastidiosa subsp.
multiplex was detected in similar proportions in all Purcell’s
categories. This is in agreement with the known global
distribution of this subspecies, which is present in warm
climates, but also in areas characterized by cold winters such
as Canada (Goodwin and Zhang, 1997). This is also in line with
the results of Godefroid et al. (2019), suggesting that the subsp.
multiplex may be more tolerant to cold temperatures. On the
contrary, recent studies found a positive association with
minimum winter temperatures in areas of France where X.
fastidiosa subsp. multiplex is prevalent (Abboud et al., 2019;
Martinetti and Soubeyrand, 2019). All this information together
would suggested a greater environmental plasticity of subsp.
multiplex compared to subsp. fastidiosa, and thus Purcell’s
categories for fastidiosa would not be applicable to multiplex.
Nevertheless, disease severity was not recorded in the dataset
from Alicante, but only the presence/absence of X. fastidiosa.
Our empirical observations in Alicante indicated that no major
differences in almond leaf scorch severity were observed among
Purcell’s four categories. In any case, formal quantification of
disease severity in Alicante with a proper sample size and
standard area diagrams would be needed to confirm this.

In Lecce, only two of Purcell’s categories were represented
(i.e., severe and moderate). Thus, no conclusions could be drawn
in relation to the potential effect of low winter temperature
thresholds on the geographic distribution of X. fastidiosa subsp.
pauca in this region. This subspecies is prevalent in southern
Italy, including the study area in Lecce (Saponari et al., 2018),
TABLE 3 | Mean, standard deviation (sd), quantiles (Q), and mode for the parameters and hyperparameters (f and sw) of the best model for the distribution of X.
fastidiosa in Lecce, Italy, based on the second and third principal components (PC2 and PC3).

Parameters Mean sd Q0.025 Q0.5 Q0.975 Mode

b0 -9.720 1.564 -13.316 -9.530 -7.203 -9.146
PC2 -1.139 0.543 -2.299 -1.110 -0.146 -1.056
PC3 -0.811 0.399 -1.628 -0.799 -0.056 -0.778

Hyperparameters Mean sd Q0.025 Q0.5 Q0.975 Mode

f 5609.527 1112.976 3858.475 5455.545 8202.005 5132.501
sw 4.837 0.753 3.527 4.778 6.480 4.662
Augus
t 2020 | Volume 11 | A
b0 is the intercept and PC2 and PC3 represent the parameters of the second and third principal components, respectively. f and sw are the range and variance of the spatial effect,
respectively.
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and it is widespread in Central and South America (Nunney
et al., 2014a; Haelterman et al., 2015; Coletta-Filho et al., 2016). It
was also detected in Provence-Alpes-Côte d’Azur (France)
(DG SANTE, 2020) and the Balearic Islands (Spain) (EFSA,
2019). The climates in all these regions are characterized by
mild winters, suggesting that X. fastidiosa subsp. pauca has
a lower tolerance to cold temperatures. Nevertheless, data from
experiments under controlled conditions are needed to support
this hypothesis.

Multicollinearity refers to the non-independence between the
covariates, which can lead to inaccurate estimation of the
parameters of the model and a bias in the statistical inference,
thus inducing an incorrect identification of the relevant
covariates in the model (Dormann et al., 2013; Graham, 2003).
Climatic covariates are typically correlated, as was our case. In
this study, two different methods were used to minimize this
problem. The first one was based on the pairwise correlation of
the climatic variables, selecting only those with |r|<0.7. On the
other hand, PCA was performed including all climatic variables.
This is one of the most popular methods to reduce the number of
covariates and avoid multicollinearity (Jolliffe, 2002; Dormann
Frontiers in Plant Science | www.frontiersin.org 10
et al., 2013). Unlike the previous method based on pairwise
correlations, PCA makes it possible to retain all the information
provided by the set of variables through their linear
combinations in PCs. Nevertheless, PCA has the disadvantage
that the interpretation of the PCs linking the response variable
and the covariates is not always straightforward. The zone near
the coast in the study area in Alicante was characterized by high
values of PC1 and low values of PC2 and PC3, meaning high
values of the mean temperature of the coldest quarter and the
precipitation seasonality, but low precipitation levels in the wettest
month and in the mean diurnal range. In contrast, the lowest
values of PC1 and the highest values of PC2 were located in a
small central zone at a higher altitude, where samples were not
available. On the other hand, in Lecce, the lowest values of PC1,
meaning low mean diurnal range and high temperatures in the
coldest month, were found on the Ionian coast, where most of the
positive samples were concentrated.

In Alicante, the models showed that climate effects, included
as climatic covariates or PCs, were not relevant. Therefore, no
straightforward relationships could be established between the
distribution of X. fastidiosa and temperature or precipitation in
A B

DC

FIGURE 4 | Model with principal components and spatial effect. (A) Mean and (B) standard deviation of the posterior distribution of the spatial effect. (C) Mean and
(D) standard deviation of the posterior predictive distribution of the probability of X. fastidiosa presence in Lecce, Italy.
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the study area. As indicated above, this may be due to the limited
extent of the study area and the resulting relatively low variability
of climatic variables. Nevertheless, the greater environmental
plasticity of X. fastidiosa subsp. multiplexmight have also played
a role (EFSA, 2019). The best model based on the WAIC, LCPO
and parsimony criteria included only the spatial effect. This
implies that the areas close to positive findings of X. fastidiosa are
more likely to be infested than those farther away. Our results
also indicate that climatic factors are not likely to prevent the
colonization of neighboring areas by X. fastidiosa. Therefore,
control measures based on the reduction of inoculum and vector
populations should be enforced to limit further disease spread.

Nevertheless, this spatial effect depends on the predefined
neighborhood structure. In the case of Alicante, grid cells with a
distance of ≤2.5 km between their centroids were considered
neighbors. This distance was established as being the shortest at
which all grid cells with a resolution of 1x1 km had at least one
neighbor, considering that non-sampled grid cells were not
considered in the analysis. This might represent a limitation of
our spatial model, which could be improved by increasing the spatial
resolution of the dataset and defining alternative neighborhood
structures based on actual disease spread distances.

The ability of several insect species to transmit X. fastidiosa,
like H. vitripennis in southern California (Almeida and Purcell,
2003) or P. spumarius in Italy (Saponari et al., 2014;
Cornara et al., 2017) is well documented. Daugherty and
Almeida (2009) studied the ecology of two vectors of PD,
H. vitripennis and Graphocephala atropunctata (Signoret)
(Hemiptera: Cicadellidae), which are prevalent in coastal areas
of California. Vector abundance together with the duration of the
acquisition and inoculation periods greatly influenced the
transmission efficiency of X. fastidiosa by insect species.
Nevertheless, from a spatial epidemiology perspective, studies
providing data on the actual distances of vector dispersal and
disease spread are needed, especially for those present in Europe
for which quantitative information is rather uncertain.

The models for the study area in Lecce showed that some
climatic covariates could be related to the distribution of X.
fastidiosa subsp. pauca. In particular, the mean diurnal range
(bio2) and the mean temperature of the wettest quarter (bio8) were
negatively related to the presence of the pathogen. That is, areas
with higher variation in daily temperature and higher
temperatures during the wettest months would have a lower
probability of X. fastidiosa presence. Likewise, effects were
observed with PC2 and PC3 in the model with PCA. In PC2,
climatic covariates related to precipitation in the wettest month
and the coldest quarter (bio13 and bio19) made the greatest
contribution, while PC3 was mainly defined by the ADD over
15°C from April to October. Both PC2 and PC3 had negative
coefficients in the model, indicating a lower probability of presence
in areas with more precipitation in winter and higher
temperatures during the vegetative growth period of the olive tree.

From these results, it can be speculated that wet winters and
hot summers in Lecce would be detrimental to vector activity
and/or bacterial multiplication in the host plants. Nevertheless,
given the environmental homogeneity found in the study area,
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the results of the model in terms of climatic covariates were
inconclusive. The survey strategy was not uniform across the
study area and most of the positive findings were concentrated
around the first location of X. fastidiosa near Gallipoli (Martelli
et al., 2016). Consequently, the heterogeneous distribution of the
samples could be confounded with the climatic covariates.

Previous studies estimated the potential spread of X.
fastidiosa in Europe, in order to implement control strategies
and assess potential impacts. These studies used different
methodologies like network analysis (Strona et al., 2017; Strona
et al., 2020), spatially explicit process-based models (White et al.,
2017; EFSA, 2019), compartmental Susceptible-Infected-
Removed (SIR) Bayesian models (Soubeyrand et al., 2018), or a
coupled reaction-diffusion-absorption model, considering the
spread via insects and transportation of plants (Abboud et al.,
2019). Nevertheless, uncertainties on the actual vector dispersal
and disease spread distances in Europe as well as on the human-
assisted dispersal component limit the predictive capacity of the
models. In our case, X. fastidiosa datasets from Alicante and
Lecce were analyzed with different methodologies because they
were actually two different types of spatial data. In Alicante, the
georeferenced samples were presented on a discrete space (lattice
data) so that the spacial dependence was incorporated through
an ICAR structure, which is a particular case of GMRF. In this
way, the Besag, York, and Mollie model was implemented (Besag
et al., 1991) using the reparameterization proposed by Simpson
et al. (2017), which includes a standardized spatial effect. In the
case of Lecce, locations were considered in a continuous space
(geostatistical data), so the SPDE was used (Lindgren et al.,
2011), where the GF is represented throughMatérn covariance as
GMRF in order to use the INLA methodology.

The effect of spatial relationships in SDMs cannot be ignored,
as is clearly illustrated by our study, where the spatial effect
explained virtually all the variability found in the distribution of
X. fastidiosa in both regions. Therefore, in our particular case
studies, models which did not consider spatial autocorrelation
could result in erroneous relationships between some covariates
and the presence/absence of the pathogen. The use of Bayesian
hierarchical models allowed a straightforward incorporation of
the spatial effect, which would indeed be challenging from a
frequentist approach. This methodology allowed sources of
variability and unobserved uncertainty to be incorporated in a
convenient way. Furthermore, INLA has proven to be a
computationally efficient methodology to implement complex
Bayesian hierarchical models including spatial autocorrelation.

In both study areas, the spatial component had a strong effect
in the models regardless of the climatic variables. This substantial
contribution of the spatial effect in the models might indicate
that the current extent of X. fastidiosa in the study regions had
arisen from a single outbreak in each zone or several nearby
outbreaks that coalesced. Nevertheless, actual disease spread
rates based on time-series data would be needed to confirm
this hypothesis. In the case of Lecce, data were indeed available
from 2013 to 2018, but with different surveillance strategies in
each campaign, to comply with the updates of Decision (EU)
2015/789. This temporal and spatial heterogeneity in surveillance
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constrained the information that can be derived from the
dataset, and only data from the first campaign and related
to one province met the requirements to be used in model
fitting. From an epidemiological modeling perspective, a
recommendation for risk managers would be to perform
additional surveillance programs, complementary to those
established by Decision (EU) 2015/789, to gather more
informative epidemiological data and draw sound conclusions
on the spatio-temporal scale of disease spread. Finally, the spatial
models developed here may assist risk managers in designing
more efficient surveillance strategies, where inspection and
sampling efforts would be adjusted considering the probability
of X. fastidiosa presence.
DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the https://
bitbucket.org/mcendoya/xylella_alicante_lecce.
AUTHOR CONTRIBUTIONS

MC analyzed the data and wrote the original draft. JM-M
contributed with the statistical analysis. VD, AF, and MS
provided the original data. MC, DC, AL-Q, and AV
contributed conception and design of the study. All authors
contributed to the article and approved the submitted version.
Frontiers in Plant Science | www.frontiersin.org 12
FUNDING

The present work has received funding from European Union’s
Horizon 2020 research and innovation program under grant
agreement no. 727987 (XF-ACTORS, “Xylella Fastidiosa Active
Containment Through a multidisciplinary-Oriented Research
Strategy”), grant E-RTA 2017-00004-C06-01 (FEDER INIA
AEI-MCIU and Organización Interprofesional del Aceite de
Oliva Español), grants PID2019-106341GB-I100 MCI and
TEC2016-81900-REDT (FEDER AEI-MCIU), and Basque
Government BERC 2018-2021 program AEI-MCIU BCAM
Severo Ochoa accreditation SEV-2017-0718. MC held an IVIA
grant partially funded by the European Social Fund.
ACKNOWLEDGMENTS

We thank InnovaPuglia S.p.A. Regione Puglia and Generalitat
Valenciana for providing the survey data. We thank E. Marco-
Noales and F. Beitia (IVIA) for their comments on the manuscript.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpls.2020.01204/
full#supplementary-material
REFERENCES

Abboud, C., Bonnefon, O., Parent, E., and Soubeyrand, S. (2019). Dating and
localizing an invasion from post-introduction data and a coupled reaction–
diffusion–absorption model. J. Math. Biol. 79, 765–789. doi: 10.1007/s00285-
019-01376-x

Almeida, R. P. P., and Nunney, L. (2015). How do plant diseases caused by Xylella
fastidiosa emerge? Plant Dis. 99, 1457–1467. doi: 10.1094/PDIS-02-15-0159-FE

Almeida, R. P. P., and Purcell, A. H. (2003). Transmission of Xylella fastidiosa to
grapevines by Homalodisca coagulata (Hemiptera: Cicadellidae). J. Econ.
Entomol. 96, 264–271. doi: 10.1093/jee/96.2.264

Almeida, R. P. P., Blua, M. J., Lopes, J. R. S., and Purcell, A. H. (2005). Vector
transmission of Xylella fastidiosa: applying fundamental knowledge to generate
disease management strategies. Ann. Entomol. Soc. America 98, 775–786.
doi: 10.1603/0013-8746(2005)098[0775:vtoxfa]2.0.co;2

Anas, O., Harrison, U. J., and Brannen, P. M. (2008). The effect of warming winter
temperatures on the severity of Pierce’s disease in the Appalachian mountains
and Piedmont of the southeastern United States. Plant Health Prog. 9, 13.
doi: 10.1094/PHP-2008-0718-01-RS

Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2004). Hierarchical modeling and
analysis for spatial data. (New York: Chapman and Hall/CRC). doi: 10.1201/
9780203487808

Besag, J., York, J., and Mollie, A. (1991). Bayesian image-restoration, with 2
applications in spatial statistics. Ann. Inst. Stat. Math. 43, 21–22. doi: 10.1007/
BF00116466

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems.
J. R. Stat. Soc. Ser. B (Methodological) 36, 192–225. doi: 10.2307/2984812

Blangiardo, M., and Cameletti, M. (2015). Spatial and spatio-temporal Bayesian
models with R-INLA (United Kingdom: John Wiley & Sons). doi: 10.1002/
9781118950203

Bosso, L., Russo, D., Di Febbraro, M., Cristinzio, G., and Zoina, A. (2016).
Potential distribution of Xylella fastidiosa in Italy: a maximum entropy
model. Phytopathol. Mediterr. 55, 62–72. doi: 10.14601/Phytopatol\s\do5(M)
editerr-16429
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