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Fitness is one of the key parameters to evaluate the effects of transgenic plants on the
ecological environment. To evaluate the ecological risk of transgenic Bt cotton plants
growing in different habitats, we determined the expression of the exogenous Bt gene and
the fitness of transgenic and non-transgenic cotton plants in three habitats (farmland,
grassland, and shrub). We observed that the expression of Bt protein in the farmland was
significantly higher than that in the natural habitat, and when the growth environment was
suitable, the Bt protein expression level showed a downward trend with the advancement
of the growth. There were no significant differences in plant height, aboveground biomass,
and seed yield between the Bt transgenic and non-transgenic cotton plants at the same
growth stage under the same habitat. Nevertheless, in different habitats, the fitness of the
same cotton line showed significant differences. In the farmland habitat, the plant height,
aboveground biomass, and seed yield of both transgenic cotton and its non-transgenic
isoline were significantly higher than that in the other two natural habitats. The results
indicate that the expression of Bt protein does not increase the fitness of the parent plants
and would not cause the weeding of the recipient cotton plants.

Keywords: cotton, Cry1Ab/c, genetic engineering (GE), growth, field trial
INTRODUCTION

With the rapid development of resistance to chemical pesticides in cotton pests, such as Helicoverpa
armigera, the production cost of cotton is increasing and consequently the income of farmers is
getting lower (Lu et al., 2012). People are eager to find an effective solution to the problem of
pesticide resistance in cotton pests. Bacillus thuringiensis (Bt) is a biological insecticide widely used
in pest control in agriculture and forestry (Schnepf et al., 1998). In 1996, Bt-Cry1Ac transgenic
insect-resistant cotton (Bt cotton) began to be commercialized in the United States (Bollgard I) and
Australia (Ingard I), and has been widely planted in the world’s major cotton-producing countries.
In 2018, the planting area of Bt cotton in the world reached 24.9 million hectares (ISSAA, 2019). The
commercial planting of transgenic cotton effectively reducing the cost of cotton production,
increasing the cotton production, and generating huge economic benefits for the farmers
.org August 2020 | Volume 11 | Article 12091

https://www.frontiersin.org/articles/10.3389/fpls.2020.01209/full
https://www.frontiersin.org/articles/10.3389/fpls.2020.01209/full
https://www.frontiersin.org/articles/10.3389/fpls.2020.01209/full
https://www.frontiersin.org/articles/10.3389/fpls.2020.01209/full
https://loop.frontiersin.org/people/888105
https://loop.frontiersin.org/people/898179
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles
http://creativecommons.org/licenses/by/4.0/
mailto:liubiao@nies.org
https://doi.org/10.3389/fpls.2020.01209
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2020.01209
https://www.frontiersin.org/journals/plant-science
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2020.01209&domain=pdf&date_stamp=2020-08-07


Liu et al. Fit Transgenic Cotton in Different Habitats
(Naseem andQaim, 2016).With increasing number of genetically
modified (GM) crops entering commercial production,
determination of their long-term fitness effects in natural
habitats has become an important part of safety assessment and
monitoring of such crops (Burke and Rieseberg, 2003; Parimala
and Muthuchelian, 2010; Arpaia et al., 2014; Sankaranarayanan
and Nalayini, 2015; Lu et al., 2016; Jin et al., 2017; Koller
et al., 2019).

On the one hand, plants with exogenous genes can be
endowed with resistance to stress to improve their fitness, so
that they can survive and reproduce better under adverse
environmental conditions. On the other hand, without adverse
environmental conditions, the expression of exogenous genes
may incur a cost of fitness because of the occupancy of energy
and material resources. If the available resources of plants are
fixed, the energy consumed for the expression of exogenous
genes will inevitably lead to a decrease in resources for growth
and reproduction, resulting in the lower growth and
reproduction capacity of transgenic plants compared to that of
non-transgenic plants (Filipecki and Malepszy, 2006; Xia et al.,
2009; Yang et al., 2015). Under conditions of low or no selective
pressure, GM plants may show the cost of fitness, which to some
extent reduces the possibility of exogenous genes escaping
from non-GM plants (Zhang et al., 2012). If the fitness cost is
small or there is no fitness cost, then the transferred genes may
be preserved and spread in non-transgenic or wild weed
populations; this means that there is a risk of exogenous genes
escaping to non-transgenic plants (Ellstrand, 2003). Therefore,
ecological fitness study is an important parameter to evaluate
the ecological effect of transgenic plants. The influence of
exogenous genes on the fitness of recipient plants is affected by
multiple factors, including the type and construction methods of
exogenous genes, the characteristics of transgenic plants,
genetic background, the existence of selective pressure, and the
environmental conditions under which the transgenic plants
grow (Labra et al., 2001; Noro et al., 2007; Mahmoodurrahman
et al., 2012). With the large-scale and long-term planting of GM
crops, the possibility of these crops entering the natural habitat is
greatly increased, and it is increasingly possible that exogenous
genes in transgenic plants can enter the wild close relatives of
their natural habitats through gene drift (Ellstrand and
Hoffman., 1990; Snow et al., 2005; Lu and Yang 2009; Ellstrand
et al., 2013). Whether transgenic plants entering the natural
habitat and wild related species containing exogenous genes can
survive or expand their populations is a scientific question that
must be answered in the environmental safety evaluation and
monitoring of transgenic organisms.

Transgenic Bt cotton is the predominant commercial
transgenic crop in China that has been cultivated for the longest
period of time (Lu et al., 2012). However, few studies have been
conducted on assessing the fitness of GM cotton in some wild or
semi-wild environments. Whether transgenic insect-resistant
cotton can survive and proliferate for a long time, whether
the insertion of exogenous genes affects the suitability of the
recipient cotton for poor ecological environment and then causes
exogenous gene escape and invasion, and whether there is a risk of
Frontiers in Plant Science | www.frontiersin.org 2
weeding have not been thoroughly studied. We performed
experiments to evaluate the ecological fitness effects of transgenic
cotton Bt under natural conditions facing different environmental.
The results will provide new clues and scientific basis for evaluating
the impact of Bt expression on plant fitness. After GMcrops escape
from their field habitat and enter the natural habitat, the expression
of exogenous genes in the natural habitat directly determines the
performance and ecological consequences of GM crops in natural
habitat. Moreover, the expression of exogenous Bt genes under
different environmental conditions was studied to assess the
ecological risk of Bt-transgenic plants entering the natural habitat
after escape.
MATERIALS AND METHODS

Cotton Varieties
The cotton varieties used in this study were transgenic Cry1Ab/c
cotton Zhong30 and its non-transgenic isolines, Zhong16, which
were provided by the Cotton Research Institute of Chinese
Academy of Agricultural Sciences. The transgene has one
insertion and used CaMV 35S for transgene expression in
Zhong30. All cotton plants were transplanted to a field after
cultivation in a greenhouse.

Experimental Design
In 2014 and 2015, three experimental sites were set up in Hengxi,
Jiangning District, Nanjing, China, which had three different
habitats (farmland, grassland, and shrub habitats, respectively)
with significant differences in physicochemical properties of the
soil (Table 2). The linear distances among the three habitats did
not exceed 500 m. Cotton row spacing was 1 m, plant spacing
was 1.5 m. Zhong 16 was planted in the East and Zhong 30 in the
West. A total of 200 cotton plants are planted on each
experimental site. During the survey, samples were randomly
divided into groups, for details, see the survey methods for each
index below. The composition and biomass of weeds were
analyzed, and the physical and chemical properties of soil were
analyzed by soil sampling.

Weed Species and Biomass
Five squares (50 cm × 50 cm) were randomly selected at each
experimental site. All the plants in the squares were cut at ground
level and packed in nylon mesh bags. Under the condition of
direct sunlight, the weeds were dried to a constant mass in the
ventilated area, and the mass of weeds was recorded. The
composition and biomass of weeds are shown in Table 1.

Physical and Chemical Properties
of the Soil
Five samples were taken from each cotton variety in each
experimental site, and the five sampling sites formed an S
shape. Clean up the sundries 20 mm deep on the surface and
cut off a soil sample 5- to 7-cm thick with a spade. The thickness
of soil sample at each point was almost the same. After natural air
drying, grinding, and sieving, the samples were sent to Nanjing
August 2020 | Volume 11 | Article 1209

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Liu et al. Fit Transgenic Cotton in Different Habitats
Institute of Soil Research, Chinese Academy of Sciences for
determination of the physical and chemical properties
according to Agricultural Standard of People’s Republic of
China NY/T 1121.7-2014. The specific conditions at each
experimental site are shown in Table 2.

Investigation of Insects and Diseases
Five investigation sites were set up in the four corners and the
middle position of zhong30 and zhong16 respectively, and 10
cotton plants were investigated in each investigation site. Three
times of investigation of insects and diseases were conducted by
direct observation method at the seedling stage, flowering stage
and boll opening stage of cotton.

The species and number of insects on each cotton plant and
the degree to which cotton leaves were eaten by insects were
investigated and recorded. The damage degree is divided into 6
levels: 0. no feeding; 1. the damage is needle-like; 2. the damage
area is less than 1/4; 3. the damage area is less than 1/2; 4. the
damage area is more than 1/2; 5. the leaves were completely
eaten. Record the incidence of Fusarium and Verticillium wilts
of cotton.

Quantification of Cry1Ab/c Protein by
Enzyme-Linked Immunosorbent Assay
Two hundred cotton plants were divided into 3 groups at each
experimental site and 10 cotton plants were randomly selected
from each group for marking for each cotton variety. Cotton was
sampled at the bud, boll, and boll opening stages. A complete
leaf from the top of each plant was collected. The leaf was
immediately placed in a 10-ml sealed centrifuge tube after
being detached and stored in a liquid nitrogen tank. After
TABLE 1 | Weed composition and management practices at the different
experimental sites.

Experimental
site

Ecological
type

Weed species and
biomass

Farm management

I Field habitat None Normal field irrigation,
fertilization, weeding,
and no pesticide
application

II Grassland
habitat

Pennisetum
alopecuroides (L.) Spreng.
(589.08 g/m2), Artemisia
lavandulaefolia DC. (15.82
g/m2), Solidago
canadensis L. (1.4 g/m2),
Lonicera japonica Thunb.
(1.72 g/m2), Mosla
dianthera (Buch.-Ham. ex
Roxburgh) Maxim. (1.27
g/m2)

No fertilizer; irrigation
for several days after
transplanting ensured
survival of cotton
seedlings, without
any other
management.

III Shrub
habitat

Conyza sumatrensis
(Retz.) Walker (1.42 g/
m2), Imperata cylindrica
(Linn.) Beauv. (1.27 g/m2)

No fertilizer; irrigation
for several days after
transplanting ensured
survival of cotton
seedlings, without
any other
management.
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reaching the laboratory, the samples were stored in a deep-
freezer at −70°C. The expression of Cry1Ab/c protein in
Zhong30 cotton was quantified using a QualiPlate Kit for
Cry1Ab/Cry1Ac (EnviroLogix Inc., Portland, ME, USA). About
20 mg of tissue sample was weighed and its exact mass was
recorded. The test was done according to the manufacturer’s
instructions. The optical density (OD) was measured at 450 nm
using a microplate reader (Infinite M2000; Tecan Group Inc.,
Männedorf, Switzerland). The calibration was done by
generating a standard curve of OD against the protein content
using the following concentrations of the Bt protein (Cry1Ab)
standard (EnviroLogix Inc.): 0.03125, 0.0625, 0.125, 0.25, 0.5 ng,
1.0, 2.0, and 4.0 ng mL−1. The level of Cry1Ab/c protein in the
fresh cotton leaf samples was determined using the standard
curve and the dilution ratios of the extract (mg g−1 FW).

Measurement of the Fitness Indices of
Vegetative and Reproductive Growth
One hundred cotton plants were divided into 3 groups in each
cotton variety at each experimental site and 10 cotton plants
were randomly selected and marked from each group. The height
of 30 randomly marked cotton from soil to terminal tip was
measured (accurate to centimeter) using a measuring tape. To
determine the aboveground biomass, five unmarked cotton
plants were randomly selected from two kinds of cotton at
each site. The plant was cut off from a position nearest to the
surface, dried under natural shade to a constant mass, and then
weighed using a balance (PB602-N, Mettler Toledo).

To detect the effect on the reproductive growth, seeds of
marking cotton were harvested. The seeds were dried and
cotton was removed from around their short nap with a portable
cotton clothes sortingmill (mj57-110d, Xinxing CottonMachinery
Factory, Dong-guang county, Hebei province, China). All the
cottonseeds were counted and weighed using an electronic
balance (tp-214, Denver Instruments Co. Ltd.), accurate to 0.01 g.

Data Analysis
The expression of the exogenous Cry1Ab/c protein in the
Zhong30 cotton plants might be affected by the growth stage
and growth environment. Therefore, Tukey’s HSD test with the
alpha level at 0.05 was used to determine the difference of
exogenous Cry1Ab/c protein expression in different growth
stages of cotton in different experimental sites.

In this study, two-factor (factor 1 is cotton variety, factor 2 is
experimental site) was used to compare the difference of fitness
index between zhong16 and zhong30 cotton. Test factor 1, the
relative fitness was calculated by dividing the fitness index of
zhong30 cotton by the fitness index of zhong16 cotton, and the
relative fitness of each index is added to take the mean value to
calculate the comprehensive fitness index. Test factor 2, with
farmland ecosystem experimental site I as control, each fitness
index of cotton in other experimental sites was divided by
corresponding fitness index of experimental site I cotton, and
the relative fitness of each index is added to take the mean value
to calculate the comprehensive fitness index. Tukey’s HSD test
Frontiers in Plant Science | www.frontiersin.org 4
was performed to determine the significant differences of
the fitness.

All statistical analyses were performed using SPSS v. 20.0 for
Windows (IBM Corp., Armonk, NY, USA).
RESULTS

Insects and Diseases in Cotton Fields
Based on the investigation of cotton diseases and insect pests, the
results showed that because the experimental area was located in
the non-cotton area and there was no cotton planting in the
surrounding kilometers, there were almost no common cotton
diseases in the experimental area. Only a small number of neutral
insects, such as Araneida, Coccinellidae, and Locusta migratoria
manilensis (Meyen) were found at the three experimental sites.
Cotton pests such as Helicoverpa armigera, Aphis gossypii
Glover and Apolygus lucormm (Meyer-Dür.) have hardly been
found. The target insects of transgenic cotton with Bt gene
are Lepidoptera insects, so it can be determined that our
experimental sites are in a state of low insect pressure.

Bt Expression in Transgenic Lines Under
Different Habitats
In the two-year survey, the trend of change in the content of Bt
protein in the leaves of transgenic Bt cotton plants was different at
different growth periods at the same experimental site (Table 3).
The protein content in the plants at experimental site I and
experimental site II decreased gradually with the development of
the plant, but the protein content in the plants at experimental site
III did not show the same trend. During the three growth stages of
the leaves, the content of Bt protein at experimental site I was
significantly higher than at the other experimental sites (p< 0.05).
The content of Bt protein at experimental site II was higher than
that at experimental site III. There were significant differences in the
content at the bud stage and flowering and boll-forming stages (p<
0.05), but no significant differences were observed in the content at
the boll-opening stage (p> 0.05) (Table 3).
TABLE 3 | Content of Bt protein in the leaves of Zhong30 plants at different
experiment sites during the different growth stages (mg/g fresh mass) (mean ± stdev).

Year Growth stage Field habitat Grassland
habitat

Shrub habitat

2014 Bud stage 4.92 ± 0.31a 3.20 ± 1.36bc 0.46 ± 0.44e

Flowering and boll-
forming stage

4.14 ± 0.90ab 2.19 ± 0.98cd 0.76 ± 0.28de

Boll-opening stage 3.52 ± 0.92abc 1.23 ± 0.72de 0.78 ± 0.51de

2015 Bud stage 4.72 ± 1.01a 3.51 ± 1.25ab 0.37 ± 0.32d

Flowering and boll-
forming stage

4.04 ± 0.96ab 2.49 ± 0.94bc 0.85 ± 0.22d

Boll-opening stage 3.82 ± 0.83ab 1.23 ± 0.44cd 0.78 ± 0.27d
August 2
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Plant Height of Transgenic and
Conventional Cotton Under the
Three Habitats
As shown in Figure 1, there were no significant differences in the
height between Zhong30 and Zhong16 plants under the same
biotope at the same stage in 2014 and 2015 (p>0.05). The height
of the same kind of cotton plants was significantly different
at the different experimental sites during all the survey
periods (p<0.0001) (Figure 1). The height of cotton plants at
experimental site I was significantly higher than the height at the
other experimental sites with the natural system (p<0.0001).
Interestingly, significant difference in heights was observed
between the two experimental sites with the natural habitat; the
height at experimental site II was significantly higher than that at
experimental site III (p<0.0001).

Aboveground Biomass of Transgenic and
Conventional Cotton Under Three Habitats
As shown in Figure 2, there were no significant differences in the
aboveground biomass between Zhong30 and Zhong16 under the
same biotope in 2014 and 2015 (p>0.05). The aboveground
biomass of the same cotton line was significantly higher for
those grown under the field habitat (experimental site I) than for
those grown under the natural conditions (experimental site
II and III) by about 4.0 to 10.1-fold in 2014 and 2015. The
biomass of the cotton plants grown under the grassland habitat
Frontiers in Plant Science | www.frontiersin.org 5
(experimental site II) was 1.7 to 2.0-fold higher than of those
grown under the shrub habitat (experimental site III).

Reproductive Growth of Transgenic
and Conventional Cotton Under
Different Biotopes
In 2014, the seed mass per plant of Bt cotton was less than that of
non-Bt cotton, but the difference was not significant at
experimental site I (Table 4). Only one Zhong 16 cotton
produced seed in experimental site II and experimental site III,
which was not enough for statistical analysis. In 2015, the seed
mass per plant of Zhong 30 was greater than that of Zhong 16,
but the difference was not significant (p=0.0827). There were
only two Zhong 30 cotton plants producing bolls at experimental
site III, and no seeds were found at experimental site II, and
therefore, no statistical analysis could be done.

Comparison of the Fitness of Transgenic
and Conventional Cotton Plants Under
Different Biotopes
In 2014, the total fitness of Zhong30 relative to that of Zhong16
at experimental site II was 1.07, indicating that Zhong30
showed fitness benefits in grassland habitat; the total fitness of
Zhong30 relative to that of Zhong16 at experimental site I and
experimental site III was 0.89 and 0.97, respectively, indicating
that Zhong30 showed a certain fitness cost in field and shrub
A B

DC

FIGURE 1 | Plant height (mean ± SEM) of Zhong30 and Zhong16 cotton plants grown under field (I), grassland (II), and shrub (III) habitat at two stages in 2014 and
2015: (A) Flowering and boll-forming stage in 2014, (B) boll-opening stage in 2014, (C) flowering and boll-forming stage in 2015, (D) boll-opening stage in 2015.
Data followed by the same lowercase letters are not significantly different at 0.05 level.
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habitats. In 2015, the total fitness of Zhong30 relative to that of
Zhong16 at experimental sites I, II, and III was 1.03, 1.02, and
1.05, respectively (Figure 3). Both in 2014 and 2015, compared
with cotton in experimental site I, cotton in experimental site II
and III showed significant fitness cost (Figure 4). The results
showed that cotton growth environment rather than expression
of Bt protein had more significant effect on cotton fitness.
A B

FIGURE 3 | The overall fitness of transgenic Bt cotton Zhong30 relative to that of non-transgenic cotton Zhong16 grown under field (I), grassland (II), and shrub (III)
habitat in 2014 (A) and 2015 (B). Data followed by the same lowercase letters are not significantly different at 0.05 level.
TABLE 4 | Production of seeds per plant of different cotton varieties at different
experimental sites in 2014 and 2015 (g) (mean ± stdev).

Year Variety Field habitat Grassland habitat Shrub habitat

2014 Zhong16 9.91 ± 3.3a 0.27 0.17
Zhong30 7.81 ± 0.78a 0.36 ± 0.05 0.18 ± 0.01

2015 Zhong16 8.38 ± 2.33a 0 0
Zhong30 9.57 ± 1.98a 0 0.16 ± 0.04
Frontiers
 in Plant Scienc
e | www.frontiers
in.org
Data followed by the same lowercase letters in the same column in the same year are not
significantly different at 0.05 level, n = 30.
A B

FIGURE 2 | Aboveground biomass (mean ± SEM) of Zhong30 and Zhong16 cotton plants grown under field (I), grassland (II), and shrub (III) habitat in 2014 (A) and
2015 (B). Data followed by the same lowercase letters are not significantly different at 0.05 level.
6

FIGURE 4 | The overall fitness of cotton in grassland (II), and shrub (III) habitat
relative to that of cotton in field (I) habitat in 2014 and 2015. Data followed by the
same lowercase letters are not significantly different at 0.05 level.
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DISCUSSION

There is an important relationship between the fitness of
transgenic crops and the plant growth environment (Burke
and Rieseberg, 2003). The purpose of this experiment was to
simulate the changes of Bt protein expression and fitness of
transgenic cotton after escaping to the natural ecosystem, so the
selected experimental site and its surroundings had no cotton
planting for many years. The cotton plants were disease-free and
under the condition of no pest pressure or low pest pressure,
which could better simulate the natural ecosystem such as
grassland and shrub habitat. Experimental site I belongs to
field habitat. The content of soil organic matter is high, and
the content of mineral elements needed for the growth of all
kinds of plants is closest to the level of ordinary farmland. In the
process of cotton growth, weeding, fertilization and irrigation are
carried out according to the way of farmland management, but
no pesticides are applied. Experimental site II belongs to
grassland habitat, the content of organic matter is high, but the
content of other mineral elements is low, and the stress of weeds
in experimental site II is very serious. Experimental site III
belongs to shrub habitat. There are few weeds, but the soil
fertility is very low, soil erosion is serious, and cotton is
vulnerable to drought stress. After transplanting, cottons in
experimental sites II and three are allowed to grow freely
without any artificial management.

The properties of soil were reported to affect the expression of
Bt protein; drought or saline soil conditions could affect the
growth and survival of plants, thereby, affecting the expression of
Bt protein (Rochester, 2006). Soil water deficit resulted in the
decline of the insecticidal protein expression in bolls of Sikang 3,
a hybrid cultivar cotton transgenically expressing a Bt gene
(Zhang et al., 2017). Under high and low temperature,
drought, and flooding stress habitats, the expression of the
exogenous Bt protein in transgenic maize was significantly
lower than that under normal habitats (Trtikova et al., 2015).
At the same time, the expression of exogenous Bt protein in
transgenic rice in habitats stressed with NaCl, flooding (Luo
et al., 2008), low, medium, and high salinity (Luo et al., 2017; Fu
et al., 2018) showed a decreasing trend compared to the
expression in normal habitats. In our study, we compared the
content of Bt protein in transgenic cotton plants at different
growth stages under different environments. The results for the
two years showed that the content of Bt protein in the leaves of Bt
transgenic cotton plants in field habitat was significantly higher
than that in the other habitats. This may be because under
adverse conditions, transgenic plants will produce more
substances to resist adverse survival factors (for example,
under drought conditions, transgenic plants will produce more
drought-resistant and high-temperature resistant proteins), thus
affecting the expression of foreign genes. The abovementioned
results showed that the external environment exerts a great effect
on the expression of the exogenous Bt protein.

Cotton plants were reported to be most resistant to insects in
the early stages of their growth as the concentration of Bt toxin
declined during the growing season (Sivasupramaniam et al., 2008;
Frontiers in Plant Science | www.frontiersin.org 7
Brévault et al., 2013). Cot102 insect-resistant cotton exhibited the
best resistance to H. armigera in the early growth stage; with the
development of insect-resistant plants, the resistance to
phytophagous insects showed a decreasing trend (Llewellyn
et al., 2007). The concentration of Bt protein in the terminal
leaves declined significantly during the growing season, with the
mean toxin concentration being 9.2-times higher for Cry1Ac and
2.9-times higher for Cry2Ab in the young (squaring) cotton than
in the old (fruiting) cotton (Carrière et al., 2019). In 2014 and
2015, with the development of Bt transgenic cotton plants, the
concentration of Bt protein in field and grassland habitats
decreased gradually, while the concentration of Bt protein in
shrub habitats remained at a low level with no uniform trend.
The soil of cotton in shrub habitat is barren and vulnerable to
drought stress, which may be the reason why the Bt protein
content of Bt transgenic cotton in shrub habitat is the lowest
among the three habitats and does not show significant change in
cotton growing season.

The existence of exogenous genes did not change the fitness
effect of transgenic cotton plants in 12 natural habitats in
Australia, and therefore, the ecological risk of Bt transgenic
cotton was inferred to be low (Eastick and Hearnden, 2006).
Under low insect pressure, the seed yield of transgenic insect-
resistant rice was lower than that of non-transgenic rice, but the
difference was not significant (Yang et al., 2011). The growth and
reproductive capacity of Cry1Ab/c transgenic rice (Su et al.,
2013) was similar to those of their parents under a semi-wild
growth environment (high and low insect pressure), which
indicated that Cry1Ab/c transgenic rice had lower ecological
risk under the semi-wild growth environment. The comparative
study on Cry1Ab/c transgenic rice, HH1, and its parent rice,
MH63, in Nanchang (having a natural ecosystem) showed that
the reproductive and competitive abilities of HH1 and MH63
rice were similar in the natural ecosystem with high insect
pressure. (Liu et al., 2015). In this study, in the agroecosystem
(field habitat (I)), the growth process of cotton was carefully
managed by humans, and there was sufficient water and
fertilizer. The growth and reproduction indices (height,
aboveground biomass, and seed production per plant) of
cotton plants at this site were significantly higher than those
for cotton plants of the same kind but grown at other sites. Both
the natural ecosystems (grassland (II) and shrub (III) habitats)
are subjected to severe environmental stress and almost no seeds
were produced in the Bt transgenic and non-transgenic cotton
plants. There was no significant difference in the relative fitness
between Zhong30 and Zhong16 grown in the same habitat.
According to the results of our research, there is no significant
difference in the fitness between the Bt transgenic cotton and
conventional cotton plants grown under insect-free or low insect
pressure conditions in the field ecosystem and in the natural
environment under drought and weed stress conditions.

However, the insertion of exogenous genes results in the fitness
cost of the host reproductive indicators. In saline-alkaline soils, the
insect-resistant transgenic Cry1C* rice T1C-19 showed a strong
reproductive capacity, and significantly reduced the loss of yield
caused by insects, therefore leading to a higher yield than that of its
August 2020 | Volume 11 | Article 1209
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non-transgenic counterparts MH63 grown (Fu and Liu, 2020). The
vegetative and reproductive growth abilities showed a significantly
higher fitness cost for the Cry1Ab/c transgenic rice, Huahui1, than
that for the parental rice, Minghui63, grown under the same normal
farmland and saline-alkaline soil conditions (Fu et al., 2018). Under
the same drought conditions, the yield of GM insect-resistant
cotton, RCHB 708, was significantly higher than that of non-GM
cotton, LRA 5166, and GM cotton showed a fitness advantage
(Sankaranarayanan and Nalayini, 2015). Under low insect pressure,
Bt/CpT1 transgenic rice showed potential fitness cost in the yield
traits (yield per plant, number of grains per plant, number of
effective panicles, etc.) compared to that for the parent rice (Xia
et al., 2010). The yield (Kg/100 hill) of Bt-SY63 Cry1Ab/c transgenic
rice was lower than that of its parent rice, SY63, under low insect
pressure with the application of chemical insecticides for two years
(Wang et al., 2010). The 1000-grain mass of the insect-resistant rice
HH1 was significantly lower than that of its parent rice MH63
under low insect pressure (Xia et al., 2011). In this experiment, the
growth of cotton plants was very unsatisfactory due to the
environmental stress at the experimental sites II and III. The yield
of both the GM and non-GM cotton seeds was low and even zero
for some plants.
CONCLUSION

The expression of exogenous genes in transgenic plants is crucial
to the suitability of such plants. We detected the expression of
exogenous Bt gene in Bt transgenic cotton plants grown under
different environments, and found that the expression levels
decreased significantly under the natural environment in the
presence of different environmental factors. Therefore, we
speculate that under the stress imposed by environmental
factors, if the exogenous Bt gene escapes into a natural
environment with low insect pressure, the expression behavior
of the exogenous Bt gene would be affected by environmental
factors, such as drought and weed stress; the fitness benefit of the
exogenous Bt gene would not be observed in such cases, and no
competitive advantage would be achieved with respect to the
species growing in the natural environment. In the present
study, there were no significant differences in plant height,
aboveground biomass, and seed yield between the Bt cotton
Frontiers in Plant Science | www.frontiersin.org 8
and non-Bt cotton plants grown in the natural ecosystem under
low insect pressure. Although cotton plants can grow in natural
ecosystem, they have weak reproductive capacity and very low
seed yield. If the exogenous Bt gene enters the natural ecosystem,
it will not increase the fitness of the parental donors, and
therefore, the exogenous Bt gene will not cause the weeding of
the recipient cotton.
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