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Processes controlling plant carbon allocation among primary and secondary metabolism,
i.e., carbon assimilation, respiration, and VOC synthesis are still poorly constrained,
particularly regarding their response to stress. To investigate these processes, we
simulated a 10-day 38°C heat wave, analysing real-time carbon allocation into primary
and secondary metabolism in the Mediterranean shrub Halimium halimifolium L. We
traced position-specific 13C-labeled pyruvate into daytime VOC and CO2 emissions and
during light-dark transition. Net CO2 assimilation strongly declined under heat, due to
three-fold higher respiration rates. Interestingly, day respiration also increased two-fold.
Decarboxylation of the C1-atom of pyruvate was the main process driving daytime CO2

release, whereas the C2-moiety was not decarboxylated in the TCA cycle. Heat induced
high emissions of methanol, methyl acetate, acetaldehyde as well as mono- and
sesquiterpenes, particularly during the first two days. After 10-days of heat a
substantial proportion of 13C-labeled pyruvate was allocated into de novo synthesis of
VOCs. Thus, during extreme heat waves high respiratory losses and reduced assimilation
can shift plants into a negative carbon balance. Still, plants enhanced their investment into
de novo VOC synthesis despite associated metabolic CO2 losses. We conclude that heat
stress re-directed the proportional flux of key metabolites into pathways of VOC
biosynthesis most likely at the expense of reactions of plant primary metabolism, which
might highlight their importance for stress protection.

Keywords: carbon allocation, day respiration, temperature stress, 13C position-specific labeling, photosynthesis,
pyruvate, dark, volatile organic compounds (VOC)
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INTRODUCTION

Global climate change will markedly alter environmental conditions
for plant growth and functioning. However, potential changes
between the magnitudes of plant carbon sequestration by
photosynthesis relative to the rate of growth, respiration and
secondary metabolism are highly uncertain. There is a marked
disparity between the process-based formulations of biochemical
models of photosynthetic CO2 assimilation (Farquhar et al., 1980),
and models of respiration (Sweetlove et al., 2013; O’Leary et al.,
2019), allocation (Brüggemann et al., 2011), or those describing the
response of the secondary metabolism to resources availability (e.g.,
Larbat et al., 2016). C-allocation is thought to be driven by the C
balance between supply (source) and demand (sink), however, the
dominating factor is still a matter of debate (Körner, 2013; Fatichi
et al., 2014). Indeed, plants exhibit ahigher than expectedplasticity to
adjust both source and sink capacities in response to environmental
changes (e.g., Wegener et al., 2015b), or carbon allocation into
primary and secondary metabolism (e.g., Heinrich et al., 2015). In
particular, knowledge on plant internal readjustment of the
metabolic carbon fluxes in response to environmental stresses for
synthesis of defence compounds such as volatile organic compounds
(VOCs) is still limited (e.g.,Huanget al., 2019). In the light of extreme
climatic events, such as drought spells and heat waves, the plant’s
ability to rapidly adjust its metabolism and protect the
photosynthetic machinery against these stresses will be decisive for
its persistence. Plant species, particularly from hot and arid
environments, have evolved multiple structural and functional
adaptations to withstand environmental stress (Werner et al.,
1999; Werner et al., 2002). However, heat waves, i.e., the rapid
occurrence of excessive temperatures over prolonged periods, can
expose plants and ecosystems to stress levels beyond their
acclimation capacity (Teskey et al., 2015; Tatarinov et al., 2016).
Over the past decades, record-breaking monthly temperature
extremes and heat waves have increased (Coumou et al., 2013;
IPCC, 2014), strongly impacting ecosystem carbon balances (Ciais
et al., 2005; Bastos et al., 2013). As heat waves are predicted to further
increase in frequency and intensity (Perkins-Kirkpatrick and
Gibson, 2017) it is imperative to understand how they will affect
plant physiological processes and growth (Teskey et al., 2015).

Plants have evolved a plethora of mechanism to cope with
heat stress, which causes production of reactive oxygen species
(ROS) in plant cells (Jajic et al., 2015; Dietz et al., 2016; Suzuki
and Katano, 2018; Waszczak et al., 2018). Scavenging of
ROS can be achieved through elevated levels of antioxidants,
accumulation and adjustment of solutes, specialized kinase
cascades, as well as chaperone signalling (see review by Dietz
et al., 2016). Another mechanism to mitigate the effects of
oxidative stress under high temperatures is through the
production of volatile isoprenoids (Vickers et al., 2009), which
have been shown to reduce the levels of damaging ROS within
the leaf (Loreto and Velikova, 2001; Sharkey and Yeh, 2001;
Affek and Yakir, 2002; Affek and Yakir, 2003; Sharkey, 2005).
Elevated temperatures increase the fluidity of membranes and
can induce leakiness. Volatile isoprenoids such as isoprene and/
or monoterpenes have often been shown to increase heat
Frontiers in Plant Science | www.frontiersin.org 2
resistance, most probably by stabilizing membranes, in
particular the thylakoid membranes (Singsaas et al., 1997;
Sharkey and Yeh, 2001; Behnke et al., 2007; Sharkey et al.,
2008). Recent reports have shown that this may be an indirect
effect mediated viamodulating membrane bound proteins of the
thylakoid membranes (Harvey et al., 2015). Moreover, VOCs can
aid to enhance the photosynthetic quenching of excess energy in
the thylakoid membranes (Penuelas and Munne-Bosch, 2005;
Pollastri et al., 2014), which is particularly critical to protect the
photosynthetic apparatus (Rennenberg et al., 2006; Niinemets,
2018). Consequently, many plant species enhance the release of
isoprene and monoterpenes under heat stress (Loreto and
Schnitzler, 2010), which can be mediated by enhanced de novo
biosynthesis and/or increased vapour pressure of stored
compounds (Peñuelas and Staudt, 2010; Holopainen et al.,
2018). It must be denoted, that severe heat stress has also been
shown to reduce both de novo and total emissions of mono- and
sesquiterpenes (Kleist et al., 2012).

De novo synthesis of VOCs depends on the availability of
carbon, as well as energy provided by primary metabolism.
Therefore, the availability of building blocks has a major impact
on the concentration of any secondary metabolite, demonstrating
the high degree of connectivity between primary and secondary
metabolism (Dudareva et al., 2013). Carbon partitioning occurs at
the metabolic branching points of the respiratory pathways and
secondary metabolism. The relevant pathways are linked via a
number of key metabolites including the central intermediates
pyruvate (Werner and Gessler, 2011), phosphoenolpyruvate
(PEP) or malate (Souza et al., 2018). Notably, pyruvate is a
known substrate in a large array of secondary pathways leading to
the biosynthesis of many VOCs, such as isoprenoids, some
oxygenated VOCs, aromatics as well as fatty acid oxidation
products, which can be emitted by plants (Jardine et al., 2014).
However, elevated temperatures also increase respiratory losses
(Atkin, 2003) and reduce carbon assimilation, which may limit the
availability of carbon skeletons for secondarymetabolism including
biosynthesis of volatile compounds.

In general, leaf day respiration is recognised to play a central
role to provide carbon backbones for several metabolic processes
(Tcherkez et al., 2012). Due to the light-inhibition of the
respiratory pathways (Atkin et al., 1998), day respiration provides
a low-flux though highly dynamic metabolic pathway that
interacts with photosynthesis and environmental conditions
(Tcherkez et al., 2017). While the mitochondrial respiratory
tricarboxylic acid (TCA) cycle is partially inhibited in the light
(e.g., Sweetlove et al., 2010; Tcherkez et al., 2012), there are several
metabolic processes both in the cytosol and organelles causing
partial decarboxylation of pyruvate. Thus, while the C2-C3 moiety
of pyruvate fuels anabolic processes such as fatty acid and secondary
compound synthesis, the carboxyl group at the C1 position is
released as CO2 (Werner and Gessler, 2011). However, few studies
have investigated carbon allocation into day respiration in response
to rising temperature and VOC emissions (Fares et al., 2011) and
even less is known regarding the response to heat extremes.

We hypothesise that heat stress leads to enhanced carbon
allocation into secondary metabolism in particular VOC
August 2020 | Volume 11 | Article 1242
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biosynthesis for stress-protection and that such metabolic re-
adjustment may result in higher CO2 release in the light.
Moreover, we assume a trade-off between carbon investment into
protective functions such as VOC synthesis and maintenance of a
positive carbon balance under severe stress, particularly if stress
levels exceed the acclimation potential during extreme events.

To test this hypothesis, we selected the highly stress-adapted
Mediterranean shrub, Halimium halimifolium L. (Zunzunegui
et al., 2000; Peperkorn et al., 2005; Werner et al., 2010), a member
of the Cistaceae family, which is widely spread in Mediterranean
shrublands (Thanos et al., 1992). Species of this family are
particularly suitable to test our hypothesis since they are
characterized by a rich secondary metabolism forming an
immense quantity and diversity of plant secondary metabolites
including a rich volatile emission blend (Kesselmeier and Staudt,
1999; Peñuelas and Llusià, 2001; Owen et al., 2002; Rivoal et al.,
2010; Bracho-Nunez et al., 2013; Papaefthimiou et al., 2014;
Haberstroh et al., 2018; Yáñez-Serrano et al., 2018). In addition,
H. halimifolium shows large amplitudes in daytime d13CO2 release
(Werner et al., 2009; Wegener et al., 2010; Wegener et al., 2015a),
which most likely are connected to processes of plant secondary
metabolism (Priault et al., 2009; Werner and Gessler, 2011;
Lehmann et al., 2016). Such properties suggest that members of
the Cistaceae family possess a high capability to cope with heat by
up-regulating processes of the secondary metabolism, thus,
redirecting cellular C fluxes. Cistaceae possess trichomes which
secrete a resinous exudate (Papaefthimiou et al., 2014) and can store
substantial amounts of VOCs in secretarial trichomes (Gulz et al.,
1996). A study in France has shown that local VOC emissions from
Mediterranean shrublands canbe in the sameorder ofmagnitudeof
non-methane VOC emissions from anthropogenic sources, and
thus can exert a significant impactonairquality (Simonet al., 2006).
Cistus species are predicted to be favoured by climate change due to
their high plasticity to cope with environmental stresses (Correia
and Ascensão, 2017). However, extreme climatic events, such as
sudden heat waves or severe drought, may exceed the acclimation
potential and induce cascading effects on species and ecosystem
functioning (Caldeira et al., 2015). Such extreme climatic events are
predicted to increase both in intensity and frequency in
Mediterranean regions (Seneviratne et al., 2012).

The objective of our study was to investigate potential
changes in leaf internal carbon allocation, i.e., carbon
assimilation, respiration and investment into VOC under
extreme heat stress. In particular, we aimed to investigate
whether plants under severe stress would still invest into de
novo synthesis of VOCs and used position-specific 13C-labeled
pyruvate experiments to trace 13C-allocation into VOCs versus
CO2 in light and dark. To explore these effects, we subjected H.
halimifolium to an extreme 10-day heat wave of 38°C.
MATERIAL AND METHODS

Plant Material and Labeling Experiments
Mediterranean drought-adapted, semi-deciduous Halimium
halimifolium L. plants (Zunzunegui et al., 2002; Wegener et al.,
Frontiers in Plant Science | www.frontiersin.org 3
2015a) were grown from seeds in a greenhouse for three years.
Plants that reassemble a genetic variability were grown under
similar conditions in a semi-controlled greenhouse, with natural
light and additional illumination (12 h); temperatures were
regulated by heating during winter. Plants were cultivated in 3
L plastic pots on a potting soil/sand (2/1, v/v) mixture. They were
fertilised weekly with ¼-strength modified Hoagland’s fertilizer
solution (Peperkorn et al., 2005). Four weeks before the
experiments, plants were subdivided into two groups and
placed into two walk-in chambers to allow for acclimation at
day/night conditions of 25/20°C, 60/60% relative humidity and
14/10 h light/dark with 900/0 μmol m-2 s-1 photosynthetic active
photon flux density. Plants were watered according to their
demand. To simulate the heat wave, on day 1 the temperature
of one chamber was stepwise increased in 2°C/h steps over 8 h up
to 40°C and thereafter kept constant at 38°C during day and
night for ten days of continuous measurements and subsequent
labeling experiments.

Branches of six plants were placed into self-constructed
600 ml borosilicate glass cuvettes (Kummer, Freiburg,
Germany) two days before the heat treatment. The bottomless
cuvettes were closed with PTFE-foil at the plant stem and
ventilated by small fans; an additional empty cuvette was kept
as reference. The cuvette temperature increased by 0.40 ± 0.12°C
during the light period compared to the dark period. The cuvette
position was adjusted to maintain the natural orientation of the
branches. Absolut humidity of the air stream was maintained
constant but due to the increase in temperature during the heat
treatment relative humidity in the cuvettes decreased at 38°C.
Fluxes of VOCs, H2O and CO2 and their isotopic composition
were continuously recorded prior and during the heat treatment.

For labeling experiments, six plants were placed into cuvettes
an evening before the measurements. A total of 36 plants were
used; half of them were kept under control temperatures, half
were consecutively exposed to a 10-day heat treatment. After 10-
days of heat or control temperature, branches were carefully cut
and re-cut immediately under water to avoid xylem embolism.
The deionized water was replaced by a 10 mM 13C-labeled
pyruvate solution after 10 min. We applied position-specific
13C-labeled pyruvate 99% 13C-enriched at the C1 or the C2
position (Cambridge Isotope Laboratories, Andover, MA, USA).
Continuous measurements of the isotopic composition of VOCs
and 13CO2 as well as photosynthetic gas exchange fluxes were
recorded for 60 min in the light, after which the plants were
darkened for 30 min. labeling procedure and concentrations had
been established for H. halimifolium by Priault et al. (2009) and
Lehmann et al. (2016) to ensure that no changes in physiological
processes occurred. Plants, which did respond with stomatal
closure at any stage of the treatment, were excluded from
the analysis.

On-Line Measurement System for Plant
VOC, 13CO2, and H2O Emissions
The measuring system is described in detail in Fasbender et al.
(2018). Briefly, it consists of (i) a zero air generator, providing
ultra-pure hydrocarbon free air with controlled CO2 and H2O
August 2020 | Volume 11 | Article 1242
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concentrations, (ii) the cuvette system to capture trace gas
emissions of plants, and (iii) the analytical section for real-time
detection of VOC, CO2 and H2O fluxes and their 13C isotopes
consisting of a proton transfer reaction time-of-flight mass
spectrometer (4000 ultra, PTR-TOF-MS, Ionicon Analytic,
Innsbruck, Austria), an isotope ratio infrared spectrometer
(IRIS, Thermo Fisher Scientific, Bremen, Germany), and an
infrared gas analyser IRGA (LI-7000 CO2/H2O Analyser; LI-
COR, Lincoln, NE, USA).

The inlet flow of the plant cuvettes was controlled by mass
flow controllers (Omega Engineering, Stamford, CT, USA) at
500 ml min‑1 resulting in a calculated residence time in the
cuvette of 4.8 min. The response-time of air leaving the cuvette
and reaching the PTR-TOF-MS and IRIS/IRGA was less than 4
and 10 s, respectively. All cuvette parts were made of glass or PFA,
and outlet lines were continuously isolated and heated (60°C)
to prevent VOC adsorption or water condensation.

VOC Detection by PTR-TOF-MS
The PTR-TOF-MS was operated at 2.7 mbar drift pressure,
600 V drift voltage, at an E/N of 120 Td, and drift tube heated
to 80°C. H2O

+ and O2
+ ions in the drift tube were kept lower

than 5% with respect to the hydronium ions. The mass resolution
was 2,000 ± 500 m/Dm depending on the compound. Non-13C-
labeled VOCs were detected at m/z 45.03 for acetaldehyde, 75.04
for methyl acetate, 137.13 for monoterpenes and 205.20 for
sesquiterpenes; their isotopologues containing one 13C-atom
were detected at m/z +1. Calibration of the assigned VOCs was
done using the Liquid Calibration Unity (LCU, Ionicon Analytic,
Innsbruck, Austria) either with a multicomponent calibration
gas standard for acetaldehyde and monoterpenes (1,000 ppb ±
5%, Ionicon Analytic, Innsbruck, Austria) or liquid standards for
sesquiterpenes and methyl acetate (Sigma-Aldrich, Taufkirchen,
Germany). For acetaldehyde and monoterpenes humidity
dependent calibrations were performed. For methyl acetate
liquid calibrations were carried out with water-based solutions
while for sesquiterpenes hexane-based solutions were used. PTR-
TOF-MS data were post-processed by correction for non-
extending and extending dead times as well as the correction
for Poisson statistics (Titzmann et al., 2010), iterative residual
analysis and cumulative peak fitting (Müller et al., 2013) using
the PTR-TOF Data Analyser software (version 4.49). Data was
normalized to primary ions and water, background subtracted,
and calibration factors applied. Data from PTR-TOF-MS was
synchronized with IRIS and IRGA data. Emission rates were
calculated considering the background corrected VOC
concentrations in the cuvettes, leaf area and flow rates.

13CO2 Detection by IRIS and IRGA
13CO2 fluxes [nmol m-2 s-1] were calculated from the differences
in 13CO2 isotopic composition and their concentrations between
empty and plant-containing cuvettes derived from IRIS. The
IRIS measures the 12CO2 and 13CO2 fluxes continuously.
Calculating the net 13CO2 flux enables to trace both, the
natural 13C- isotope discrimination during photosynthetic CO2

uptake and the 13CO2 release from metabolic processes
after labeling.
Frontiers in Plant Science | www.frontiersin.org 4
Net fluxes of 13CO2 (e13CO2) were calculated per projected leaf
area (s) as:

e13CO2
=
uin
s
∗ (13cout −

13 cin)

Where uin is the molar flow of incoming air calculated as:

uin =
V
t
∗

p
R ∗T

where: V - gas volume, t - time, p - gas pressure, R - ideal gas
constant, T - temperature, and 13cout/

13cin is the molar fraction of
13CO2 at the inlet and outlet of the cuvette calculated as:

13c =

d13CO2
1000 + 1

� �
∗

13c
12c

� �
VPDB

d 13CO2
1000 + 1

� �
∗

13c
12c

� �
VPDB

� �
+ 1

0
@

1
A ∗ ctotal

where: ctotal - mole fraction of total CO2 in the cuvette and
(13C/12C)VPDB - isotope ratio of the international standard
Vienna Pee Dee Belemnite.

Calibration for isotopic composition was performed
automatically whenever any significant change in the CO2

mixing ratio in the sample gas occurred, e.g., during the
change between plant and blank cuvette. Furthermore,
automatic calibration for concentration dependency of the
analyser was conducted nightly.

Transpiration (E) and assimilation rates (A) were calculated
according to Caemmerer and Farquhar (1981). The IRGA was
calibrated weekly with synthetic air (0 and 408 ppm; Messer, Bad
Soden, Germany) for CO2 and right before the experiment for
H2O by a manufacture calibrated GFS3000 (Walz GmbH,
Effeltrich, Germany).

Chlorophyll a Fluorescence
Chlorophyll a fluorescence was measured with the MINI-PAM II
fluorometer (Walz, Effeltrich, Germany). The maximum
quantum yield of PSII was measured after dark-adapting leaves
with leaf clips for 20 min (Werner et al., 2002). A saturation pulse
of 10.000 μmol m-² s-1 was applied; measuring light intensity,
gain and damping factors were adjusted to allow optimal pulse
resolution. Three leaves per plant were measured on 20 control
and 20 heat stressed plants (after 10 days of heat exposure). In a
few cases, not all three readings per plant could be used due to
leaf damage or too low fluorescence signals.

Statistics
Data were tested for equal variance and normality distribution by
a Shapiro-Wilk test. A repeated measurement ANOVA with a
Holm-Sidak post-hoc test was applied to test for significant
changes in total net carbon assimilation, nocturnal respiratory
losses and net carbon balance during the 10-day heat waves.
RESULTS

Exposure to continuous heat (38°C) for 10 days considerably
reduced net CO2 assimilation compared to pre-treatment rates,
August 2020 | Volume 11 | Article 1242
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while nocturnal respiration increased significantly (p < 0.001,
Figure 1). The strongest depression of net CO2 assimilation
occurred during the first two days. Thereafter, net assimilation
decreased slowly, but steadily, further lowering carbon gain
during the light period compared to the respiratory losses at
night. Notably, the amplitude between rates of CO2 release
during night and uptake during day remained widely constant
(Figure 1), due to an immediate 3.2-fold increase in nocturnal
respiration. Interestingly, mean nocturnal respiration slowly
decreased with increasing stress duration, being only 2.3-fold
higher than under control conditions at the end of the heat stress.
Internal CO2 concentrations increased in all plants under heat
stress from 256 ± 14 to 354 ± 57 ppm.

There was a striking phenotypic heterogeneity among plant
individuals: while some individuals showed a strong stress
response resulting in negative net CO2 balances within the first
two days (reddish colours in Figure 1), others still maintained
positive assimilation rates during the day throughout the whole
period (two individuals had to be replaced on day 6). Mean
transpiration slightly increased in response to heat treatment, but
again showing high variability between plant individuals (Figure
1). Though plants were kept well-watered, they responded with
stomatal closure during the heat period (data not shown) most
probably in response to a drop in relative humidity due to the
higher temperatures. Surprisingly, nocturnal transpiration
seemed to be enhanced in heat stressed plants.
Frontiers in Plant Science | www.frontiersin.org 5
Beside lower stomatal conductance and enhanced respiration,
also a direct inhibition of the photosynthetic light use efficiency
was observed because the maximum quantum yield of
photosystem II declined from 0.752 ± 0.05 under control
conditions to 0.57 ± 0.12 (n=20) after 10 days of heat.

Plant were not able to maintain a positive net carbon balance
during the 10-day heat exposure (Figure 2). Diurnal net
assimilation was significantly reduced by 44% and 84% during
the first and second day of heat, respectively. Moreover, nocturnal
respiration increased significantly 3.3-fold. Therefore, total plant
carbon balance turned negative after day three (Figure 2). Even
though total nocturnal respiratory CO2 losses decreased with
stress duration, it could not counterbalance the concomitant
decline in daily net assimilation. Thus, plants exhibited a
negative carbon balance throughout the rest of the heat
treatment (Figure 2).

The strong phenotypic variability between plant individuals
was also reflected in the heat response of VOC emissions
regarding both, intensity and chemo-diversity. Overall, the
strongest emissions occurred as an immediate stress response
within the first days of heat exposure. Large fluxes were observed
for methyl acetate (Figure 3A), methanol (Figure 3B),
acetaldehyde (Figure 3C), as well as monoterpenes (Figure
3D) and sesquiterpenes (Figure 3E). Sesquiterpenes and to a
lesser extent monoterpenes showed the most pronounced
reaction upon the initial increase in temperature, resulting in
FIGURE 1 | Diurnal courses of air temperature in the climate chamber, net CO2 assimilation, and transpiration rates (upper, mid and lower panel respectively).
Plants were continuously measured under controlled conditions (day -1) and 10 days in the heat (38°C). Mean values of 6 plants (solid blue line) and standard error
and their individual fluxes are shown. Individual fluxes are colour-coded from reddish to dark blue, ranking individuals from the most to the least affected plants by
heat, respectively. Two dying individuals had to be replaced on day 6. Data gaps are due to an instrument failure on day 3 and a calibration routine on day 8. Gray
shading indicates night periods.
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large fluxes during the first two days. Subsequent low
sesquiterpene emission rates may indicate that sesquiterpene
pools became depleted or biosynthesis decreased. Monoterpene
emission first decreased but increased again after four days of
stress exposure, even though total monoterpene emissions were
relatively low in this species. Only plant individuals with very low
net CO2 assimilation (red lines Figures 1 and 3) maintained
higher sesquiterpene fluxes during the following days but
without a clear light-dependent pattern.

Interestingly, methyl acetate, methanol, and acetaldehyde
emissions exhibited pronounced morning peaks upon stomatal
opening during the initial days of the heat wave (Figures 3A–C).
During the course of the experiment, methyl acetate emissions
remained high during the day and even an elevated night-time
flux could be observed. Surprisingly, besides the morning burst,
highest acetaldehyde fluxes were always observed during night in
the heat treatment, while fluxes were negligible prior to stress
application (Figure 3C).

Large phenotypic plasticity between plant individuals was
also reflected in a pronounced chemodiversity regarding their
emission pattern: for example, the individual with the highest
methyl acetate flux (Figure 3B, light blue line) was a low mono-
and sesquiterpene-emitter. Strongly stressed plants as seen from
negative CO2 balances (Figures 1 and 3, red lines) revealed
higher VOC emission rates, particularly for mono- and
sesquiterpenes but also for methyl acetate. Still, the highest
monoterpene emitter was among the plant individuals
maintaining highest net CO2 assimilation rates under heat
stress (Figures 1B and 3E; thin black line). Thus, these
continued real-time emission pattern of CO2 and VOCs
indicated a high dynamic response to heat exposure, as well as
a high chemodiversity of emission blends between individuals.
Frontiers in Plant Science | www.frontiersin.org 6
To elucidate to what extend VOC emissions were sustained
by de novo synthesis or release from storage pools, we conducted
position-specific 13C-labeling experiment by feeding the
branches with pyruvate labeled at the C1 or C2 position
(Figure 4, left and right hand panels, respectively) in control
plants and after 10 days of heat exposure (blue and red lines,
respectively). The y-axes scales in Figure 4 are set to reflect
proportional changes in the parent mass (left y-axes) and the first
heavy isotopologue (right y-axes) for each compound. Very
clearly, neither heat stressed nor control plants did incorporate
detectable amounts of the 13C1-atom of pyruvate into methyl
acetate (Figure 4A, left panel). In contrast, the 13C2 atoms of
pyruvate were efficiently used for biosynthesis of methyl acetate,
which is visible by an increase in 13C-emission (Figure 4A, right
panel). Moreover, heat stressed plants used almost 5-times more
13C2-pyruvate than non-stressed control plants (compare red
with blue lines, Figure 4A). We also observed very interesting
labeling patterns for acetaldehyde. Similar to methyl acetate, the
heat-stressed and control plants did show little 13C1-
incorporation of pyruvate for acetaldehyde biosynthesis (left
panel, Figure 4B). However, heat stressed plants very strongly
incorporated the 13C2-atom into acetaldehyde, an effect not seen
in control plants (right panels, Figure 4B). Even more surprising
was the much stronger 13C2-use after darkening for acetaldehyde
formation than compared to incorporation during the light.
Moreover, non-stressed plants showed a strong dark burst of
acetaldehyde immediately upon light-dark transition, with
strong incorporation of 13C from 13C2-pyruvate. Interestingly,
this was not the case in heat stressed plants. Such patterns and
strong dark emission of acetaldehyde in heat stressed plants have
never been described before.

13C-incorporation patterns into mono- and sesquiterpenes
were very similar (Figures 4C, D). In non-stressed control
plants, the C1-atom of pyruvate was not used for biosynthesis
of any of these compounds. However, heat stress stimulated use
of the C1-atom for terpenoid formation. In contrast to the C1-
atom, the C2-atom of pyruvate was used for terpenoid
biosynthesis both, in control and heat stressed plants. Notably,
heat stressed plants incorporated 3- to 5-times more 13C2-
pyruvate than plants of the control group (Figures 4C, D).

Unfortunately, labeling patterns of methanol were
inconclusive, as a reliable peak separation for the mass of the
first isotopologue of methanol was not possible. Thus no increase
in 13C-labeled methanol could be detected, which might be
expected as it is a known product from cell wall formation and
degradation. However, as data were inconclusive due to these
methodological constrains they are not shown.

Simultaneous measurements of the isotopic composition of
emitted CO2 enabled us to follow the release of 13CO2 from the
13C-pyruvate labeled plants. As expected, application of 13C1-
pyruvate resulted in strong release of 13CO2 into the atmosphere
due to decarboxylation of the C1 position (Figure 5).
Importantly, heat stress triggered enhanced release of 13CO2

both under light and dark conditions. In contrast, if 13C2-
pyruvate was applied, 13CO2 release from control plants was
negligible. Even under heat stress, only small amounts of 13CO2
FIGURE 2 | Total daily CO2 exchange during the heat treatment: total diurnal
net CO2 assimilation (dark red); total nocturnal respiratory CO2 losses (yellow);
and total daily net carbon balance (orange) for the pre-treatment conditions
(day -1, 25°C) and during 10-day continuous heat exposure (38°C).
Measurements on day three are lacking due to an instruments failure. Mean
of n = 6 and SE of plants shown in Figures 1.
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were emitted in the light. These results indicate that the pyruvate
fed to the plants was not fully decarboxylated in metabolic
pathways, i.e., it was not fully respired in the light.
Noteworthy, day time CO2-emissions from the C1-position of
pyruvate more than tripled during heat stress, and so did light-
enhanced pulse of dark-respiration during light-dark transitions
(Figure 5), indicating that these processes were strongly
upregulated during heat stress.
Frontiers in Plant Science | www.frontiersin.org 7
DISCUSSION

Regulation of plant internal carbon allocation is still poorly
understood, particularly in response to severe environmental
stresses. Here we investigate the impact of a 38°C heat wave on
carbon allocation among primary and secondary metabolism in
the Mediterranean speciesH. halimifolium. We applied position-
specific 13C-pyruvate to trace the fate of the 13C-atom at the
A

B

D

E

C

FIGURE 3 | (A–E) Diurnal courses of VOC fluxes prior and during the heat stress of methyl acetate (A), methanol (B), acetaldehyde (C), monoterpenes (D), and
sesquiterpenes (E). Individual fluxes are colour-coded as in Figure 1 from reddish to dark blue, ranking individuals from the most to the least affected plants by heat,
respectively.
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metabolic branching points linking VOC synthesis with
respiratory pathways. We could confirm our hypothesis that in
spite of a negative carbon balance under severe heat stress (i)
enhanced carbon allocation into de novo synthesis of particular
VOCs occurred even though total terpenoid emissions declined
in H. halimifolium under prolonged heat stress and (ii) that it
was associated with enhanced CO2 losses in the light, as
discussed below in detail.
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Continuous day/night exposure to heat stress over ten days
induced highly dynamic responses in H. halimifolium: while net
photosynthesis significantly declined, respiratory CO2 release
dur ing both , day and night , markedly increased .
Simultaneously, a strong pulse of VOC emissions occurred
during the first days (Figure 3). Sudden exposure to elevated
temperatures exceeded the acclimation potential of
H. halimifolium and net photosynthesis was further impaired
A

B

D

C

FIGURE 4 | 13C-VOC labeling by positions specific 13C-pyruvate during light-dark transitions. Emissions of the parent (12C-isotopologue, solid line, left scale) and
the first isotope (13C-isotopologue, open symbols, right scale) of (A) methyl acetate, (B) acetaldehyde, (C) monoterpenes, and (D) sesquiterpenes. Plant of the
control (blue) and 10-day heat treatment (red) fed with 13C1-pyruvate (left panels) or 13C2-pyruvate (right panels) for 1 h after which plants were darkened for 30 min.
N = 4-8, standard errors are given. Please note that scales differ for each compound; left and right hand scales are set to match the proportional changes in the 12C
and 13C-isotoplogues for each compound, i.e., the 13C-scale is set to reflect the changes in the first natural 13C- isotopologue abundance (m/z+1) proportional to the
parent (mz), which is an order of magnitude higher. An increase in the 13C-isopologue emission compared to the parent does therefore indicate label incorporation
into this compound.
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with increasing stress duration, exhibiting a reduced efficiency of
photochemical energy conversion of PSII. Elevated respiratory
CO2 losses affected the net carbon balance of the branches, which
turned negative already from day 3 onwards, i.e., leaves suffered
from a net carbon loss as nocturnal CO2 emissions exceeded
diurnal CO2 uptake by 78% (Figure 2).

Even though plants were well watered, transpiration did not
increase to an extend which would help facilitate the dissipation
of latent heat (Loreto and Schnitzler, 2010), since stomatal
conductance declined during the heat treatment, probably as
response to lower relative air humidity in the cuvettes and/or
high ci. On the one hand, H. halimifolium is a Mediterranean
species, well adapted to seasonally hot and dry environments
with strong evolutionary pressure to control excessive water loss
during these stress periods (Diaz Barradas et al., 1999; Werner
et al., 2010; Wegener et al., 2015b). On the other hand, reduced
net assimilation and high day respiration and subsequent
increased ci values might have counterbalanced the need to
open stomata. Even though 38°C can be frequently reached in
the Mediterranean summer, continuous exposure to 38°C during
day and night might have impaired the photosynthetic
machinery as suggested from declined photochemical efficiency.

Day and night-time temperatures were kept constant during
the heat wave to allow the assessment of VOC fluxes as well as
day and night respiration at the same temperature. However, it
must be noted that this implies a larger increase in night-time
temperatures during the heat treatment, and thus nocturnal
metabolism might have been more strongly affected. This may
at least partially explain the significant increase in nocturnal
respiration (Figure 1). Such an increase in respiration rates
Frontiers in Plant Science | www.frontiersin.org 9
under elevated night-time temperatures has been reported in
many species, including the Mediterranean shrubs Heteromeles
arbutifolia and Lepechinia fragans (Villar et al., 1995), and many
crops, e.g., soybean (Bunce, 2005), rice (Kanno and Makino,
2010; Mohammed et al., 2013) and cotton (Loka and Oosterhuis,
2010). However, even though there is evidence that night-time
temperatures may be of particular importance, contrasting effects
have been observed (Atkin et al., 2005). For example, night
temperatures between 28 and 42.5 °C resulted in substantially
increased respiration rates in cotton (Salvucci and Crafts-
Brandner, 2004). Therefore, high night temperatures have even
been considered one of the main environmental factors
contributing to lowered cotton yields (Loka and Oosterhuis,
2010). In contrast, nocturnal temperature increase from 17 to
34°C lead to only minor increases in respiration in rapidly
growing soybean, lettuce, and tomato and no effect on
cumulative carbon gain was found even after 20 d of treatment
(Frantz et al., 2004). These contrasting findings indicate that
further research on the impact of nocturnal temperature on the
carbon balance of plants is needed. This is particularly relevant in
the light of global warming, where night temperatures are
predicted to increase faster than day temperatures in several
parts of the world (IPCC, 2014). However, while the thermal
sensitivity of night respiration can potentially reduce biomass in
a warmer climate, acclimation processes have to be taken into
account at longer time scales (Atkin and Tjoelker, 2003;
Peraudeau et al., 2015).

High temperatures can significantly inhibit photosynthetic
efficiency in multiple ways, e.g., through impacts on electron
transport activity, or changed ratio of Rubiscos oxygenase/
FIGURE 5 | 13CO2 emissions from plants of the control (blue) and heat treatment (red) fed with 13C1-pyruvate or 13C2-pyruvate for 1 h in the light and 30 min in the
dark (shaded area). N= 4–8, standard errors are given. The 13CO2 flux is given in nmol m-2 s-1; for calculation see material and methods. Measurements were
conducted simultaneously with volatile organic compounds (VOCs) emissions shown in Figure 4.
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carboxylase activity resulting in higher photorespiration and/or
reduced efficiency of Rubisco activase (Havaux, 1993; Law and
CraftsBrandner, 1999; Salvucci and Crafts-Brandner, 2004;
Carmo-Silva et al., 2015). In the present study, this was
reflected in declined maximum quantum yield of photosystem
II to 0.570 ± 0.12 after 10 days of heat.

Whereas several studies demonstrated the effects of heat on
isoprene emission (Sharkey et al., 2008; Pollastri et al., 2014;
Niinemets and Sun, 2015; Bamberger et al., 2017), less
information is available on the dynamic response of other
VOC fluxes toward prolonged heat stress (Fares et al., 2011;
Kleist et al., 2012; Kask et al., 2016). H. halimifolium is not a
strong isoprene emitter (Yáñez-Serrano et al., 2018), similar to
what has been reported for other members of the Cistaceae
family (Kesselmeier and Staudt, 1999; Bracho-Nunez et al.,
2013). It exhibits a diverse blend of different VOCs, in
particular, methyl acetate (Jardine et al., 2014), mono-, sesqui-
and diterpenes (Yáñez-Serrano et al., 2018) and a variety of
oxygenated and aromatic VOCs (Fasbender et al., 2018). Here we
focus on the compounds showing a strong response to heat,
namely methyl acetate, acetaldehyde, methanol, as well as mono-
and sesquiterpenes and compare these with similar observations
from literature.

Dynamic Response of Oxygenated VOC
Emissions to Heat Stress
We observed a marked increase in methyl acetate, methanol and
acetaldehyde emissions upon heat stress. However, in contrast to
terpenoids, none of these compounds showed an immediate
increase upon rising temperatures and strongest emissions
occurred between day 2 and 3. Thus a direct physical effect,
such as higher volatility due to increased temperature, cannot be
the reason for such pattern. Since emission of these compounds
increased when the carbon balance turned negative, biosynthesis
might be related to a metabolic readjustment of cellular pathways
in response to stress. The fast 13C-incorporation of 13C2-
pyruvate into methyl acetate and acetaldehyde, indicates
already abundant enzyme activities to ensure fast biosynthesis
of these compounds (Fasbender et al., 2018). Enhanced emission
of oxygenated VOCs was particularly significant during the
morning bursts (e.g., for methanol) when stomata opened
upon illumination (Figure 3), suggesting that these emissions
are under tight stomatal regulation. Such polar compounds
accumulate within leaf internal aqueous phases at night
(Kreuzwieser, 1999a; Jardine et al., 2014); hence, the extent of
morning bursts is directly associated with the compounds’ ability
to build up liquid pools during night (Niinemets and Reichstein,
2003), which are then released when stomata are opening in the
morning. In contradiction to these observations, in the present
work, heat stressed plants showed high emissions at night.
Considering the slightly increased nocturnal transpiration, this
might indicate that heat stress either prevented full nocturnal
stomatal closure or it induced enhanced biosynthesis of these
oxygenated compounds, raising leaf internal VOC partial
pressures and inducing diffusion even through mostly closed
stomata (Kreuzwieser et al., 1999b).
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H. halimifolium is a strong methyl acetate emitter (Jardine
et al., 2014) with high intra-specific variability (Fasbender et al.,
2018, Figure 3). So far, not many species are characterised as
strong methyl acetate emitters (Davison et al., 2007; Jardine et al.,
2010), thoughH. halimifolium emits methyl acetate at ca. 10-fold
higher rates than monoterpenes. Here, we demonstrate for the
first time that methyl acetate emissions markedly increased with
heat stress (Figure 3). It is assumed that methyl acetate
biosynthesis starts from pyruvate, which is decarboxylated in a
first reaction to produce acetaldehyde that is further oxidized to
acetate (Figure 6). Either acetate or its activated form acetyl-CoA
reacts with methanol to eventually form methyl acetate. Because
of this assumed pathway, we expected similar emission patterns
for methyl acetate and acetaldehyde, which were partially
observed. Both compounds showed enhanced emission in heat
stressed plants, particularly during night-time. To our
knowledge, this is the first report showing a heat dependent,
rise in nocturnal acetaldehyde emission which exceeded daytime
fluxes by far. Though we did not label the plants during the night,
darkening the leaves for 30 min revealed a substantial increase in
de novo synthesis by 13C-incorporation of 13C2-pyruvate (Figure
4). This suggest that night-time emissions were also driven by de
novo synthesis. This may have fostered the morning burst of
acetaldehyde which were more than one order of magnitude
higher in heat stressed plants than in the control group. Further
research is needed to investigate the role of nocturnal
acetaldehyde synthesis during prolonged heat stress in different
species. Similar to our results, Behnke et al. (2013) observed heat-
induced acetaldehyde production (during 4 h 40°C) in excised
poplar leaves. However, they suggested that acetaldehyde might
originate from fatty acid peroxidation reactions after
accumulation of ROS (Jardine et al., 2009) during membrane
breakage in damaged tissue (Fall et al., 1999; Loreto et al., 2006;
Brilli et al., 2011). Indeed, heat-induced membrane dysfunction
can result in the release of various compounds such as aldehydes
or ethane (Nanaiah and Anderson, 1992). However, we observed
high emission in intact branches of well-watered plants exposed
to heat, and, thus, desiccation effects can be excluded. Though we
cannot exclude direct effects of heat or ROS inducing membrane
dysfunction, strong 13C-incorporation from 13C2-labeled
pyruvate provides clear evidence that acetaldehyde bursts also
derive from substantial de novo synthesis. Although the source of
acetaldehyde emission is still a matter of debate (Graus et al.,
2004), it seems to be induced by stress (Loreto and Schnitzler,
2010), e.g., during wounding or desiccation under high
temperature (Holzinger et al., 2000; Loreto et al., 2006; Brilli
et al., 2011) and after root flooding (Kreuzwieser, 1999a;
Kreuzwieser et al., 2001). Morning bursts could be indicative
of root produced acetaldehyde transported to the leaves when
transpiration increases after sunrise (Kreuzwieser et al., 1999b).

Upon darkening, we found another burst of acetaldehyde
during light‐to‐dark transition under control-conditions (Figure
4, blue lines), which has often been described (Holzinger et al.,
2000; Karl et al., 2002; Brilli et al., 2011; Ghirardo et al., 2011;
Jardine et al., 2012; Jud et al., 2016). Pyruvate labeling indicated
that the dark-burst of acetaldehyde originated from de novo
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synthesis from the acetyl-CoA moiety of pyruvate (Figure 6). In
agreement with Jud et al. (2016) and Ghirardo et al. (2011), dark
burst of acetaldehyde was reduced or even absent in stress‐
affected plants (see Figure 4B, red lines).

As mentioned above, biosynthesis of methyl acetate may also
depend on the availability of methanol as a precursor. Heat
strongly enhanced methanol emission when temperatures were
stepwise increased, though with a time-lag of a few hours (Figure
3), and highest emissions occurred during the morning bursts on
days 2 and 3 of the heat wave. Methanol is known to be
predominantly emitted from degradation (and formation) of
cell wall pectins, e.g., during senescence and leaf abscission
(Harriman et al., 1991; Loreto and Schnitzler, 2010;
Niederbacher et al., 2015). To a minor extent, methanol
emissions might also originate from protein methyltransferase
and protein repair reactions (Kreuzwieser et al., 1999b), which
could be enhanced in response to stress. Methanol emissions are
also found in response to mechanical wounding or other stresses
due to damage of the cell wall (Dorokhov et al., 2018), or with
increasing temperatures (Schade et al., 2011). Interestingly,
emissions from wounded plants can induce defence reactions
in intact leaves of the same and neighbouring plants, by
activating methanol-inducible genes that regulate plant
resistance to biotic and abiotic factors (Dorokhov et al., 2018).
Unfortunately, we did not find a clear labeling signal for
methanol due to difficulties in peak separation for the 13C-
isotopologue of methanol. Ghirardo et al. (2011) reported
significant 13C-labeling of methanol emitted from mature
leaves and apices of shoots if plants were fed with 13C-Glc, but
not with 13CO2. However, in absence of further evidence, we
Frontiers in Plant Science | www.frontiersin.org 11
suggest that cell wall degradation might be the primary source of
large methanol emission, particularly in highly impacted plants
during heat stress.

Dynamic Response of Terpenoid
Emissions to Heat Stress
In contrast to oxygenated VOCs, both mono- and sesquiterpene
emissions increased instantaneously with higher temperatures
probably due to increased volatility of these terpenoids. They
exhibited highest emissions during the first 48 h of heat exposure
and thereafter declined. Isoprene and monoterpene emissions
are expected to stabilize thylakoid membranes and proteins,
thereby enhancing the plant’s thermotolerance (Singsaas et al.,
1997; Singsaas, 2000; Sharkey, 2005). Biophysical evidence
indicates that isoprene improves the integrity and functionality
of the thylakoid membranes at high temperature, i.e., though
stabilisation of the ordered arrays of light harvesting complex
and photosystem II in the thylakoid grana (Velikova et al., 2012).
Further mechanisms are protection of the thylakoid membrane
against leakiness to maintain the proton-motive force and
enhance the efficient primary photochemistry of PSII (Velikova
et al., 2011). Recent studies have shown that this is most likely
mediated by isoprene binding to proteins, and by modulating the
dynamics of thylakoid-embedded proteins that affect membrane
stabilization (Harvey et al., 2015).

However, here it is evident that the sudden increase by +13°C
obviously exceeded the capacity of heat acclimation in H.
halimifolium, even though typical stress markers like green leaf
volatiles were not emitted in large amounts (data not shown).
Interestingly, even though the heat wave might have depleted the
FIGURE 6 | Simplified metabolic network indicating major pathways of volatile organic compound (VOC) synthesis and associated CO2 decarboxylation processes
in the light. Dark red arrows indicate potential sources of upregulated day CO2 flux during heat stress (from C1-pyruvate), blue denotes CO2 decarboxylation from
C2-pyruvate. Dashed lines: low flux in the heat and under light. Pathway names in grey, enzymes in italic. Acetyl-CoA, acetyl coenzyme-A; AA, amino acids; DMAPP,
dimethylallyl diphosphate; GA3P, glyceraldehyde-3-phosphate; GPP, geranyl diphosphate; GPP, geranyl diphosphate; IPP, isopentenyl pyrophosphate; LOX,
lipoxygenase; MEP, MEP,2-C-methyl-D-erythritol 4-phosphate; MVA, mevalonate; OAA, oxaloacetate; PDH, pyruvate dehydrogenase; mPDH, mitochondrial PDH;
cPDH, chloroplastic PDH; PDC, pyruvate decarboxylase; PEP, phosphoenolpyruvate; PEPC, PEP carboxylase; Phe, phenylalanine; PPP, pentose phosphate
pathway; TCA, tricarboxylic acid cycle. Information partially derived from (Dudareva et al., 2006; Dudareva et al., 2013; Tcherkez et al., 2017; Fasbender et al., 2018).
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terpene pools within the first 48 h, 13C2-pyruvate incorporation
into both, mono- and sesquiterpenes (Figures 4C, D) clearly
indicated de novo synthesis. This finding corroborates that
terpene emissions in H. halimifolium are driven by both,
temperature dependent release of stored compounds (i.e.,
storage pools for b-caryophyllene and farnesene, see Yáñez-
Serrano et al., 2018) and de novo biosynthesis (Fasbender et al.,
2018). Remarkably, even though the absolute emission rates of
monoterpenes and particularly sesquiterpenes declined after 10-
days of heat (Figure 3), the proportion of de novo synthesis of
mono- and sesquiterpenes was strongly enhanced during heat
(Figure 4) despite limited carbon availability. This might be
underlining the importance of carbon investment into these
compounds in order to enhance stress tolerance in plants.

Pyruvate is a precursor for both, monoterpenes and
sesquiterpenes. However, whereas monoterpenes are generally
synthesised via the chloroplastic methylerythrol-phosphate
(MEP) pathway, sesquiterpenes are produced via the cytosolic
mevalonate (MVA) pathway (Dudareva et al., 2006). Therefore,
for the use of the applied labeled 13C-pyruvate in the MEP
pathway it needs to be transported into this organelle. It has been
reported that pyruvate can be shuttled into the chloroplast either
directly via a pyruvate transporter, after conversion to PEP via a
PEP transporter , via GA3P, or via a malate shuttle (Dudareva
et al., 2006; Linka and Weber, 2010; Dudareva et al., 2013; Souza
et al., 2018). In both pathways, the C1 of pyruvate is then
decarboxylated and released as CO2 and only the C2-C3
moiety is further used for biosynthesis (Figure 6). It was,
therefore, unexpected to find incorporation of the 13C1 of
pyruvate in both terpene classes in heat stressed plants. We
could assume that photosynthetic re-fixation of day respired
13CO2 occurred; in consistence with this view, incorporation of
the 13C1 of pyruvate was more pronounced in mono- than in
sesquiterpenes, since monoterpene biosynthesis is directly
fuelled from fresh photosynthates formed in the chloroplasts.
The 13C1-incorporation into sesquiterpenes, however, requires
export of 13C-labeled metabolites from the chloroplast. This can
be either an export of labeled triose phosphates or it points
toward substantial crosstalk between MEP- and MVA-pathway
(Souza et al., 2018). The fact that none of the cytosolic
oxygenated VOCs did show significant incorporation of 13C1-
label could be interpreted as an export of IPP via an postulated
IPP transporter (Arigoni et al., 1997; Hemmerlin et al., 2003).
However, recent work has shown little evidence of a large
exchange of IPP (Rasulov et al., 2018; Souza et al., 2018).

Moreover, it must be denoted that a strong imprint of 13CO2-
refixation would result in an equal distribution of 13C-label at all
carbon positions. As triose phosphates are exported from the Calvin
cycle and fuel cytosolic processes, a similar labeling pattern in all de
novo synthesised molecules would be expected, if re-fixation would
play a dominant role. Furthermore, 13CO2 decarboxylation was
significantly higher from 13C1-pyruvate than from 13C2-pyruvate
(Figure 5), and thus cells were exposed to higher 13CO2

concentrations from 13C1-pyruvate decarboxylation. Therefore,
the impact of refixation would be expected to be higher from
13C1-pyruvate feeding, which was clearly not the case (Yáñez-
Frontiers in Plant Science | www.frontiersin.org 12
Serrano et al., 2019) (Figure 4). It has recently been shown that
there is substantial elasticity in the MEP pathway, strongly related
to the availability of reducing power and ATP from photochemical
reactions (Rasulov et al., 2015; Rasulov et al., 2018). Souza et al.
(2018) proposed that depending on the availability photochemical
energy supply and the limitations imposed by either Rubisco
activity or RuBP regeneration (under high and low CO2 and
temperature) multiple alternative carbon sources can fuel the
MEP pathway. They conclude that the use of alternative carbon
sources is greater under photosynthesis-limiting conditions, which
is in line with our results, showing that the use of cytosolic pyruvate
for de novo synthesis is strongly enhanced under heat stress and
limited photosynthetic carbon fixation (Yáñez-Serrano et al., 2019)
(Figure 4). However, there could also be alternative pathways
which are currently not understood.

Day and Dark Respiration
The strong increase of dark respiration in response to heat was
mirrored by enhanced decarboxylation during day (Figure 5).
Interestingly, this enhanced metabolic day respiration was not
evenly fuelled from all C-positions of the pyruvate molecule: in
the light, CO2wasmostly emitted from the C1-position of pyruvate
and only upon darkening, substantial decarboxylation of the C2
position,most probably fromup-regulation of the TCA-cycle in the
mitochondria, occurred. The low decarboxylation of the C2
position of pyruvate in the light indicates down-regulation of the
TCA-cycle activity (Tcherkez et al., 2005; Werner et al., 2009). It is
assumed that the TCA-cycle undergoes a major re-organization
during illumination (Sweetlove et al., 2010; Sweetloveet al., 2013), in
order to supply carbon skeletons, e.g., for amino acid synthesis
(Tcherkez et al., 2017). Thus, high decarboxylation from the C1-
position of pyruvate occurred when carbon skeletons are used for
processes such as synthesis of many secondary compounds
including fatty acids and VOCs. Remarkably, during heat stress
we observed that such uneven decarboxylation of the C1 and C2 of
pyruvate was even enhanced as heat caused a three-fold increase in
decarboxylation of C1: this unexpected finding of low C2-pyruvate
decarboxylation led us hypothesize that the CO2 released fromheat
stressed plants in the light is mainly derived from cytosolic and
chloroplastic reactions and not from the TCA-cycle (Figure 6). In
accordance with studies suggesting that pyruvate uptake into
mitochondria, as well as the activities of mitochondrial pyruvate
dehydrogenase, malic enzyme, isocitrate dehydrogenase and 2-
ketoglutarate dehydrogenase of the TCA cycle are light inhibited
(Tovar-Mendez et al., 2003; Tcherkez et al., 2005; Sweetlove et al.,
2010; Tcherkez et al., 2017). The fact that very low decarboxylation
of C2-pyruvate in the light was observed might be an indication,
that under extreme heat stress and limiting carbon availability, also
the non-cyclic pathways of the TCA-cycle, which supplement the
organic carbonpool (Tcherkez et al., 2017),might have beendown-
regulated. However, further work is needed to substantiate
functioning of the TCA cycle under prolonged heat.

It has been hypothesized that high day respirationmay compete
with isoprene biosynthesis for pyruvate or PEP, because decreased
isoprene emissions were found in heat-acclimated plants or in
plants grown under elevated CO2 (Loreto et al., 2007). Other work
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suggests that the partitioning of PEP and pyruvate between
mitochondrial respiration and chloroplastic VOC synthesis is
controlled in a way that retains the balance in substrate demand
(Loreto et al., 2007). However, our position-specific labeling clearly
demonstrates that VOC synthesis contributes, rather than
competes, to enhanced daytime CO2 emissions due to metabolic
partitioning of the pyruvate precursor (CO2-releasing pathways
during VOC-synthesis under heat stress are indicated in Figure 6):
the synthesis of the universal precursors for terpenoids, isopentenyl
pyrophosphate (IPP) and dimethylallyl diphosphate (DMAPP),
requires three acetyl-CoAmoieties in theMVApathway. These are
provided by decarboxylation of three pyruvatemolecules and, thus,
results in the releaseof3CO2molecules.Thus, synthesisofonemole
sesquiterpenes (i.e., 15 carbon skeletons) via the MVA pathway is
associated with release of 9 mol CO2. In contrast, in the MEP
pathway only one mole CO2 is released per mole IPP as after
decarboxylation pyruvate reacts with the C1-aldehyde group of
GA3P derived from the Calvin cycle (Rohmer et al., 1996; Arigoni
et al., 1997). Hence, monoterpene synthesis in the MEP pathway
should provide a lower ratio of CO2 decarboxylation and, therefore
a lower incorporation of 13C2-label compared to precursors
synthesised via the MVA pathway. However, as pointed out
above, we found similar labeling patterns of monoterpenes and
sesquiterpenes (Figure 4), which might be another strong
indication for substantial crosstalk between MVA and MEP
pathway as discussed above.
CONCLUSIONS

In summary, these results show that the sudden exposure to a
heat wave can exceed the acclimation potential even of a
Mediterranean species, resulting in a marked depression of net
photosynthesis, and enhanced respiratory losses inducing a
negative carbon balance in plants. Nevertheless, marked
investment into de novo synthesis of several VOC was found,
even at the expense of further respiratory losses in the light.
Given the fact that plants invest carbon in a plethora of VOCs
even under stress conditions is a clear indication for their
Frontiers in Plant Science | www.frontiersin.org 13
importance for plant protection and survival, though for many
poorly studied compounds their physiological role in stress
protection is not yet fully resolved. Moreover, the fact that
extreme heat waves may shift plants into a negative carbon
balance and that assimilation at temperatures exceeding the
optimal condition is more inhibited than respiration, pose
important interrogatives on the role of plant carbon balance in
future scenarios of increasing temperatures and extreme events
(Loreto et al., 2007).
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