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Physiological Responses
of an Arctic Crustose Coralline
Alga (Leptophytum foecundum)
to Variations in Salinity
Arley F. Muth*, Andrew J. Esbaugh and Kenneth H. Dunton

Department of Marine Science, University of Texas Marine Science Institute, Port Aransas, TX, United States

In the Beaufort Sea, Arctic crustose coralline algae (CCA) persist in an environment of high
seasonal variability defined by naturally low pH ocean water and high magnitude
freshwater pulses in the spring. The effects of salinity on the CCA Leptophytum
foecundum were observed through a series of laboratory and field experiments in
Stefansson Sound, Alaska. We found that salinity (treatments of 10, 20, and 30),
independent of pH, affected L. foecundum physiology based on measurements of
three parameters: photosynthetic yield, pigmentation, and calcium carbonate
dissolution. Our experimental results revealed that L. foecundum individuals in the 10-
salinity treatment exhibited an obvious stress response while those in the 20- and 30-
salinity treatments were not significantly different for three parameters. Reciprocal in situ
transplants and recruitment patterns between areas dominated by CCA and areas where
CCA were absent illustrated that inshore locations receiving large pulses of freshwater
were not suitable for CCA persistence. Ultimately, spatially and temporally varying salinity
regimes levels affected distribution of CCA in the nearshore Arctic. These results have
implications for epilithic benthic community structure in subtidal areas near freshwater
sources and highlight the importance of salinity in CCA physiology.
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INTRODUCTION

Calcification of marine organisms is of broad and current interest in ocean climate change studies.
Lower pH levels, driven by carbon dioxide (CO2) uptake into ocean water, causes a reduction of
calcium carbonate (and other forms e.g., aragonite and calcite) saturation levels leading to decreased
calcification rates of species. At high latitudes, aragonite saturation levels are low (~2) when
compared to ocean averages (~3.5) or low latitude values (~4; Gangstø et al., 2008; Jiang et al., 2015)
due to processes such as freshwater input, rapid seasonal ice melt, upwelling, and relatively high
respiration rates from decomposition of organic matter (Mathis et al., 2015). In the Arctic Ocean,
natural factors in addition to anthropogenic factors have the potential to decrease aragonite
saturation levels below natural variations (WArag 3.5–0.8) by 2025 (Mathis et al., 2015).

Decreased rates of productivity, growth, and net calcification have been shown to occur when
coralline algal species are exposed to lower than ambient pH conditions for short time periods (~21
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days; Büdenbender et al., 2011; Diaz-Pulido et al., 2012; Mccoy,
2013). Crustose coralline algae (CCA) species are often the first
species affected by lower pH because they precipitate magnesium
calcite, which is about 20% more soluble than aragonite
(depending on magnesium content; Morse et al., 2006;
Kamenos et al., 2008). CO2 vents in Italy decrease pH locally
and coralline species disappeared near the vents while turf algal
biomass increased 60%, including certain invasive species (Hall-
Spencer et al., 2008). Low salinities also decrease calcification
rates and slow productivity in CCA species (King and Schramm,
1982). Schoenrock et al. (2018) saw decreased calcification rates,
photosynthetic efficiency, and density in Lithothamnion glaciale
in southwest Greenland as waters became more brackish in fjord
environments. Marine invertebrates are also susceptible to
freshening waters as juvenile oysters cultured under decreased
salinity and pH conditions showed increased rates of mortality,
but low salinities alone had the most impact (Dickinson
et al., 2012).

Within the Beaufort Sea, a diverse benthic community
attached to boulders and cobbles occurs in an area known as
the Boulder Patch (for a detailed description, see Dunton et al.,
1982; Wilce and Dunton, 2014). Three kelp species (Laminaria
solidungula, Saccharina latissima, and Alaria escuelenta) and
various red algal species (e.g., Phycodrys fimbriata and Coccotylus
truncatus) are common on rock surfaces (Wilce and Dunton,
2014). CCA species, including Leptophytum foecundum and L.
lavae, cover 77% of the hard substratum in some areas and are
completely absent in others (Konar and Iken, 2005; A. Muth
pers. obs.). Benthic surveys in the Boulder Patch show patterns of
decreasing CCA coverage with proximity to inshore areas with
consequent increases in fleshy red algal biomass with no CCA
present at the innermost sites (Muth et al., 2020). Data from
salinity, temperature, and pH sensors deployed July 2016 to July
2018 in the Boulder Patch exhibit patterns of lower salinity in
association with higher pH at the inshore site vs. the offshore site
(Muth et al., 2020). Sites closest to the freshwater source, the
Sagavanirktok River, reach low (<5) salinity levels near the
benthos during ice break-up and spring flooding (late May/
early June); however, this low salinity water is alkaline and pH
levels increase during these pulses (Muth et al., 2020).

The mechanisms and environmental conditions that prevent
CCA persistence at the inshore locations are the subject of this
paper, which seeks to specifically explain the role of salinity on
CCA physiology and distribution. The unique characteristics of
the high alkalinity and pH levels of the Sagavanirktok River allow
for a study of the influence of salinity on CCA populations,
independent of pH. In general, low salinity waters (<10) have
higher pH levels (>8) than high salinity (>30) waters within the
Boulder Patch. We hypothesize that seawater chemistry
conditions influence CCA distributions and parameters that
vary with salinity (e.g., AT), affect CCA physiology and net
calcification. Laboratory experiments were used to focus on
short-term changes to CCA physiological mechanisms in
response in alterations in water chemistry. Field studies
allowed for real time, long-term observations of recruitment,
and persistence in natural conditions.
Frontiers in Plant Science | www.frontiersin.org 2
MATERIALS AND METHODS

Study Site and CCA Species
Within the Boulder Patch, Stefansson Sound, Alaska, there are
varying distributions of CCA and the most striking of these
patterns is between an inshore site, located near the mouth of the
Sagavanirktok River (E-1) and an offshore site (DS-11; Figure 1).
The substrate of cobbles and boulders at the offshore site is
covered by Leptophytum foecundum (Wilce and Dunton, 2014),
while CCA is absent at the inshore site. Salinity measurements
throughout the study area from past years have shown that
salinity can drop to 15–20 at both sites, but can reach as low as 0
at the inshore site (Muth et al., 2020; Figure 1). Total alkalinity
(AT) is often lower in fresh and brackish waters, which reduces
pH buffering capacities and results in lower pH values, leading to
dissolution of the calcium carbonate skeletons of calcifying
organisms. However, continuous pHT for the Boulder Patch
show consistently higher pH values at the inshore site, where
CCA are absent (Muth et al., 2020). Continuous pH values have
not been available for the nearshore Arctic because of logistical
constraints of deployment under the ice and instrument
longevity. AT values did decrease with lower salinity
measurements as expected, and manipulative laboratory
experiments were conducted to observe if changes in salinity
and AT, with a constant pH, could drive dissolution and/or lower
photosynthetic efficiency in L. foecundum.

Manipulative Laboratory Experiments
Culture Conditions
Cobbles were collected in July 2016 at DS-11 (Figure 1) and were
wrapped in damp paper towels and kept in separate plastic bags
to prevent any damage to the coralline crust during transport.
Corallines were then packed in a cooler within layers of Techni-
Ice packs and shipped overnight to the University of Texas
Marine Science Institute (UTMSI) and kept in a 0°C chamber
until experiments began 15 February 2017. Leptophytum
foecundum cobbles were cultured at undetectable light levels to
replicate ambient conditions in the Arctic, at three salinities (10,
20, and 30) at 0°C. A no-specimen 30-salinity control treatment
was also monitored to determine the effect of the medium on
water chemistry, since we used Gulf of Mexico (GOM) water for
the culture medium. Salinity treatments were chosen to represent
three salinity regimes that these corallines experience throughout
the year: 30 (Beaufort Sea waters predominate under stable open
water conditions under the ice), 20 (mixing of offshore marine
and near coastal waters), and 10 (brackish waters replace bottom
saline marine waters during flooding events).

Samples (four cobbles in each tank, one tank per salinity
treatment) were placed in salinity treatments (1 L of medium) for
5 weeks, after which all samples recovered at 30 (control
treatment) for 5 weeks. To replicate field conditions, samples
placed in low salinity (20 and 10 treatments) were placed in the
control after 5 weeks for ecological relevance and to observe
recovery. Growth media was created using GOM offshore water
(low nutrient concentrations). Distilled water was added to
achieve the salinity treatments. By diluting seawater to create
August 2020 | Volume 11 | Article 1272
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salinity treatments, the ion ratios are kept constant and this
method most closely mimics natural conditions as freshwater and
seawater mix (Kirst, 1989). All treatments were supplemented
with Provasoli’s Enriched Seawater, ensuring sufficient supply of
macro- and micro-nutrients. Media was replaced weekly and
water quality parameters (pHNBS, temperature, salinity) were
recorded before and after each water change using a data sonde
(YSI 6920V2-2). Water samples were also taken before and after
each water change for titratable alkalinity measurements (values
were log transformed to meet ANOVA assumptions of normality
and equal variances).

Photosynthetic Efficiency
Samples were monitored weekly for photosynthetic efficiency,
dark-adapted yield values (Fv/Fm) using a pulse amplitude
modulation (PAM) fluorometer (Walz, diving-PAM). Initial
baseline measurements were taken before cobbles were placed
in salinity treatments. Three areas per cobble (n = 4 for each
salinity treatment) were measured for yield values each week at
the same location on the cobble and time of day (Measuring
Light Intensity 7, Saturation Intensity 0.8, Saturation Pulse
Width 8, Gain 7, and Damping 2).
Frontiers in Plant Science | www.frontiersin.org 3
Calcium Carbonate Calcification
Calcium carbonate calcification was estimated by measurement
of AT when the culture medium was first replaced (initial) and
from the media after one week (final) in the experimental tanks.
An automated open cell Gran titration system (ASALK2;
Apollo SciTech) coupled to a thermostated water bath was
used to measure AT (Lonthair et al., 2017) at 0°C. AT values were
combined with temperature, pH, and salinity measurements to
estimate aragonite saturation levels using the software program
CO2SYS. Saturation levels equal to one are at equilibrium,
greater than one favors precipitation and less than one
favors dissolution.

Visual Pigmentation
To measure changes in visual pigmentation, cobbles were
photographed before salinity treatments commenced, when
placed in the recovery salinity treatments, and at the end of
the experiment. Cobbles were photographed in the same position
at each time point with a Nikon D7200, with each photograph
containing a ruler for scale. Photographs were then analyzed
using ImageJ to estimate pigmented CCA area at each time point
for comparison among treatments.
FIGURE 1 | The Boulder Patch kelp bed community in Stefansson Sound, Alaska (adapted from Bonsell and Dunton, 2018 showing rock cover, site distances (km)
from the Sagavanirktok River (Sag), and ranges of salinity and W Arag (Muth et al., 2020).
August 2020 | Volume 11 | Article 1272
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In Situ Field Experiments
Adults
To observe natural effects of abiotic factors and spatial changes in
carbonate chemistry on L. foecundum in situ, we performed
reciprocal transplants between the inshore (E-1) and offshore
site (DS-11). Both sites differ considerably with respect to their
hydrographic characteristics (Muth et al., 2020) with the inshore
site (E-1) characterized by periods of extremely low salinities in
late spring and early summer (0–20), while salinities at the offshore
site (DS-11) rarely fall below 22, with values to 35 (Figure 1).
Cobbles from offshore (n = 6) with CCA present were
photographed and transferred to the inshore site and remained
on the seabed from July 2016 to July 2017. Cobbles were retrieved
and kept in covered buckets in ambient seawater during transit to
the laboratory on Endicott Island, Alaska. In addition to the
transplanted cobbles, control cobbles from each site were also
collected for quantum yield value comparison in July 2017. In
the laboratory, all cobbles with CCA present were measured for
dark-adapted yield using PAM fluorometry (same methods
as above).

Recruits
Fibercement tiles (10 × 10 cm) were retrieved from DS-11 and
E-1 (Figure 1) following a 12-month deployment (July 2016
deployment) on the seabed. Tiles were attached to weighted
PVC pipes with cable ties, ~3 cm from the seafloor to avoid
burial by sediments. Tiles/samples were wrapped in damp
paper towels and kept in separate plastic bags to prevent any
damage to the recruits. Tiles were then packed in a cooler
within layers of Techni-Ice packs and shipped overnight to the
University of Texas Marine Science Institute (UTMSI) and kept
in a 0°C chamber. Density and area of CCA recruits was
quantified and compared between sites. Tiles were collected
in July 2017 and recruits were observed on the inshore and
offshore settlement tiles (Bonsell, 2019). Using a uniform grid,
density of CCA individuals was counted for 50 FOV per tile at
40×. Pictures were taken at 40×, capturing five individuals per
tile and ImageJ was used to analyze the size of the recruits from
both sites.
Frontiers in Plant Science | www.frontiersin.org 4
Statistics
Manipulative laboratory experiment parameters were compared
by calculating differences in AT and pH in new media and week-
old media, using two-way ANOVAs (salinity treatment and
treatment*recovery period) and values were log transformed in
order to meet test normality and equal variance assumptions.
Tukey HSD tests were used for post hoc comparisons. Fv/Fm
among treatments were compared using repeated measures two-
way ANOVAs (salinity and time) during salinity treatments and
following the placement of all cobbles in recovery conditions.
Changes in visual pigmentation were compared using two-way
ANOVAs (salinity treatment and treatment/recovery period)
and ANOVAs were used to compare recruit size (values were
square root transformed in order to meet ANOVA assumptions
of normality and equal variances and density (values were log
transformed in order to meet ANOVA assumptions of normality
and equal variances) between sites. All statistics were run using R
Version 3.3.1.
RESULTS

Culture Conditions
Salinity and temperature treatments remained consistent over
the 5-week treatment period (Table S1). pH values decreased in
all treatments over each week (start pH 8.06 ± 0.02, end pH
7.84 ± 0.02; Table S1), but the changes did not differ among
treatments or between periods (treatment/recovery; two-way
ANOVA: period F1 = 0.004, p = 0.949; salinity treatment F4 =
1.07, p = 0.388; interaction F4 = 0.661, p = 0.623).

Manipulative Laboratory Experiments
Photosynthetic Efficiency
Yield values were different between the 10-salinity treatment and
the 20- and 30- salinity treatments (Figure 2; Repeated measures
two-way ANOVA: salinity F1 = 23.60, p < 0.001, time F5 = 44.33,
salinity*time F5 = 5.47, p < 0.001). Baseline yield values were
0.40, 0.45, and 0.43 for the 10-, 20-, and 30- salinity treatments,
but after 5 weeks values dropped to 0.26 in the 10-salinity
FIGURE 2 | Fv/Fm values (±SE) across 5 weeks of salinity treatments (10, 20, and 30) and 5 weeks in a recovery treatment of 30.
August 2020 | Volume 11 | Article 1272
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treatment while the values for the 20- and 30-salinity treatment
remained similar and higher (0.34 and 0.33). After cobbles were
placed in a recovery salinity of 30, the previous salinity treatments
did not affect yield values; however, yield values for all treatments
did decrease initially and then recover over time (Figure 2;
Repeated measures two-way ANOVA: salinity F1 = 0.50, p =
0.49, time F4 = 56.88, p < 0.001, salinity*time F4 = 2.14, p = 0.07).

Calcium Carbonate Parameters
Discretewater samples analyzed forAT fluctuations eachweek of the
experiment showed an increase in AT in the 10 treatment compared
to the control, 20- and 30- treatments during the 5-week period
(Figure 3; two-way ANOVA period F1 = 5.39, p = 0.027; treatment
F4 = 6.39, p < 0.001; interaction F4 = 4.50, p = 0.006; TukeyHSD 10–
20 p = 0.03, 10–30 p = 0.004, 10-control p < 0.001; Figure 3, Table
1). Since themesocosm is a closed system, an increase inAT can only
be derived from dissolution of the calcium carbonate thallus of the
CCA.Media aragonite saturation levels for each treatment (Table 2),
showed only the 10-salinity treatment was under saturation in
Frontiers in Plant Science | www.frontiersin.org 5
respect to aragonite, meaning the process of dissolution was
favored (ΩArag = 0.5). While the 20- and 30- treatments were at
equilibrium and 1.6, respectively (precipitation/calcification favored
atΩ Arag > 1), dissolution did not differ between salinities in respect
to AT changes. Samples placed in a recovery 30 showed no
significant differences in AT (Tukey HSD p > 0.05).

Visual Pigmentation
Percent changes in visual pigmentation of the cobbles in the 10-
salinity treatment lost significantly more pigmented area (8.06 %
lost) during the treatment period (Figure 3; two-way ANOVA:
period F1 = 4.4, p = 0.046; salinity treatment F3,2 = 15.56, p <
0.001, interaction F4,5 = 5.92, p=0.024) while the 20- and 30-
treatment cobbles remained unaffected and lost little to no
pigmentation throughout the experiment (0.25 % gain and
0.15% loss, respectively; Figure 3). Once placed in the recovery
treatment of 30 salinity, loss of pigmented areas slowed in the 10
treatment (1.96 % loss; Figure 3, bottom panel, recovery section).
As seen in all parameters measured (Fv/Fm, AT changes,
A

B

FIGURE 3 | (A) Average AT differences (n = 4) over 5 weeks at varying salinities (10, 20, 30, and control without any cobbles) and 5 weeks of recovery, when all
treatments were at 30. (B) Average pigment loss over 5 weeks of salinity treatments (10, 20, and 30) and 5 weeks of recovery, when all treatments were at 30.
Values are means ± SE.
TABLE 1 | AT (mmEq L−1) values of the culture medium initially and after each week during the experimental period and recovery period (see Figure 3).

Experimental Period Recovery Period

Start Average Week-Old Average Start Average Week-Old Average

Control 2512.82 (119.11) 2431.00 (117.11) 2771.72 (54.38) 2741.62 (50.55)
10 1208.04 (114.41) 1732.16 (63.10) 2719.36 (69.77) 2695.56 (47.42)
20 1870.68 (95.29) 1951.92 (71.55) 2734.06 (68.25) 2688.58 (55.60)
30 2550.00 (114.15) 2543.76 (77.73) 2691.54 (84.90) 2724.98 (29.49)
August 2020 | Volu
Values are means (± SE), n = 4.
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pigmentation changes), L. foecundum was affected when
immersed in stressful conditions, but was able to recover when
returned to the salinity of 30 medium.

Field Experiments
Adults
Photosynthetic Efficiency and Pigmentation
Field transplants with adult CCA showed high amounts of
variability. Yield (Fv/Fm) values were not significantly different
Frontiers in Plant Science | www.frontiersin.org 6
between pigmented areas of the control and transplanted cobbles
(transplanted 0.45 ± 0.01, control 0.43 ± 0.01, ANOVA F1,34 =
2.79, p = 0.103). Non-pigmented or dead areas (found only on
the transplanted cobbles) had yield values as high as pigmented
areas (0.40 ± 0.04) which we attributed to endolithic algal
species living within the calcium carbonate structure. Green
tinted areas had higher yield values than the control cobbles
(0.53 ± 0.02). Transplanted cobbles from the offshore to
the inshore site lost pigmentation (Figures 4A–D). However,
TABLE 2 | Carbonate chemistry parameters for salinity treatments used in laboratory experiments.

Salinity Treatment HCO3(mmol kgSW−1) CO3(mmol kgSW−1) CO2(mmol kgSW−1) WArag

10 1131.1 (107.2) 32.4 (9.3) 17.2 (3.1) 0.5 (0.1)
20 1711.8 (100.1) 64.9 (13.0) 21.7 (3.6) 1.0 (0.2)
30 2293.0 (65.9) 105.4 (2.4) 25.9 (1.1) 1.6 (0.1)
August 2020 | Volume 11 | Art
Values are means (± SE).
FIGURE 4 | Examples of field experiments, transplanted cobbles and recruits from each site. (A) cobble photographed in 2016 pre-transplant (B) same cobble as
(A), photographed in 2017 following a 12-month transplant to inshore site E-1, showing high pigment loss (C) cobble photographed in 2016 pre-transplant (D) same
cobble as (C), photographed in 2017 following a 12-month transplant to inshore site E-1, showing low pigment loss (E) one year recruits at the offshore site at 400×
(F) one year recruits at the inshore site at 400×.
icle 1272
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the percent lost (23.03% ± 15.0%) was highly variable
among individuals.

Recruits
Area and Density
Recruit area and density were compared between the offshore
and near-shore site. Recruits were present at both sites but were
significantly larger at the offshore site (Figures 4E, F; offshore
12.89 ± 1.91 mm2, inshore 1.35 ± 0.209 mm2; ANOVA F1,78 =
64.91, p < 0.001). Densities of CCA recruits were significantly
higher offshore (density 1.16 ± 0.40 per cm2, inshore 9.02 ± 3.76
per cm2; ANOVA F1,14 = 7.02, p = 0.01).
DISCUSSION

Arctic coralline algae survive in an environment of high seasonal
variability and extreme salinity changes (Figures 1 and S1; Muth
et al., 2020). Within the Boulder Patch in Stefansson Sound, CCA
distributions vary from dominant benthic space holders to
complete absence. The discharge of the Sagavanirktok River
waters into Stefansson Sound drives changes in seawater
chemistry that affect CCA and their ability to persist. Other
environmental factors, such as temperature and light, vary
between the two sites studied and could also influence CCA
distributions. For this study, we focused on salinity to ascertain
if freshwater input can influence CCA physiology. Laboratory
experiments with L. foecundum demonstrated their sensitivity to
low salinity. Reciprocal transplants between offshore station DS-11
and inshore station E-1 revealed a loss of CCA cover at E-1. These
results corroborate field observations of the absence of CCA in
areas in close proximity to the mouth of the Sagavanirktok River.
Frontiers in Plant Science | www.frontiersin.org 7
Effects of Water Chemistry on
Leptophytum foecundum
Results from mesocosm laboratory experiments illustrated
that Leptophytum foecundum, the dominant CCA species in
the Boulder Patch (Wilce and Dunton, 2014), was able to
tolerate salinities to 20 without any measured physiological
impacts (Figures 2 and 3). However, at a salinity of 10, CCA
experienced reduced photosynthetic efficiency, decreased
visual pigments and increased calcium carbonate dissolution
(Figures 2 and 3). Interestingly, all parameters (Fv/Fm,
pigmentation, and AT changes) recovered rapidly once
specimens were placed in a recovery salinity of 30. These
results highlight that L. foecundum is likely very resilient to
lower salinities and associated changes in carbonate chemistry.
Similar resiliency was seen in other sub-Arctic coralline species,
and although Fv/Fm decreased at low salinities <15, the
corallines did not die and were able to recover (Wilson et al.,
2004). As noted by Santelices and Marquet (1998), we expect
that such acclimation is related to periods of stress that the algae
experience naturally on an annual basis.

The significant (p < 0.05) increase in AT in the 10 salinity
treatment (Figure 3 and Table 1) was driven by the 0.5 WArag

level, chemically favoring net dissolution of calcium carbonate
(aragonite). Dissolution of calcium carbonate is the main process
that would affect AT in closed mesocosm systems, especially in
our culture conditions of cold temperatures and 24-h dark
periods. Photosynthesis and respiration exchange neutrally
charged compounds (CO2 and O2), which do not alter AT (see
Figure 5 for AT equation).

We kept pH levels constant among salinity treatments, and
although decreases were seen in all treatments, including the
control, throughout the week these did not differ significantly
FIGURE 5 | Conditions during ice break-up in the nearshore inner shelf region of the Beaufort Sea. Freshwater input from rivers peaks while remnant sea-ice
reduces wave action and mixing, creating a stratified water column with a less dense brackish or estuarine water layer over cold, dense ocean water. Benthic regions
within the freshwater layer experience low salinity and alkalinity conditions, driving down the aragonite saturation state, causing dissolution of the CCA populations.
Lower salinity water (5–15) is defined by decreased AT values (1900 mmEq L−1) than ocean water (>30 and 2,400 mmEq L−1). Lower AT values decrease the
numerator in the W equation, depressing W Arag levels. This process is independent of pH, as river water pH is higher than ocean water in many near-shore Arctic
systems. As break-up continues, wind driven mixing occurs, creating a homogenous water column for the summer and ice-covered seasons.
August 2020 | Volume 11 | Article 1272
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(p = 0.38) among treatments or between stress and recovery
periods (p = 0.94). Because pH levels were similar throughout
all salinity levels, results of these experiments enable us to
disentangle pH and salinity. We attribute the observed
physiological effects to changes in salinity and associated
parameters (e.g., AT), but not to pH. These results are
important and ecologically relevant in systems like the
nearshore Arctic, where the higher alkalinity of river run-off
drives pH upward to values greater than eight when compared
to other freshwater sources and ice melt (Cooper et al., 2008;
Semiletov et al., 2016). Although some river run-off has higher
AT than other freshwater sources, alkalinity levels are still lower
than ocean water values (Table 1; Yamamoto-kawai and
Tanaka, 2005; Tynan et al., 2016; Muth et al., 2020) and the
increased pH of these waters does not ameliorate lower AT with
regard to WArag levels and calcium carbonate dissolution. These
low salinity and alkalinity waters initially overlay dense ocean
water, creating a stratified environment (Figure 5) that
eventually mixes. Heterotrophic processes during the dark
ice-covered period drive down pH, causing the ocean water
to have lower pH values than freshwater run-off (Muth et al.,
2020). The higher pH values of Alaska North Slope river
waters are not sufficient to offset the influence of low AT

values and the resultant WArag levels. Lower pH typical
of Eurasian rivers (Cooper et al., 2008) and ice melt
(Yamamoto-kawai and Tanaka, 2005) would decrease WArag

even more, exacerbating corrosive conditions for calcium
carbonate secreting organisms.

Cobbles transplanted in the field were extremely variable in
their response (pigmentation and photosynthetic efficiency) to
environment change (Figures 4A–D). During the period of
transplant (July 2016 to July 2017), salinity levels at the
inshore site did not fall below 20, while the following year
(2017–2018), salinity at the inshore site was near zero (Figure
1). These annual variations and periods of low salinity likely
affect mature CCA assemblages and CCA recruitment at inshore
sites, while extreme low salinity events may prevent CCA
establishment entirely. In addition to changes in salinity, other
factors such as sedimentation could also influence CCA
distributions (Wilson et al., 2004).

The recruitment of CCA observed onto settlement tiles at
the inshore site shows that the absence of CCA at the inshore
site is not related to propagule dispersal limitations (Muth et
al., 2020). Recruit area and density were significantly (p <
0.05) greater at the offshore site compared to the inshore site
(Figures 4E, F). CCA propagules were seen to reach the
inshore site, but their size and density were reduced when
compared to the offshore site. We hypothesize that persistence
of adult communities is prevented by water chemistry changes
associated with low salinity pulses at the inshore site. Other
CCA species (Lithothamnion glaciale) have shown tolerance
to low salinity conditions, but as in our mesocosm studies,
these studies were conducted on mature individuals (Burdett
et al., 2015). However, further studies are needed to quantify
and observe other factors such as grazing (Wai and Williams,
2006) and sedimentation (Wilson et al., 2004).
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During the years of this study (2016–2018), WArag saturation
levels were found to remain around one for much of the year
(Muth et al., 2020), even at the offshore site where CCA cover the
benthos. Gangstø et al. (2008) predicted that Arctic waters could
reachW aragonite levels of one by 2,100, but our work has already
documented these levels in Arctic near-shore environments. CCA
species in the Boulder Patch survive at WArag levels near one, but
during the period of spring break-up (~4–5 weeks) salinity levels
drastically drop (Figure S1) and this, in turn, has effects on WArag

levels (Figure 1) and these events likely drive CCA distributional
patterns in Stefansson Sound.

Ecological Implications
Predicted increases in freshwater input and the overall
susceptibility of the Arctic to OA threaten to drastically change
the carbonate chemistry of nearshore systems and their
biological assemblages (Kelley and Lunden, 2017). This study
focuses on CCA physiology and the resultant distributions,
but distributions and population dynamics also affect
entire communities through species interactions (Kroeker
et al., 2012).

Corallines are known to grow laterally rather than vertically
when colonizing space, allowing them to cover the benthos
(Airoldi, 2000). However, the roles which corallines play in
algal and sessile invertebrate succession vary drastically across
communities. Studies have shown that corallines enhance
biodiversity (Asnaghi et al., 2015) while other work has
documented a complete drop in algal recruitment once
coralline secure dominance (Bulleri et al., 2002). Johnson and
Mann (1986) found Phymatolithon in Nova Scotia to suppress
the recruitment of turf algal species. A similar pattern has been
observed in the Stefansson Sound Boulder Patch but some algal
species possess the ability to recruit to CCA (Laminaria
solidungula and Rhodomela confervoides, pers. obs,). The
mechanism that allows for this recruitment is unknown, but
slower growing crusts (e.g., Lithothamnion phymatodeum;
Dethier and Steneck, 2001) have shown resilience to turf
overgrowth and shading. In Stefansson Sound, CCA appears
to inhibit fleshy red algal occurrence but facilitates recruitment
of the Arctic endemic kelp, L. solidungula. Laminaria
solidungula is an ecologically important foundation species in
High Arctic kelp communities that are known to support rich
and diverse food webs (Dunton and Schell, 1987). Such kelp
ecosystems have routinely been associated with more diverse
assemblages and higher density of fishes (Bodkin, 1988; Siddon
et al., 2008). Lower salinity waters from freshwater inflows and
further changes to carbonate chemistry through ocean
acidification not only affect the persistence of CCA, but also
the community assemblages associated with these species.

The susceptibility of CCA to variations in carbonate
chemistry (reviewed in Nelson, 2009) makes these species ideal
sentinels as bioindicators of change in ocean chemistry in near-
shore environments. Coral species in tropical zones have been
used as ocean acidification bioindicators (Fabricius et al., 2012)
while sea-level uplift has been estimated using CCA presence
(Ortlieb et al., 1996). In the Arctic, freshwater inputs are
August 2020 | Volume 11 | Article 1272
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expected to rise (Peterson et al., 2006) and few studies have
considered the effects of decreased salinity in exacerbating the
effects of anthropogenic OA (Schoenrock et al., 2018).

Seasonal, low salinity pulses, as seen in the Boulder Patch
(Muth et al., 2020) affect CCA recruitment and growth. As
freshwater input into the Arctic Ocean increases due to higher
air temperatures causing an increase in snow and melt, areas
devoid of CCA could increase, causing changes in epilithic
communities. CCA are conspicuous benthic species, and their
presence and absence could serve as an effective tool for
assessing water quality changes in the nearshore Arctic that
will not only affect CCA, but also other marine calcifying
organisms. Increased freshwater input is not unique to the
Arctic and this work highlights the importance of salinity in
CCA physiology. More exploration into the functional role of
CCA species is needed to fully understand ecological
consequences should CCA densities decrease or disappear
under future ocean conditions.
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