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Of the Prototheca genus, Prototheca wickerhamii has the highest clinical significance in
humans. However, neither nuclear nor organellar genomes of this species were
sequenced until now. The hitherto determined and analyzed mitochondrial and plastid
genomes of the alleged P. wickerhamii species belong in fact to another species, recently
named Prototheca xanthoriae. This study provides a first insight into the organellar
genomes of a true P. wickerhamii (type strain ATCC 16529). The P. wickerhamii
mitochondrion had a 53.8-kb genome, which was considerably larger than that of
Prototheca ciferrii (formerly Prototheca zopfii gen. 1) and Prototheca bovis (formerly
Prototheca zopfii gen. 2), yet similarly functional, with the differences in size attributable to
a higher number of introns and the presence of extra unique putative genes. The 48-kb
plastid genome of P. wickerhamii, compared to autotrophic Trebouxiophyceae, was
highly reduced due to the elimination of the photosynthesis-related genes. The gene
content of the plastid genome of P. wickerhamii was, however, very similar to other
colorless Prototheca species. Plastid genome-based phylogeny reinforced the polyphyly
of the genus Prototheca, with Helicosporidium and Auxenochlorella branching within
clades of Prototheca species. Phylogenetic reconstruction also confirmed the close
relationship of P. wickerhamii and P. xanthoriae, which is reflected in the synteny of
their organellar genomes. Interestingly, the entire set of atp genes was lost in P.
wickerhamii plastid genome while being preserved in P. xanthoriae.

Keywords: Prototheca wickerhamii, protothecosis, colorless algae, mitochondrial genome, plastid genome
INTRODUCTION

The genus Prototheca comprises unicellular, nonphotosynthetic, saprophytic microalgae, usually
associated with humid and organic-rich environments. These organisms are unique in the Plantae
kingdom in that they have consistently been implicated in human and animal infections, collectively
referred to as protothecosis (Jagielski and Lagneau, 2007). The taxonomy of the Prototheca genus
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has recently been revised based on phylogenetic analysis of
partial cytb gene sequences. In the light of this new
classification, 14 Prototheca species are proposed, split into two
major lineages, comprising either human- or cattle-associated
species (Jagielski et al., 2019).

The genus Prototheca along with another nonphotosynthetic
genus Helicosporidium belongs to the predominantly
photosynthetic clade of Trebouxiophyceae green algae. All
Prototheca species evolved from photosynthetic algae that had
lost their ability to photosynthesize yet retained vestigial
plastids with substantially reduced genome (Suzuki et al.,
2018). It has been suggested that the loss of photosynthesis
happened independently three times in this lineage (Suzuki
et al., 2018), and that might be reflected in the gene order and
gene complement of the vestigial plastid genomes.

Prototheca wickerhamii represents the predominant etiological
agent of human protothecosis, affecting both immunocompetent
and immunocompromised patients (Todd et al., 2018). Clinically,
the disease most frequently involves the skin and subcutaneous
tissue followed by articular and disseminated manifestations.
Treatment of protothecal infections is often difficult due to
resistance of the algae to multiple antimicrobial agents (Lass-
Flörl and Mayr, 2007; Todd et al., 2018).

Despite the pathogenic potential of Prototheca spp., the
scientific knowledge on this genus remains very limited. Even
more scarce are the genetic-level data so far accumulated for
the Prototheca algae. Genome-wide sequencing has been
attempted only thrice for four Prototheca species, namely
Prototheca ciferrii (formerly P. zopfii gen. 1; strains: SAG
2063; 18125; N71), Prototheca bovis (formerly P. zopfii gen. 2;
strains: SAG 2021; 50779), Prototheca cutis (JCM 15793), and
Prototheca stagnora (JCM 9641) (Severgnini et al., 2018; Suzuki
et al., 2018; Zeng et al., 2019). Furthermore, the previously
reported mitochondrial (Wolff et al., 1994; Wolff and Kück,
1996) and plastid (Yan et al., 2015) genomes of P. wickerhamii
were from the alleged P. wickerhamii strain SAG 263-11,
which, according to the current taxonomy, represents a
different species—Prototheca xanthoriae (Jagielski et al., 2019).
Overall, studies at the genetic level may disclose the acquisition
and evolution of the pathogenicity in Prototheca spp. as well as
species-specific differences in the infectivity, pathogenicity, and
clinical course (severity) of Prototheca infections.

In this work, we report, for the first time, the complete
organellar genomes of the true P. wickerhamii species.
MATERIALS AND METHODS

The type strain of P. wickerhamii (ATCC 16529) was used in the
study. Genomic DNA was extracted with a previously described
protocol (Jagielski et al., 2017).

Whole genome sequencing (WGS) was performed with a
combination of the Illumina MiSeq (Illumina, USA; paired-end,
2 × 300 bp) and PacBio (Pacific Biosciences, USA) platforms
using the manufacturer’s standard protocols.
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Sequencing of the organellar P. wickerhamii DNA yielded a
total of 134,966 and 9,601 reads for Illumina and PacBio
respectively. This accounted for 1.1% (Illumina, USA) and
3.3% (PacBio) of the total number of reads for the entire P.
wickerhamii genome.

Sequence reads were quality filtered and trimmed using
FASTX toolkit (Pearson et al., 1997) and Cutadapt (Martin,
2011), respectively. The PacBio read sets were assembled de novo
using wtdbg2 software (Ruan and Heng, 2019) and then
corrected using Illumina data with Pilon software (Walker
et al., 2014). All bioinformatics manipulations were done using
the SeqMan software (DNAStar, USA) and CLCBio Genomic
Workbench NGS pipeline (CLCBio, Denmark).

RNA was isolated using Total RNA kit (A&A Biotechnology,
Poland) with RNase-free DNase (A&A Biotechnology, Poland)
treatment step. Libraries were generated and sequenced according
to the producer’s protocol on a MiSeq instrument (Illumina, USA).

Gene prediction and annotation of organellar DNA were
performed using the GeSeq ver. 1.76 (Tillich et al., 2017). To
predict tRNA genes, online tools tRNAscan v2.0.3 (Chan and
Lowe, 2019), MFannot (https://megasun.bch.umontreal.ca/cgi-bin/
dev_mfa/mfannotInterface.pl) and RNAweasel (https://megasun.
bch.umontreal.ca/cgi-bin/RNAweasel/RNAweaselInterface.pl) were
used. Automatically generated gene models have been validated
manually using Artemis v.18.0.3 genome browser (Carver et al.,
2012). Additionally, localization of rRNA genes was confirmed by
manually comparing with RNAseq data. Mitochondrial and plastid
genomes of P. wickerhamii were compared with the reference
genomes listed in Table 1, which had been annotated previously
(Severgnini et al., 2018). Apart from the Prototheca spp.,
the comparative analysis included other Trebouxiophyceae
green algae, Chlorella variabilis, and the closest Prototheca
relatives, i.e. the photosynthetic, mixotrophic alga Auxenochlorella
protothecoides, and nonphotosynthetic obligate entomoparasite
Helicosporidium sp.

Plastid-based maximum likelihood phylogenomic analysis
was performed using IQ-TREE v1.6.12 (Nguyen et al., 2015;
Chernomor et al., 2016) with 1,000 bootstrap replicates on all 79
nonhypothetical, protein-coding genes present in the plastid
genomes of the 24 investigated taxa. All genes were translated
into amino acid sequences, aligned with MAFFT v7.271 (Katoh
and Standley, 2013), and concatenated in Geneious 10.2.6
(Kearse et al., 2012) to produce a single alignment with total
length of 37,109 amino acids, which was subsequently used as the
input dataset for tree reconstruction. The sequence evolution
model was selected automatically by IQ-TREE (-m TEST
parameter; Kalyaanamoorthy et al., 2017) for every partition
(gene), and the selected models are shown in Supplementary
Table 1.

Gene synteny analysis was performed with MAUVE v2.3.1
plugin (Darling et al., 2010), integrated into Geneious 10.2.6
software (Kearse et al., 2012).

The mitochondrial and plastid genomes of P. wickerhamii
were deposited in the GenBank under MN794237 andMN794236
accession numbers, respectively.
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All raw sequence data produced in this study were deposited
in the NCBI Short Reads Archive (SRA) under project numbers
PRJNA646401 (mitochondrion genome) and PRJNA646400
(plastid genome).
RESULTS AND DISCUSSION

The P. wickerhamii mitochondrial DNA (mtDNA), comprising
53,878 and 3,861 reads for Illumina and PacBio, respectively and a
475-fold coverage, was AT-rich, circular mapping molecule
(Figure 1A, Table 1). It was characterized with 42.4% of
noncoding DNA including introns (36.1% excluding introns)
and an average intergenic space of 340.6 bp. Overall, the P.
wickerhamii mtDNA architecture mirrored P. xanthoriae
mtDNA (Wolff et al., 1994; Severgnini et al., 2018; Jagielski
et al., 2019). The P. wickerhamii mitochondrial genome was
significantly larger than that of P. ciferrii and P. bovis (Table 1).
These differences might be explained by putative rearrangements
and/or reduction events. Exemplarily, in P. wickerhamii and P.
xanthoriae, the cox1 gene contains three (4,975 bp) and four exons
(5,376 bp), respectively, whereas in P. bovis and P. ciferrii, it is a
single exon gene of 1,574 bp. Noteworthy, in the former two
species, the cox1 gene contains two additional genes (in P.
wickerhamii designated as DBVPGmt_008 and DBVPGmt_009),
which are missing in the mitochondrial genomes of P. bovis and P.
ciferrii (Figure 1A).

The mitochondrion of P. wickerhamii encoded 38 proteins, a
number that almost equaled that of A. protothecoides (39), yet
being higher than in other analyzed species, where it ranged from
32 (C. variabilis) to 37 (Helicosporidium sp.) (Table 1).

Mitochondria and plastids originated from a primary
endosymbiotic event, yet the subsequent evolution of the two
Frontiers in Plant Science | www.frontiersin.org 3
organelles differ. Whereas mitochondria have evolved in a
vertical inheritance, plastid evolution has involved both vertical
and horizontal spread (Archibald, 2015; Martin et al., 2015; de
Vries and Archibald, 2018).

A standard set of 32 mitochondrial protein-coding genes
was present in P. wickerhamii, namely ribosomal proteins,
apocytochrome b, subunits of the ATPase, cytochrome oxidase,
NADHdehydrogenase complexes, and Twin-arginine translocation
protein. Almost all of them were found among the analyzed species
(Supplementary Table 2). One exception was atp8 coding for ATP
synthase F0 subunit 8, which was demonstrated in all algal species
but P. xanthoriae (Supplementary Table 2). Furthermore, the rpl10
gene coding for a ribosomal protein was found only in P. ciferrii and
P. bovis. Transfer of the atp8 gene from the mitochondrial genome
to the nuclear genome had already been reported in various
eukaryotic lineages, including ciliates (Burger et al., 2000),
apicomplexans, dinoflagellates (Slamovits et al., 2007),
and Chlorophyceae (Martıńez-Alberola et al., 2019). The rpl10
gene was lost several times in Chlorophytes, including
Chlorophyceae, Ulvophyceae, perhaps Prasinophyceae, and some
Trebouxiophyceae (Martıńez-Alberola et al., 2019). Whether the
atp8 and rpl10 were lost entirely or transferred to the protothecal
nuclear genomes remains to be answered. Overall, the
mitochondrial gene content appears to be highly conserved
among the analyzed species.

A total of five introns in two genes (2/67; 3%) were
characterized in P. wickerhamii mtDNA, with a total length of
7,016 bp (Table 1). Those introns split the cox1 and rrn23, into
three and four exons, respectively. A more complex intron
structure, with up to seven introns and the total length
reaching 8,200 bp was observed in P. xanthoriae, C. variabilis,
A. protothecoides, and Helicosporidium sp. Interestingly, P. bovis
showed only a single intron in the rrn23 gene (Table 1). In P.
A B

FIGURE 1 | P. wickerhamii mitochondrion (A) and plastid (B) circular plot. Genes (filled boxes) located outside/inside the map are transcribed clockwise/
counterclockwise. tRNA genes are indicated by the “trn” followed by one-letter amino acid code and anticodon given behind the dash. Innermost circle represents
GC content.
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wickerhamii, four introns were annotated either as LAGLIDADG
endonuclease (DBVPGmt_004) or had LAGLIDADG motifs
(DBVPGmt_001, DBVPGmt_002, DBVPGmt_009), which
indicates a putative endonuclease function for the protein
(Pombert and Keeling, 2010). LAGLIDADG motifs, commonly
found in group I introns (Haugen and Bhattacharya, 2004), had
previously been described in P. bovis and P. xanthoriae, but not
in P. ciferrii (Supplementary Table 2).

The P. wickerhamii plastid DNA (ptDNA), comprised 81,088
and 5,740 reads for Illumina and PacBio, respectively, had 730-fold
coverage (Figure 1B, Table 1). It was similar in size to the plastid
of P. stagnora and almost double in size compared to plastids of
P. ciferrii and P. bovis. Structurally, the P. wickerhamii plastid was
compact, with about 25% of noncoding DNA including introns
(23.9% excluding introns) and an average intergenic space of
171.2 bp.

The P. wickerhamii ptDNA was predicted to contain 35
protein-coding genes, which was somewhat lower compared
with P. xanthoriae and P. cutis (40), yet clearly higher as
compared with P. ciferrii and P. bovis (19). More than twice as
much proteins as in P. wickerhamii were encoded by the plastid
genomes of the two photosynthetic species (Table 1).

The so far sequenced plastid genomes of colorless Prototheca
spp. were shown to be highly reduced due to the elimination of
photosynthesis-related genes. Moreover, comparative analyses of
the ptDNAs revealed that the gene content for plastid functions
was highly conserved among these nonphotosynthetic lineages
(Severgnini et al., 2018; Suzuki et al., 2018; Maciszewski and
Karnkowska, 2019; Zeng et al., 2019;). The plastid genomes of
Prototheca spp. lacked cytochrome complex, photosystem I and II
proteins, and genes involved in chlorophyll biosynthesis when
compared with their photosynthetic relatives, i.e. A. protothecoides
and C. variabilis. The gene content differed also between the
Frontiers in Plant Science | www.frontiersin.org 4
Prototheca species (Supplementary Table 3). Only P. wickerhamii
and P. xanthoriae retained all large ribosomal subunits. Only P.
wickerhamii, P. xanthoriae, and P. cutis preserved all small
ribosomal subunits, two protein quality control genes—ftsH and
clpP, two translation mediating genes—tufA and infA, and cell
division gene—minD. Algae that contain minD in their plastid
genome are exclusively monoplastidic (de Vries and Gould, 2018).
However, the number of plastids in P. wickerhamii remains
unknown (Nadakavukaren and McCracken, 1977; Kiyohara
et al., 2006). P. wickerhamii, P. xanthoriae, P. cutis, and
P. stagnora retained also all rpo subunits, which are absent from
the plastid genomes of P. ciferrii and P. bovis (Supplementary
Table 3).

As it was previously hypothesized, changes in ycf1 occur
concomitantly with changes in FtsH (de Vries et al., 2017).
Unexpectedly, P. wickerhamii did encode FtsH but not ycf1
(Supplementary Table 3). Although FtsH is a plastid-encoded
component of the photosystem II maintenance machinery, ycf1
function is still debatable.

Interestingly, P. wickerhamii, P. stagnora, P. bovis, and P. ciferrii,
in contrast to P. xanthoriae and P. cutis, lacked six genes for the
ATP synthase subunits, typically involved in the photosynthesis
(Supplementary Table 3). Genes of the ATP synthase/hydrolysis
complex were also detected in nonphotosynthetic plastids of a
diatom Nitzschia despite the lack of genes for photosynthesis,
carbon fixation, and chlorophyll production. It has been
hypothesized that ATP synthase subunits present in Nitzschia
may produce a proton gradient between the thylakoids and
stroma, which is involved in protein translocation (Kamikawa
et al., 2015). Moreover, reconstruction of plastid metabolism of
this diatom suggested that the ATP synthase complex might
function to regulate activities of plastid proteins involved in
amino acid biosynthesis, reductive pentose phosphate pathway,
TABLE 1 | General features of the mitochondrial and plastid genomes of Prototheca spp., and closely related species, i.e. C. variabilis, A. protothecoides, and
Helicosporidium sp.

Species Size (bp) No. of scaffolds %GC Total featuresa CDSb tRNA rRNA No. of introns (size; bp) GenBank Acc. No.

Mitochondrion P. wickerhamii 53,822 1 25.81 67 38 (5) 27(+1)e 3 5 (7,016) MN794237
P. xanthoriaec 55,328 1 25.8 65 36 (7) 26 3 5 (4,709) NC_001613.1
P. ciferrii 38,164 1 28.7 62 33 26 3 0 (0) MF197533.1
P. bovis 39,222 1 28.7 63 35 26 3 1 (776) MF197534.1
Helicosporidium sp. 49,343 1 25.6 65 37 (5) 25 3 2 (8,208) NC_017841.1
A. protothecoides 57,274 1 28.7 68 (+2)d 39 (6) 26 3 7 (6,589) NC_026009.1
C. variabilis 78,500 1 28.2 62 32 27 3 6 (5,482) NC_025413.1

Plastid P. wickerhamii 47,997 1 28.2 67 35 30(+1)e 3 4 (561) MN794236
P. xanthoriaec 55,636 1 31.1 70 40 27 3 0 (0) KJ001761.1
P. cutis 51,673 1 29.7 72 40 29 3 0 (0) AP018373.1
P. stagnora 48,188 1 25.7 28 (4) 25 3 0 (0) AP018372.1
P. ciferrii 28,698 1 27.0 47 19 25 3 0 (0) MF197535.1
P. bovis 28,638 1 26.8 47 19 25 3 0 (0) MF197536.1
Helicosporidium sp. 37,454 1 26.9 54 26 25 3 1 (486) NC_008100.1
A. protothecoides 84,576 1 30.8 109 76 30 3 0 (0) NC_023775.1
C. variabilis 124,793 1 34.0 112 79 30 3 3 (1,657) NC_015359.1
September 2020 | Volum
An updated Table 1 from Severgnini et al. (2018).
aTotal no. of features include CDS (Coding DNA Sequence), tRNA and rRNA.
bCDS. No. of ORFs not previously characterized (hypothetical proteins) is given in brackets.
cStrain SAG 263-11, initially described as P. wickerhamii.
dA. protothecoides mitochondrion includes also two pseudogenes.
eP. wickerhamii mitochondrion and plastid include two tRNA-Met genes.
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and glycolysis/gluconeogenesis by pumping protons between the
stroma and thylakoid lumen (Kamikawa et al., 2017). The function
of the ATP synthase in Prototheca spp. might be similar. However, it
appeared not indispensable in this lineage since most of the known
Prototheca ptDNAs completely lacked all genes required for the
plastid ATP synthase. In the absence of ATP synthase, some ATP
might be imported from the cytosol by plastid ATP transporters as
it was shown in diatoms (Ast et al., 2009). Still, whether or not that is
the case in Prototheca cannot be answered without plastid proteome
reconstruction. At this place, it is worth to note that P. wickerhamii
was demonstrated, upon electron microscopy studies, to contain
double-membraned plastids with starch grains and rudimentary
lamellar-like structures (Nadakavukaren and McCracken, 1977;
Kiyohara et al., 2006).

The observed differences in the gene content among Prototheca
spp. may reflect an independent loss of photosynthesis in several
protothecal lineages. Therefore, various lineages and species might
be at a different stage of the reductive evolution of plastid functions
after the loss of photosynthesis.

Plastid genome-based phylogeny resolved Prototheca as a
polyphyletic genus, composed of two major clades (Figure 2).
The first clade contains two pairs of sister species: P. cutis and P.
wickerhamii, and P. xanthoriae andAuxenochlorella protothecoides.
The second clade contains P. stagnora, P. bovis, and P. ciferrii, with
Helicosporidium sp. situated on a long branch at its base. All nodes
within the aforementioned clades have absolute bootstrap support.
Despite limited taxon sampling, our results are fully concordant
with cytb-based single-gene phylogeny of Prototheca and their
relatives by Jagielski et al., 2019. Although no plastid genome
sequence is available for the Prototheca lectotype strain, which is
P. zopfii ATCC 16533, the recent work of Jagielski et al., 2019
resolves the phylogenetic position of this species as sister to P.
ciferrii. Therefore, the lectotype would certainly be within the
second of the aforementioned clades in our phylogeny,
Frontiers in Plant Science | www.frontiersin.org 5
suggesting that only this clade should be recognized as the genus
Prototheca. Except A. protothecoides, the rest of the analyzed
species, including Prototheca spp. and Helicosporidium sp., are
secondary nonphotosynthetic Trebouxiophyceae. The tree
topology suggests that photosynthesis has been lost at least three
times in this lineage, first in P. xanthoriae, the second time in the
common ancestor of P. wickerhamii and P. cutis, and the third time
in the second clade encompassing Helicosporidium, P. stagnora, P.
bovis, and P. ciferrii. Three independent losses of photosynthesis in
this group are in agreement with earlier reconstructions (Suzuki
et al., 2018), and are an excellent example of convergent reductive
evolution, reflected in the nearly identical plastid-genome
complement in all the Prototheca species.

The mtDNA gene order analysis revealed two lineages among
the Prototheca spp. investigated: the first allocated P. wickerhamii
and P. xanthoriae, the second contained P. ciferrii and P. bovis
(Figure 3A). Not surprisingly, highly syntenic pairs of genomes
represented closely related taxa (Jagielski et al., 2019).

The ptDNA protein-coding gene order was exactly identical
in the entire clade containing A. protothecoides, P. wickerhamii,
P. cutis, and P. xanthoriae—a sole rearrangement was observed
in P. cutis, where a small block of three tRNA-coding genes
(trnG, trnH, and trnL) was inverted. An overall similar, yet
definitely separate ptDNA synteny type was observed in the
other clade of Prototheca, composed of P. stagnora, P. bovis,
and P. ciferrii (Figure 3B). In this group, four locally collinear
ptDNA blocks are translocated in comparison to the first
Prototheca clade, with a fifth (tilS-rps4) block being
additionally inverted, which is a unique case of protein-coding
gene inversion in protothecan ptDNA since their diversification
from the last common ancestor of the entire genus.

The presence of two Prototheca lineages, evidenced by pt- and
mtDNA structure raises a question, if the human- and cattle-
associated clades, represented by P. wickerhamii and P. bovis,
FIGURE 2 | Plastid genome-based phylogenetic tree of Prototheca spp. and related genera. Dots (•) represent absolute bootstrap support (100); for nodes without
absolute support, numerical bootstrap values are provided. Scale bar at the bottom indicates 0.1 substitution per 10 amino acid positions.
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respectively, have acquired pathogenic features independently
and in parallel rather than from a common ancestor. The WGS
data of Prototheca spp. will give a better understanding of the
pathobiology and evolution of this genus.
CONCLUSIONS

In conclusion, this study provides afirst, brief insight into the organellar
genomes of P. wickerhamii. The mtDNA of P. wickerhamii preserved
its functionality similar to other related organisms, with its size
extension, mostly due to a higher number of introns (five in both P.
wickerhamii and P. xanthoriae), as well as some unique putative genes
unseen in other species (P. bovis and P. ciferrii). Compact and
simplified structure was observed in the P. wickerhamii plastid
genome, driven by the lack of photosynthesis-related genes. The
architecture of the P. wickerhamii mitochondrial and plastid
Frontiers in Plant Science | www.frontiersin.org 6
genomes resembles more that of closely related saprophytic P.
xanthoriae than of pathogenic P. ciferrii and P. bovis.
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