
Frontiers in Plant Science | www.frontiersin

Edited by:
Maria Rosa Simon,

National University of La Plata,
Argentina

Reviewed by:
Flavio Capettini,

Alberta Ministry of Agriculture and
Forestry, Canada

Rudolph Fredua-Agyeman,
University of Alberta, Canada

*Correspondence:
Pawan Kumar Singh
pk.singh@cgiar.org

Specialty section:
This article was submitted to
Plant Pathogen Interactions,

a section of the journal
Frontiers in Plant Science

Received: 29 April 2020
Accepted: 11 August 2020
Published: 28 August 2020

Citation:
Phuke RM, He X, Juliana P,

Bishnoi SK, Singh GP, Kabir MR,
Roy KK, Joshi AK, Singh RP and

Singh PK (2020) Association Mapping
of Seedling Resistance to Tan Spot
(Pyrenophora tritici-repentis Race 1)

in CIMMYT and South
Asian Wheat Germplasm.
Front. Plant Sci. 11:1309.

doi: 10.3389/fpls.2020.01309

ORIGINAL RESEARCH
published: 28 August 2020

doi: 10.3389/fpls.2020.01309
Association Mapping of Seedling
Resistance to Tan Spot (Pyrenophora
tritici-repentis Race 1) in CIMMYT
and South Asian Wheat Germplasm
Rahul Madhavrao Phuke1, Xinyao He2, Philomin Juliana2, Santosh Kumar Bishnoi3,
Gyanendra Pratap Singh3, Muhammad Rezaul Kabir4, Krishna Kanta Roy4,
Arun Kumar Joshi5,6, Ravi Prakash Singh2 and Pawan Kumar Singh2*

1 ICAR-Indian Agriculture Research Institute, Regional Station, Indore, India, 2 International Maize and Wheat Improvement
Centre, Texcoco, Mexico, 3 ICAR- Indian Institute of Wheat and Barley Research, Karnal, India, 4 Bangladesh Wheat and
Maize Research Institute, Dinajpur, Bangladesh, 5 CIMMYT-India, New Delhi, India, 6 Borlaug Institute for South Asia, New
Delhi, India

Tan spot caused by Pyrenophora tritici-repentis (Ptr) is an important disease of wheat in
many wheat producing areas of the world. A genome wide association study (GWAS) was
conducted using 11,401 SNP markers of the Illumina Infinium 15K Bead Chip with whole
genome coverage to identify genomic regions associated with resistance to tan spot in a
diverse panel of 184 wheat genotypes originating from South Asia and CIMMYT. The
GWAS panel was phenotyped for seedling resistance to tan spot with Ptr race 1 in two
greenhouse experiments. Besides CIMMYT germplasm, several lines from South Asia
(India, Bangladesh and Nepal) showed good degree of resistance to tan spot. Association
mapping was conducted separately for individual experiments and for pooled data using
mixed linear model (MLM) and Fixed and random model Circulating Probability Unification
(FarmCPU) model; no significant MTAs were recorded through the MLM model, whereas
FarmCPU model reported nine significant MTAs located on chromosomes 1B, 2A, 2B,
3B, 4A, 5A, 5B, 6A, and 7D. The long arms of chromosomes 5A and 5B were consistent
across both environments, in which the Vrn-A1 locus was found in identified region of
chromosome 5A, and MTA at IACX9261 on 5BL appears to represent the resistance gene
tsn 1. MTAs observed on chromosomes 1B, 2A, 2B, 3B, 4A, 6A, and 7D have not been
reported previously and are likely novel.

Keywords: tan spot, genome wide association study, seedling resistance, Ptr race 1, greenhouse screening
INTRODUCTION

Wheat is a widely grown cereal crop around the world, and it is considered as staple source of
nutrition for nearly 40% of the world’s population and supplies 20% of dietary protein and food
calories (Giraldo et al., 2019). The forecast for global wheat utilization has been raised by 1.5 million
tonnes for year 2019/20 than in 2018/19, which is mainly due to 3.5% rise in feed use demand (FAO
et al., 2019). The present global wheat production is 766 million tonnes and is expected to rise to
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about 840 million tonnes by 2050; this demand excluded the
requirement of animal feed and the adverse impact of global
climate change on wheat production (Sharma et al., 2015).
Hence, it is necessary to increase the wheat production to meet
its increasing demand. However, changing climatic conditions
and onset of severe plant disease epidemics significantly curtail
the wheat grain yield and quality (Gurung et al., 2014). About 5–
14% of global wheat yield is lost each year due to diseases (Oerke,
2006). A major disease of wheat is tan spot (synonym yellow spot
or yellow leaf spot) which occurs in both temperate and warmer
wheat growing areas in the world (Duveiller et al., 1998). This
disease is caused by the necrotrophic fungal pathogen Pyrenophora
tritici-repentis (Died.) Dreches [anamorph Dreschslera tritici-
repentis (Died.) Shoemaker]. The tan spot fungus was first
described in 1823 (Hosford, 1982), and subsequently the
disease was reported from Europe, USA, and Japan in early
1900, being considered as a saprophyte causing minor to severe
spotting in wheat (Wegulo, 2011). Tan spot epidemics were first
reported in the 1970s from Canada, USA, Australia, and
Southern Africa (Hosford, 1971; Tekauz, 1976; Rees and Platz,
1992), and it further spread to the entire Central Asia. Tan spot
pathogen infects the whole plant but is generally most prominent
on leaves followed by stem and head tissues. This infection leads
to reduction in photosynthetic area and eventually leads to yield
reduction and quality deterioration. In severe cases, the yield
losses can be beyond 50% (Wegulo, 2011). In recent years this
necrotrophic disease is causing increased wheat yield losses
globally, which is associated with reduced tillage practices as
necrotrophic pathogens overwinters in wheat stubble (Cotuna
et al., 2015)

The fungus can produce at least three host selective toxins
(HSTs) known as PtrToxA, PtrToxB, and PtrToxC causing
chlorotic or necrotic symptoms. The toxins produced are
genetically distinct on different host genotypes, based on which
the tan spot isolates can be divided into eight races. The HSTs
produced by the pathogen interact with the corresponding host
sensitivity genes and result in compatible interaction called as
effector-triggered susceptibility (ETS) which is described as an
inverse gene-for-gene model or toxin model (Friesen et al., 2007).
However, identification of non-race-specific resistance QTL
clearly indicates that the inverse gene-for-gene model does not
fully explain all interactions that occur in the tan spot
pathosystem (Faris and Friesen, 2005; Faris et al., 2012).
Resistance to tan spot is qualitatively or quantitatively inherited
(Faris and Friesen, 2005; Chu et al., 2008; Singh et al., 2009; Chu
et al., 2010; Liu et al., 2015; Singh et al., 2019; Hu et al., 2019; Liu
et al., 2020), as single dominant gene tsn 1 on chromosome 5BL
(Faris et al., 2010) confers host sensitivity to Ptr ToxA. The host Ptr
ToxC sensitivity gene, Tsc1 was mapped to the short arm of
chromosome 1A (Effertz et al., 2002).

Although biparental mapping was used effectively for
identification of genomic regions for tan spot resistance, the
limited recombination events in biparental mapping lead to
limitation of identification of closely linked markers useful for
MAS due to long linkage block (Riedelsheimer et al., 2012). The
GWAS approach provides better resolution for identification of
Frontiers in Plant Science | www.frontiersin.org 2
closely linked markers; also, it circumvents the need to develop
specific mapping populations using contrasting parents, which
requires long time. GWAS has previously been used for the
identification of genomic regions’ resistance to tan spot in spring
wheat accessions by Gurung et al. (2014), and resistance QTLs
were mapped to chromosomes 2B, 4B, and 7A. Patel et al. (2013)
identified 11 QTLs located on chromosomes 1A, 1D, 2B, 2D, 6A,
and 7A, and Singh et al. (2016) identified QTLs on short arm of
chromosomes 1A, 1B, and 6B and long arm of chromosomes 4A,
6A, 2B, 3B, 5B, and 7B; however, all three studies used General
Linear Model (GLM) procedure for association analysis, which is
regarded as less stringent. The present GWAS study used a
diverse panel of germplasm based on collection from CIMMYT,
India, Bangladesh, and Nepal. The objective of the study was to
identify genomic regions associated with seedling resistance to
tan spot using 184 diverse spring wheat genotypes in controlled
environmental condition using mixed- linear model (MLM) and
Fixed and random model Circulating Probability Unification
(FarmCPU) model to identify common genomic regions.
MATERIAL AND METHODS

A panel of 184 spring wheat genotypes originating from
CIMMYT-Mexico (CIM-1 to CIM-97), India (IND-1 to IND-
40), Bangladesh (BGD-1 to BGD-19), and Nepal (NPL-1 to NPL-
28) was used in the present study (Supplementary Table 1).
These genotypes represent the modern elite varieties and
breeding lines in the respective organization or countries. Two
experiments were conducted in a greenhouse for disease
assessment at seedling stage. Each experiment was conducted
in completely randomized design with three replications. The
experimental unit consisted of four plants per entry and four
checks Erik (resistant), Glenlea (susceptible), 6B-365 (moderately
susceptible), and 6B-662 (moderately resistant).

Disease Screening
For tan spot disease screening, the isolate MexPtr1 (race 1) that
produces Ptr ToxA and Ptr ToxC (Singh et al., 2009) was used.
The inoculation was done as described by Singh et al. (2011), and
the inoculum concentration was adjusted to 4,000 conidia/ml.
The seedlings were grown under controlled environmental
condition in a greenhouse with the maintenance of air temperature
of 20–22/16–18°C (day/night) with 16 h photoperiod. At two leaf
stage or two weeks after sowing, the seedlings were inoculated
with conidial suspension of the MexPtr1 isolate until runoff
using a hand sprayer. After inoculation, the seedlings were
incubated for 24 h under continuous leaf wetness in a mist
chamber and were then returned to the greenhouse. Seedling
response was evaluated seven days of post inoculation by
following the 1–5 lesion rating scale developed by Lamari and
Bernier (1989).

Genotyping
The GWAS panel was genotyped with Illumina Infinium 15 K
Bead Chip by Trait Genetics GmbH, Germany. Markers with
August 2020 | Volume 11 | Article 1309
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missing data points more than 10% (222 markers), or minor
allele frequency less than 5% (2,707 markers), or unknown
position (1,695 markers) were filtered, resulting into 11,401
markers for GWAS analysis.

Linkage Disequilibrium, Kinship, Principal
Coordinate Analysis (PCA) and Population
Structure Analysis
The linkage disequilibrium parameters R2 among the SNP
markers were calculated using Tassel 5 (http://www.maizegenetics.
net), and the LD estimates as the allele frequency correlation (R2)
between SNPmarkers were plotted against the physical distances. A
kinship matrix and clusters among individual genotypes were
calculated using all 11,401 SNP markers; the heat map was
generated using classical equation from Van Randen (2008) in R
program. PCA analysis was performed using SNP markers, and
PC1 was plotted against PC2.

The numeric transformation of genotypic data was done using
XLSTAT (2010) as per required format of the Structure 2.3.4
software (Pritchard et al., 2000). The admixture model was
adjusted with burn in period length for the 100,000 followed by
500,000 markers chain Monte Carlo (MCMC) replications. The
subpopulation test range was kept from K1 to K10, each with five
interactions (runs). The D K approach was used to access the actual
subpopulations (Earl, 2012). DKwas confirmed by the Evanno et al.
(2005) method using the STRUCTUREHARVERSTER program
(Earl, 2012). Average logarithm of the probability of the observed
likelihood [LnP(D)] was calculated along with the standard
deviation from the output summary. LnP(D) for each step of the
MCMCwas calculated for each class (K= 1 to 10) by computing the
log likelihood for the data.

Statistical and GWAS Analysis
The combined analysis of variance was carried out for the two
experiments; three variance components genotypic variance s2

g ,
experimental variance s 2

e and interaction of genotype and
experiment variance s 2

g*e, were estimated for tan spot using
restricted maximum likelihood (Patterson and Thompson, 1971)
estimation procedure of GenStat software, 17th edition (VSN,
International, Hemel Hempstead, UK). Broad-sense-heritability
was estimated using the formula:
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H2 =
s 2
g

s2
g + s 2

ϵ
nrps

Where s 2
g  presents the genetic variance, s 2

ϵ represents the
error variance, and nreps represents the number of replications.

Bartlet test was used to assess the homogeneity of error
variance prior to pooling the two-experiment data for GWAS
analysis. Marker-trait association (MTA) was performed using
mixed- linear model (MLM) and fixed and random model
circulating probability unification (FarmCPU). For GWAS
analysis using MLM model, a Q + K model that considers both
Kinship (K matrix) and population structure was adopted in
Tassel (http://www.maizegenetics.net), whereas the FarmCPU
model was performed using the R software package GAPIT v. 3.5.
GWAS study was conducted for the two experiments separately as
well as for the pooled experimental data. The markers were declared
to be significant using Bonferroni correction with significant cutoff
(p-values, 4.4 E-06) calculated at the alpha level of 0.05 using 11,401
markers to reduce false discovery rate in both MLM and
FarmCPU models.
RESULTS

Evaluation of Tan Spot Resistance
The coefficient of correlation between the two experiments was
high, with r = 0.73 at p ≤ 0.001. The broad-sense-heritability
estimate based on seedling tan spot data was 85% for experiment
1, 78% for experiment 2, and 84% for across two environments.
Analysis of variance showed that variances due to genotypes s 2

g ,
experiment s 2

e and their interaction s 2
g*e were all highly

significant (Table 1). The average tan spot scores were 1.8 and
2.0 in experiments 1 and 2. The checks Erik, 6B-662, 6B-365, and
Glenlea had average tan spot scores 1.0, 2.3, 2.6, and 4.6,
respectively over experiments, which confirms disease
induction by P. tritici-repentis race 1. In pooled analysis two
genotypes, HD 2733 from India and BL 4407 from Nepal, were
found to be highly resistant and stood above the resistant check
Erik. Another 141 genotypes were found to be moderately
resistant with disease scores lower than the moderately
resistant check 3B-662. Twenty-one genotypes were found to
TABLE 1 | Analysis of variance for tan spot in the GWAS panel and distribution of tan spot score in checks and 184 wheat genotypes.

Source Df MSS F pro

Genotype 183 1.7253 <0.001
Experiment 1 10.522 <0.001
Genotype × Experiment 183 0.3287 <0.001
Error 721 0.1506 –
August 2020 | Volume 11 | Artic
Environment Checks GWAS panel

Erik (R) Glenlea (S) Min Max Mean

Experiment 1 1.0 4.9 1.0 4.3 1.8
Experiment 2 1.1 4.3 1.0 3.4 2.0
Pooled 1.0 4.6 1.0 3.6 1.9
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be moderately susceptible in relation to checks 3B-365 and
Glenlea. The top resistant lines across the two experiments
included IND-17, NPL-10, CIM-87, BGD-5, CIM-50, CIM-63,
IND-1, IND-27, CIM-38, CIM-55, IND-33, CIM-25, and
CIM-77. The Bartlett test found that the error variances were
not significantly different for the two experiments as p = 0.375 >
0.01 at Bartlett’s chi-squared (c2) value with 1 degree of
freedom; hence the data of the two experiments was pooled for
GWAS analysis.

SNP Distribution for Wheat Genome,
Population Structure, Kinship, PCA, and
Linkage Disequilibrium Analysis
In total 11,401 SNP markers were selected for GWAS, of which
58.5% were from the A genome, 33.9% from the B genome, and
only 7.5% from the D genome. Among the 21 chromosomes, a
maximum number of markers were located on chromosome 2A
(1,274 markers) followed by chromosome 1A (1,119 markers),
whereas the lowest number of markers was located on
chromosome 4D (63 markers). Population structure analysis
based on Bayesian clustering approach reveals the presence of
two subpopulation (Figures 1A–C) and the Kinship analysis
(Figure 2) and PCA analysis (Figure 1D) also divided the
population into two major groups. The two sub-populations
were designated as Subpop 1 and Subpop 2, which comprised 140
and 44 genotypes respectively. Subpop 1 was mainly composed of
genotypes originated from CIMMYT (93 accessions), Indian
breeding programs (27), with the remaining 11 lines from Nepal
and 10 genotypes from Bangladesh. Most of the Indian genotypes
in Subpop1, viz., IND-5, IND-10, IND-3, IND-12, IND-28, IND-
33, IND-9, and IND-17, were selection from the CIMMYT
breeding program. Subpop 2 was made up of genotypes from
Nepal (17 accessions), India (14), Bangladesh (10), and
CIMMYT (3).
Frontiers in Plant Science | www.frontiersin.org 4
A clear clustering of CIMMYT and non-CIMMYT lines was
also observed using Kinship analysis (Figure 2) and PCA
analysis (Figure 1D). Broadly, three different groups were
observed. A small group of non-CIMMYT lines includes
genotypes from India, while the other two large groups which
included CIMMYT and CIMMYT derived lines from India such as
IND-5, IND-10, IND-3, IND-12, IND-28, IND-33, IND-9, and
IND-17 and also a few fromBangladesh. In general, CIMMYT lines
with commonparents in pedigree cluster together, and lines that do
not have common parents grouped in other clusters. Lines
involving parents Super 152 (CIM-1, CIM-19, CIM-37, CIM-54,
CIM-55,CIM-67,CIM-68) FRANCOLIN(CIM-14,CIM-25,CIM-
41, CIM-58) and BAJ (CIM-5, CIM-9, CIM-28, CIM-37, CIM-59,
CIM-60, CIM-61, CIM-62) distinguished themselves by clustering
together. Likewise, lines with Saual (CIM-70, CIM-78, CIM-79,
CIM-80, CIM-81), Kachu (CIM-43, CIM-49, CIM-63, CIM-66,
CIM-73, CIM-74, CIM-75, CIM- 76, CIM- 77, CIM-94), Attila
(CIM-65), and PBW 65 (CIM-69, CIM-71) parents were clustered
together.Also, sib fromBORL14 (CIM-70,CIM-77,CIM-78,CIM-
79) andKFA(CIM-71,CIM-73,CIM-74,CIM-75,CIM-76) and sib
from FINSI (CIM-90, CIM-96) and METSO (CIM-84, CIM-88,
CIM-89) were clustered separately.

The LD decay plots (Figure 3) were plotted using physical
distances in mega base pairs (Mb) against marker R2 across the
chromosomes. The average extent of LD, considered as physical
distance taken for decay of R2 to a critical value of 0.10 across the
genome, was approximately 25 Mb.

Marker Trait Association (MTA) for Tan
Spot
An MLM model, a Q + K model that considers both Kinship (K
matrix) and population structure, reported no significant MTAs
at LOD 4.75, whereas MTAs reported at LOD 3 for MLM model
were depicted in Supplementary Figure 1.
FIGURE 1 | Population structure and PCA of the 184 genotypes (A) indicating plot of D k value = 2 as compared with average k =10 (B) Log likelihood LnP(D)
versus the number of K. (C) Bar plot indicating membership coefficient (Q value at Y axis). (D) PCA plot showing diversity in 184 wheat genotypes.
August 2020 | Volume 11 | Article 1309
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A FarmCPU model, having advantage over the MLM model,
has high power and less false positive through iterative usage of
fixed and random effect and was also used to identify significant
MTAs. Total nine MTAs showed significant association with tan
spot using Bonferroni correction cutoff (p-values, 4.4 E-06)
spreading over eight chromosomes viz., 2A, 2B, 3B, 4A, 5A,
5B, 6A, and 7D (Table 2). SNP (IACX9261) on chromosome 5B
Frontiers in Plant Science | www.frontiersin.org 5
was most stable and consistent in both individual experiments
and in pooled analysis, followed by SNP (TA001138-0446) on
chromosome 5A and SNP (AX- 94880001) on chromosome 2B
which are common among experiment 1 and in pooled analysis.
The remaining five MTAs are exclusive to either experiment 1 or
experiment 2. The significant markers with LOD scores in the
Manhattan plot are presented in Figure 4. The R2 explained by
FIGURE 2 | Heatmap and dendrogram of Kinship matrix estmated using Van Randen algorithum based on 11,401 SNP markers and 184 wheat genotypes.
FIGURE 3 | Scatter plot showing linkage disequilibrium (LD) decay across the chromosomes of wheat. Physical distance in Mb is plotted against the LD estimate
(R2) for pairs of markers associated with tan spot.
August 2020 | Volume 11 | Article 1309
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significant markers range from 2.0 to 11.3%. The highest R2

(11.3) was explained by SNP (IACX9261) on chromosome 5B.
Comparison of significant MTAs identified from individual
environment and pooled analysis showed that genomic regions
on the long arm of chromosome 5A and 5B are most stable. The
effects of resistant and susceptible alleles for MTAs on
chromosomes 5A and 5B were shown with box plot in Figure 5.

The presence and absence of resistant alleles for total nine
identified MTAs from both the models were examine in all 184
wheat genotypes (Supplementary Table 2). Almost all highly
resistant genotypes in this panel showed the presence of resistance
alleles for MTA on chromosome 5B (IACX9261); also lines with
susceptible alleles for this MTA showed highly susceptible reaction
as observed in genotypes IND-31, CIM-89, and CIM-16. Other
MTA on 5A chromosome (TA001138-0446) was also found to be
useful for differentiation of resistant and susceptible genotypes.
Whereas other MTAs on chromosome 2B (AX-94880001), 4A
(wsnp_Ex_c12450_19850925), 6A (RAC875_c103443_475), and
on 7D (Kukri_c15768_1383) were observed to be less prominent
in differentiation of resistant and susceptible genotypes.
Frontiers in Plant Science | www.frontiersin.org 6
DISCUSSION

In the present study, 184 diverse spring wheat genotypes were
screened for seedling tan spot resistance in a greenhouse for the
identification of significant MTAs. Field screening of large
number of genotypes for tan spot is considered challenging
due to the often-natural incidence of other foliar diseases that
mimic tan spot symptoms; in addition, limitation of required
light and humidity for inoculum growth in field condition
precludes pathogen growth (Singh et al., 2009). Moreover, high
level of positive correlation between greenhouse and field
experiments for tan spot was observed by Evans et al. (1999),
implying that MTAs from seedling experiments could be found
in field experiments as well. The present study identified broad
genetic base of resistance for tan spot, which includes genotypes
from CIMMYT-Mexico, as well as from the three South Asian
countries. The high resistance of CIMMYT germplasm was
previously reported by Singh et al. (2016) and Ali et al. (2008);
however, the present study adds more information using diverse
genotypes other than germplasm set, which include stable
TABLE 2 | Markers significantly associated with seedling resistance to tan spot through FarmCPU model.

SNP Chromosome Position P. value marker R2 Experiment

BobWhite_c28635_785 1B 465584555 6.41E-09 0.060 Exp 1
Excalibur_c34937_710 2A 4789172 7.65E-07 0.031 Exp2
AX-94880001 2B 3312733 2.94E-08 0.063 Exp 1, Pooled
wsnp_Ex_c4063_7344449 3B 64175429 1.22E-06 0.012 Exp2
wsnp_Ex_c12450_19850925 4A 446471067 1.58E-07 0.060 Exp2
TA001138-0446 5A 597291565 1.57E-06 0.074 Pooled, Exp 1
IACX9261 5B 546703936 2.33E-08 0.113 Exp 1, Exp 2, Pooled
RAC875_c103443_475 6A 596903177 2.01E-07 0.040 Exp2
Kukri_c15768_1383 7D 550216751 8.96E-08 0.020 Exp 1
August 2020 | Volu
Physical position for SNPs referred from the Chinese Spring RefSeq ver. 1.0.
FIGURE 4 | Manhattan plots based on FarmCPU model indicating associated markers and chromosome in experiment 1, experiment 2 and pooled analysis. Foot
note: X axis—chromosomes, Y axis—LOD score.
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breeding lines form CIMMYT international nurseries viz.,
40IBWSN, 28 ESWYT, and 18 HRWSN along with South
Asian wheat genotypes and observed broad genetic base for
resistance. The lines HD 2733 and BL 4407, newly found as
highly resistant genotypes, can be used in breeding to incorporate
tan spot resistance.

Prior to GWAS analysis, information about population structure
is very important because the presence of population structure in
the GWAS panel may cause spurious association results (Oraguzie
et al., 2007). The presence of a subpopulation in a large population
can be justified by selection and genetic drift (Buckler and
Thornsberry, 2002). Population structure, kinship matrix, cluster
analysis, and PCA analysis revealed there was moderate population
structure, which has resulted from lines with common parents and
two to three sibs in the pedigree.

In the present study, association analysis using MLM and
FarmCPU model was adopted; the MLM model has limitation of
false negative due to confounding between population structure,
Kinship, and quantitative trait nucleotides; however, this limitation
was overcome by using FarmCPU model as it performed marker
test using associated markers as covariates in fixed effect and
followed optimization with associated covariate markers in
random effect, which enables to remove confounding and also
control false positive (Liu et al., 2016), which is also proven from the
results of quantile-quantile (QQ) plots (Supplementary Figure 2)
which showed FarmCPU model fitted data well compared to the
MLM model. Genomic regions identified for tan spot are
categorized into two groups as stable and unstable. Unstable
genomic regions are those which are expressed only in one
experiment, whereas stable genomic regions for tan spot include
the chromosomal regions which are constantly expressed across
both individual experiments and pooled analysis or common either
in one environment or in pooled analysis. Therefore, the genomic
region on the long arm of chromosomes 5B and 5A is designated as
stable and is explained here. GWAS results showedmajor role of tsn
1 gene on chromosome 5B in resistance to Ptr race 1, as the MTA at
IACX9261 that is close to tsn 1 was stably significant across both
experiments. Previous mapping studies also identifiedmajor roles of
Frontiers in Plant Science | www.frontiersin.org 7
tsn 1 in conferring resistant to Ptr race 1, such as Chu et al. (2008) in
a doubled haploid population, Singh et al. (2008) and Faris et al.
(2012) in RIL populations, Kollers et al. (2014) in European winter
wheat varieties, and Liu et al., 2020 from three hexaploid wheat
mapping population LP573, SK, and TN. Previously, PCR based
markers Xfcp620 and Xfcp623 were extensively used to detect tsn 1
gene (Lu et al., 2006; Faris et al., 2010). But from now on, the SNP
IACX9261 found in the present study could also be used since it can
be transformed to high throughput markers like KASP.

In addition to 5BL, another genomic region on chromosome
5AL appeared to be stable for tan spot resistance. The identified 5AL
chromosome region in Chinese Spring RefSeq v. 1.0, harbors or
overlaps with QTL identified in previous studies. QTs-Fcu-5AL
flanked by markers barc1061 and cfd2185 by Chu et al. (2008),
QYls.lrc-5A closely linked by gdm132 (Zwart et al., 2010), and for
QTs.zhl-5A mapped between markers iwa7025 and iwa5173
(Kariyawasam et al., 2016) were previously identified on the same
genomic region. Interestingly, MTAs on chromosome 5AL
(TA001138-0446 and BS00022071_51) showed tight linkage with
Vrn-A1, which matches with our previous results (Hu et al., 2019).
The Vrn-A1 locus was reported to contribute to disease escape via
its effects in alteration offlowering date in Fusarium head blight (He
et al., 2016), spot blotch (Singh et al., 2018), and Septoria tritici
blotch (Dreisigacker et al., 2015) in field condition. However,
association of Vrn-A1 with seedling resistance to tan spot and its
association with spot blotch resistance even after excluding the effect
of days to flowering (Singh et al., 2018) implies its possible linkage
with an unknown disease resistance gene or its pleiotropic role in
resistance to tan spot (Hu et al., 2019). In CIMMYT spring wheat
genotypes, the vrn-A1 allele for late flowering and tan spot
resistance is almost fixed (Dreisigacker et al., 2016), which is
supportive of tan spot resistance and may have contributed to a
good level of tan spot resistance in CIMMYT germplasm.

Two resistance genes, tsn 2 controlling resistance to necrosis
caused by Ptr race 3 (Singh et al., 2006) and tsn 5 controlling
resistance to Ptr race 5 were reported previously in a marker interval
of gwm 285 and wmc 366 on chromosome 3B. In the present study,
we observed one significant MTA from experiment 2 on
FIGURE 5 | Box plots for effects of resistant and susceptible alleles on average tan spot score for stable MTAs. Foot note: X axis—resistant and susceptible allele, Y
axis—average tan spot score.
August 2020 | Volume 11 | Article 1309

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Phuke et al. GWAS for Tan Spot of Wheat
chromosome 3B, but this MTA does not match the interval between
gwm 285 and wmc 366. Hence it appears that this MTA does not
represent tsn 2 or tsn 5 genes, which is in agreement with the fact
that the Ptr isolate used in this study was for race 1 only. The
significant MTAs identified on chromosomes 1B, 2A, 2B, 3B, 4A,
6A, and 7D do notmatch with previously identifiedQTL, and hence
these might be novel genomic regions for resistance to Ptr race 1, for
which further validation is needed. The single MAT on 5B
(IACX9261) will be the first choice for the selection of resistant
genotypes for tan spot, and in novel identified genomic regions,
single MTA on chromosome 1B (BobWhite_c28635_785) will be a
priority for validation as it showed better differentiation for resistant
and susceptible genotypes. Overall, in this study, along with
CIMMYT germplasm, diverse sources of resistant genotypes
against Ptr race 1 were identified which can be used to develop
broad genetic resistance to tan spot of wheat. Association mapping
identified both known and novel QTLs for tan spot resistance along
with novel markers potentially useful for marker-assisted selection.
Together the identified novel resistant genotypes and genomic
regions could be useful for developing cultivars with durable
resistance to tan spot in wheat.
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