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Editorial on the Research Topic

Role of Endophytes in Plant Health and Defense Against Pathogens

INTRODUCTION

With the increasing social concern in avoiding, or at least reducing, the application of pesticides and
chemical fertilizers, in favor of sustainable eco-friendly alternatives, the search for beneficial
microorganisms and microbial-derived compounds has become one of the most popular
Research Topics in the field of plant-microbe interactions (Cardoso Filho, 2019; Omomowo and
Babalola, 2019).

Bacterial and fungal endophytes ubiquitously inhabit plant tissues without causing any adverse
effect. On the contrary, their presence is often of benefit for the host, as they improve tolerance to
abiotic adversities, enhance growth, and, relevantly, can modulate plant immune response and
suppress pathogen colonization (Dini-Andreote, 2020). Since endophytic microorganisms typically
cover the same ecological niches occupied by fungal and bacterial phytopathogens, they have been
widely proposed as biocontrol agents that could be used as an alternative to pesticides (Compant
et al., 2013).

Thanks to the multifaceted role they play, endophytic microbial resources are now considered
crucial in the perspective of their potential use to achieve sustainable improvements in the agro-food
system. As a consequence, there is now a scientific ferment trying to analyze every aspect of their
interaction with plants and associated pathogens.

With 16 Original Research Articles and one Review, this Research Topic provides an overview of
the current state of the art on the large research effort currently dedicated to understanding the role
of endophytes in plant health and defense against pathogens.
A CROSSTALK WITH PLANT DEFENSE PATHWAYS

Among the most challenging aspects resulting from the investigation on the application of
endophytes, and in particular of plant growth-promoting bacteria (PGPB), there is the ability of
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several strains to trigger plant defense mechanisms (Ma, 2017).
Commonly, PGPB-induced systemic resistance (ISR) is found to
be associated with the up-regulation of genes involved in the
pathways of jasmonic acid and ethylene (Pangesti et al., 2016).
Biochemical responses such as increased synthesis of reactive
oxygen species (ROS) and phenolic metabolites (Benhamou,
1996; Samain et al., 2017) are often associated with ISR, as well
as anatomical modifications like the deposition of callose and
lignin in the endophyte-colonized tissues (Benhamou, 1996;
Constantin et al., 2019).

The blurred distinction between ISR and the pathogen-
induced systemic acquired resistance (SAR) (Van Loon et al.,
1998) was manifested in the study of Samain et al., in which
certain Paenibacillus strains (i.e. PB2), when used to control
Mycosphaerella graminicola, induced up-regulation of genes,
such as pathogenesis-related proteins (PR1) and chitinases,
usually considered as markers of SAR. This peculiar induced
resistance is of interest, as it may be a more usual phenomenon,
previously observed in other PGPB genera, like Bacillus and
Pseudomonas (Park and Kloepper, 2000; Trotel-Aziz et al., 2008;
Samain et al., 2017) and confers wheat a durable resistance. Its
mode of action, which appears to be significantly influenced by
the pathogen strain, the plant growth phase, and its genotype,
needs to be addressed in further detail.

The duration of the resistance effect to pathogen-induced
biotic stresses that endophytes may activate is, indeed, a key
point in management strategies. In highlighting the ability of
Rhizobium etli, a common bean symbiont to activate robust
defense responses against the pathogen Pseudomonas syringae
pv. phaseolicola, Diaz-Valle et al. noted that R. etli-primed plants
seem to develop a transgenerational defense memory. The
persistence of this capability in F1 generation appears to be
related to transcription factors, independent from ethylene
signaling pathway, and again, involved in the activation of PR
gene expression, as already proposed by (Huang et al., 2016).

Although in recent years associative symbioses have been
widely studied in several beneficial bacteria (Ahemad and Kibret,
2014; Coutinho et al., 2015), relatively few studies analyzed their
effects on the transcriptional response of plants. Relying on an
established model of symbiosis, that constituted by rice and
Burkholderia sensu lato (s.l.) (Cottyn et al., 2001; Mannaa et al.,
2019), King et al. have described the differences in transcriptional
regulations induced by two closely related PGPB with different
phylogenetic and ecological backgrounds. Each strain induced a
unique expression pattern in the jasmonic acid signaling
pathway, and, interestingly, differences have been related to
distinct colonization strategies.

Biochemical changes triggered in plants challenged with PGPB
are often combined with anatomical alterations. Rodriguez et al.
have shown that Gluconacetobacter diazotrophicus is capable of
inducing a series of structural changes in inoculated Arabidopsis
thaliana seedlings through the deposition of callose. As a result of
this sclerosis in root, stem, and leaf tissues, the plant reinforces cell
wall and withstands colonization by Ralstonia solanacearum
responsible for wilt disease.
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COOPERATIVE ENDOPHYTE-MEDIATED
RESISTANCE

The study by de Lamo and Takken focuses on an interesting
example of endophyte-mediated resistance (EMR), a mechanism
that seems distinct from ISR and SAR, as jasmonate, ethylene, and
salicylic acid are not involved (Pieterse et al., 2014; Constantin et al.,
2019). In this case, the target plant (tomato) established a tri-partite
interaction with two different strains of the same root-invading
fungus (Fusarium oxysporum). While pathogenic strains employ
host-specific effectors to interfere with host immune signaling (van
Dam et al., 2018), co-inoculation of pathogenic Fusarium strains
with endophytic Fusarium strains induces resistance responses and
reduces negative disease effects. This kind of tri-partite interactions
that leads to EMR was also investigated by Del Barrio-Duque et al.
In the attempt to identify bacterial strains that stimulate the growth
of the beneficial fungus Serendipita indica (Varma et al., 1999; Gill
et al., 2016), the authors found that strains belonging to
Mycolicibacterium genus might boost the beneficial effects
triggered by S. indica on tomato plants, while decreasing severity
of the symptoms caused by F. oxysporum and Rhizoctonia solani.
This example of cooperation in triggering the host response is
intriguing, as it could be explained by the presence in the helper’s
genome of several genes involved in vitamin and secondary
metabolite production that might supplement S. indica
bioenergetic capacity. Thus, cooperation among cross-talking
microbial players may be needed to restrain pathogen
colonization (Zuccaro et al., 2011; Salvioli et al., 2016).
ENDOPHYTES PRODUCE A VARIETY OF
EXPLOITABLE BIOACTIVE METABOLITES

An interesting facet of the interaction between endophytes and
their hosts is the capacity of many microorganisms to improve
the plant’s resistance by providing several bioactive metabolites
(Gunatilaka, 2006). In some cases, the release of volatile
compounds emitted by plant-associated bacteria has risen to
the fore as a promising sustainable strategy to prevent the
proliferation of above-ground fungal pathogens (Köberl
et al., 2013; Bailly and Weisskopf, 2017; Garbeva and
Weisskopf, 2020). Bruisson et al. have identified in grapevine
leaf microbiome two Bacillus subtilis and B. cereus strains able to
inhibit the growth of Phytophthora infestans, putatively through
the emission of volatile compounds identified among pyrazines,
chalconoids and tryptophan-derivatives.

The study by Teimoori-Boghsani et al. sheds light on another
aspect of great interest, such as the potential of endophytes
isolated from Salvia abrotanoides (Kar.) to induce synthesis of
the bioactive diterpenoid cryptotanshinone by the plant and
while doing that to produce the same molecule independent of
the host. Their findings confirm the ability of endophytes to
hijack the host’s metabolic setups while providing an interesting
basis for agricultural and pharmaceutical exploitation of
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medicinal plants for the production of higher amounts of
bioactive constituents.
COMBINING CLASSICAL AND MODERN
APPROACHES TO STUDY THE PLANT-
ASSOCIATED MICROBIOTA

In recent years, it has become clear that the complex structure of
plant-associated microbial communities is a major driver of
plant health (Lebeis et al., 2012; Bulgarelli et al., 2013), and a
deeper understanding of the endophytic microbiome has the
potential to become a pivotal tool for reducing the incidence of
plant disease (Bloemberg and Lugtenberg, 2001).

In recent decades, plant microbial ecology has experienced a
relentless proliferation of available techniques, and this multiplicity
of approaches is also reflected in the studies gathered in our
Research Topic. In exploring a wide array of different plant
environments, the proposed studies ranged from culture-
dependent screenings, where bacterial and fungal communities
were profiled using PCR amplification of 16S ribosomal RNA
gene or Internal transcribed spacer (ITS), as in Abdelshafy
Mohamad et al., Teimoori-Boghsani et al., Bruisson et al., toward
high-throughput technologies, as in the metagenomics strategy
proposed by Liu et al., Araujo et al., Elsayed et al., and Anguita-
Maeso et al.

This recourse to NGS technologies has provided a fundamental
contribution, as they allow to reveal the presence of even rare
microbial species and the interactions between these complex
communities and their hosts, reaching a depth of resolution
previously unimaginable (Bentley et al., 2008; Lebeis et al., 2012).
Nevertheless, the importance of combining both culture-dependent
and -independent methods to characterize the plants’ microbiota
was nicely illustrated by Anguita-Maeso et al., and provided
support to the notion that no one method can capture the plant
microbiome in its entirety. This notion appears to be especially
relevant to the characterization of endophytic communities
inhabiting nutritionally poor environments, such as the xylem
vessels in perennial crops (Aranda et al., 2011; Mendes et al., 2011;
Dissanayake et al., 2018).
THE RISING ROLE OF STREPTOMYCES
AND SOIL-BORN ENDOPHYTES

As reviewed by Romano et al., the availability of the identification
methods, not merely based on morphological characteristics, is of
paramount importance to complement traditional methodologies
in screening persistence of bioinoculants in the rhizosphere and
their pattern of synergy with native microorganisms sharing
the same niche. The interactions between rhizosphere and
endosphere microbiomes and its dynamics have proved to play
a critical role in shaping the agronomic traits of crop plants
(Schlaeppi and Bulgarelli, 2015) and their study may help to
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identify effective biocontrol strains that can promote crop yield
and reduce the consequences of serious infestations.

Among rhizosphere colonizers Streptomyces spp. are building
a reputation as biocontrol agents against mycotoxigenic fungi,
including numerous Fusarium spp. threatening cereal crops
(Palazzini et al., 2007; Jung et al., 2013; Colombo et al., 2019).
Colombo et al. identified an effective Streptomyces strain that was
able to dramatically reduce Fusarium head blight symptoms in
wheat and to prevent pathogen spread. Liu et al. provided
evidence that Streptomyces strains isolated from Glycine
max rhizosphere show excellent growth-promoting activity in
soybean, in addition to delivering an important antagonistic
activity against Sclerotinia stem rot disease. This two-side
beneficial activity also resulted in the efforts of Araujo et al.
who demonstrated the successful application of Streptomyces strains
to accelerate the maturation of wheat heads and positively interfere
with root microbiome challenged with severe R. solani infestation.
CONCLUDING REMARKS AND FUTURE
CHALLENGES

Summarizing its overall heterogeneous composition, this Research
Topic well represents the variety of experimental approaches and
possible directions in studying this broad and very attractive area
of science. The collection of results, presented in the papers,
opened a unique knowledge window to the determinants and
mechanisms that regulate the dual plant-endophyte interplay, and
at the same time, to increased levels of complexity of the tri-partite
interaction with phytopathogenic agents that cause severe
diseases. The proposed approaches provide insights crucial for
the development of new agro-biotechnological strategies
for plant protection that will improve food security and
environmental sustainability.

We also see our effort as an opportunity to feed the debate on
several open questions that clearly emerged from the proposed
research. For instance, we may point out the need to complement
traditional microbiological approaches with next-generation
-omics technologies, to capture as much diversity as possible
(Singh, 2019). There is also the necessity to strengthen the newly
discovered evidence by providing bio-analytical methods that
allow tracking the persistence of bioinoculants and to understand
their relationships with the autochthonous microbial communities,
in the environments where they are released. Last but not the least,
the alert on possible biosafety issues. So far, we just gained a partial
knowledge on metabolic profiles of the majority of the components
of plant-associated above-ground communities. However, we should
be aware that the absence of phylogenetic relationships with human
pathogens does not imply that endophytes do not present any risk
for our health. Biosafety characteristics should be well addressed
before proceeding with the environmental application (Keswani
et al., 2019).

Based on these grounds, we believe that the multidisciplinary
approach, proposed in our compendium, may result in the best
strategy stimulating fast scientific progress on this challenging issue.
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https://doi.org/10.3389/fpls.2020.00047
https://doi.org/10.3389/fpls.2020.00047
https://doi.org/10.3389/fmicb.2019.03013
https://doi.org/10.3389/fmicb.2019.02726
https://doi.org/10.3389/fmicb.2019.01350
https://doi.org/10.3389/fpls.2019.01038
https://doi.org/10.3389/fmicb.2019.02835
https://www.frontiersin.org/articles/10.3389/fpls.2019.01708/full
https://www.frontiersin.org/articles/10.3389/fpls.2019.01708/full
https://doi.org/10.3389/fpls.2019.01708
https://doi.org/10.3389/fpls.2020.00006
https://doi.org/10.3389/fmicb.2019.02356
https://doi.org/10.3389/fmicb.2019.02077
https://doi.org/10.3389/fpls.2019.01038
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Morelli et al. Editorial: Role of Plant Endophytes in Plant Health and Defense
AUTHOR CONTRIBUTIONS

MMwrote the draft and submitted the final version. OB, KP, DH, and
AO edited the manuscript and provided critical review. All authors
contributed to the article and approved the submitted version.
FUNDING

The participation of KP was partially funded by the General
Secretariat for Research and Technology (GSRT) under the
PRIMA Programme (INTOMED Project). AO was supported
Frontiers in Plant Science | www.frontiersin.org 4
by the Faculty of Agriculture and Ministry of Education, Science
and Technological Development, Republic of Serbia, contract no.
451-03-68/2020-14/200116.
ACKNOWLEDGMENTS

We would like to thank all authors and reviewers who have
contributed to our Research Topic. We are sincerely grateful to
Prof. Einat Zchori Fein for her initial involvement in the launch
of this initiative. We acknowledge Prof. Brigitte Mauch-Mani for
contributing as associate editor to the peer-review process.
REFERENCES

Ahemad, M., and Kibret, M. (2014). Mechanisms and applications of plant growth
promoting rhizobacteria: current perspective. J. King Saud Univ.-Sci. 26 (1), 1–
20. doi: 10.1016/j.jksus.2013.05.001
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