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Editorial on the Research Topic

Physiological Aspects of Non-proteinogenic Amino Acids in Plants

In addition to the canonical 20 amino acids that constitute the essential building blocks of
proteins, plants produce a wide variety of non-proteinogenic amino acids (NPAAs; Fowden, 1981,
Rosenthal, 1982, Barrett, 1985, Bell, 2003). Some of these plant metabolites are components of
central metabolism, serving as intermediates in biosynthetic pathways or as signaling molecules
during plant stress responses. NPAAs such as ornithine, citrulline, arginosuccinate, homoserine,
homocysteine, and cystathionine, are well-studied metabolic intermediates and are likely to be
present in all plant species. Other commonly encountered plant NPAAs, for instance pipecolic
acid with its derivatives, can function as signaling molecules that influence plant development,
physiology, and defense responses (Huang et al., 2020).

A particularly noteworthy NPAA, γ-aminobutyric acid (GABA), is essential for many
physiological and developmental processes in plants, including energy dissipation, maintenance
of carbon/nitrogen balance, pollen tube growth, and fruit development (Kinnersley and Turano,
2000, Palanivelu et al., 2003, Fait et al., 2008, Snowden et al., 2015, Amir et al., 2018). Functioning
as both signalingmolecule and a regulator of plant metabolism, GABA canmodulate plant immune
responses (Kim et al., 2013, Wang et al., 2019, Deng et al., 2020, Tarkowski et al., 2020). Numerous
studies have shown a role for GABA accumulation in protecting plants against abiotic stresses
such as drought and salinity (Bor et al., 2009, Akcay et al., 2012, Vijayakumari and Puthur, 2015,
Mekonnen, 2017, Carillo, 2018, Rezaei-Chiyaneh et al., 2018, Jin et al., 2019, Podlesakova et al.,
2019).

NPAAs that are not part of primary metabolism are often defense-related, providing protection
against pests and pathogens, and typically have a more sporadic distribution in the plant kingdom
(Bell, 1976). For instance, many legumes accumulate large amounts of canavanine or other NPAAs
that not only function as defensive metabolites but also serve for nitrogen storage in the seeds
(Huang et al., 2011). Canavanine is a structural analog of arginine and exerts its toxicity in animals
by interfering with arginine-related metabolism, including nitric oxide synthase and incorporation
of arginine into proteins (Bence and Crooks, 2003). In new research on the toxicity of canavanine
in plants, Staszek et al. show that the canavanine-mediated inhibition of nitric oxide biosynthesis
leads to formation of differentially nitrated proteins and a disruption of the antioxidant system in
tomato roots.

Another NPAA, 1-aminocyclopropane carboxylate (ACC), is the direct precursor of ethylene,
a gaseous hormone regulating a wide ranges of developmental and stress-related processes in
plants (e.g., Lee et al., 2019, Seo and Yoon, 2019). However, as discussed by Polko and Kieber,
ACC itself also functions as a plant signaling molecule. Physiological processes in plants that are
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influenced directly by ACC include stomatal development, cell
wall biosynthesis, stress responses, and pathogen interactions
(Xu et al., 2008, Tsuchisaka et al., 2009, Tsang et al., 2011,
Yin et al., 2019). The levels of ACC in plants are critical for
ethylene production and seem to be influenced by another group
of NPAAs, the D-Amino acids. D-Amino acid isomers of the
proteinogenic L-amino acids are produced by soil microbes and
are taken up by plant roots, but can also be produced by plants
themselves (Genchi, 2017). Although some D-amino acids are
toxic to Arabidopsis thaliana (Arabidopsis) at low concentrations
(Erikson et al., 2004), the metabolism of D-amino acids strongly
varies between different Arabidopsis ecotypes (Gordes et al.,
2013). Suarez et al. used natural accessions and transgenicmutant
lines to identify and investigate AtDAT1, a major D-amino
acid transaminase in Arabidopsis. Decreased activity of this
enzyme leads to enhanced susceptibility to D-methionine and
increased D-amino acid abundance stimulated accumulation of
ethylene. In this study it was demonstrated, that the regulation
of D-methionine and ACC derivatives in plants are interlinked.
However, the detailed mechanisms by which D-amino acids
induce ethylene production remain to be investigated.

β-Amino acids, which have the amino group attached to the β-
carbon rather than the adjacent α-carbon, have been reported in
many plant species (Kudo et al., 2014). Whereas, some β-amino
acids, for instance β-tyrosine, have likely defensive functions
in plants (Yan et al., 2015), others are essential components of
primary metabolism. Parthasarathy et al. review the biosynthesis
and function of β-alanine, which is not only a component of
vitamin B5 and thereby is essential for Coenzyme A function,

but also contributes to plant responses to both biotic and
abiotic stresses. Although the β-alanine biosynthetic pathways
are not yet completely elucidated in plants, spermine, spermidine,
propionate, and uracil are known metabolic precursors.

The biosynthetic pathways of proteinogenic amino acids,
and by extension the biosynthesis of NPAAs that serve as
intermediates in these pathways, have been elucidated in
Arabidopsis and other plant species (Jander and Joshi, 2010).
However, the biosynthetic pathways and/or metabolic functions
have been unraveled for only a few of the hundreds of
other plant NPAAs, including D-amino acids, β-amino acids,
other isomers, and structural mimics. Thus, there are many
opportunities for novel discoveries in this research area. In
particular, with the development of new research methods for
studying non-model plant species at the molecular level, it will be
possible to study the biosynthesis pathways, as well as structural,
defensive, and signaling functions, of NPAAs that are not present
in Arabidopsis.
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