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High throughput image-based plant phenotyping facilitates the extraction of

morphological and biophysical traits of a large number of plants non-invasively in

a relatively short time. It facilitates the computation of advanced phenotypes by

considering the plant as a single object (holistic phenotypes) or its components, i.e.,

leaves and the stem (component phenotypes). The architectural complexity of plants

increases over time due to variations in self-occlusions and phyllotaxy, i.e., arrangements

of leaves around the stem. One of the central challenges to computing phenotypes

from 2-dimensional (2D) single view images of plants, especially at the advanced

vegetative stage in presence of self-occluding leaves, is that the information captured

in 2D images is incomplete, and hence, the computed phenotypes are inaccurate.

We introduce a novel algorithm to compute 3-dimensional (3D) plant phenotypes from

multiview images using voxel-grid reconstruction of the plant (3DPhenoMV). The paper

also presents a novel method to reliably detect and separate the individual leaves and

the stem from the 3D voxel-grid of the plant using voxel overlapping consistency check

and point cloud clustering techniques. To evaluate the performance of the proposed

algorithm, we introduce the University of Nebraska-Lincoln 3D Plant Phenotyping

Dataset (UNL-3DPPD). A generic taxonomy of 3D image-based plant phenotypes

are also presented to promote 3D plant phenotyping research. A subset of these

phenotypes are computed using computer vision algorithms with discussion of their

significance in the context of plant science. The central contributions of the paper

are (a) an algorithm for 3D voxel-grid reconstruction of maize plants at the advanced

vegetative stages using images from multiple 2D views; (b) a generic taxonomy of 3D

image-based plant phenotypes and a public benchmark dataset, i.e., UNL-3DPPD, to

promote the development of 3D image-based plant phenotyping research; and (c) novel

voxel overlapping consistency check and point cloud clustering techniques to detect

and isolate individual leaves and stem of the maize plants to compute the component

phenotypes. Detailed experimental analyses demonstrate the efficacy of the proposed

method, and also show the potential of 3D phenotypes to explain the morphological

characteristics of plants regulated by genetic and environmental interactions.

Keywords: 3D plant voxel-grid reconstruction, 3D plant phenotyping taxonomy, Plant component separation,

3D phenotype computation, benchmark dataset
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1. INTRODUCTION

The complex interaction between a genotype and its environment
determines the observable phenotypic characteristics of a plant
that influence resource acquisition and yield (Das Choudhury
et al., 2019). High throughput image-based plant phenotyping
refers to the non-invasive monitoring and quantification of
plants’ morphological and biophysical traits by analyzing
their images captured at regular intervals with precision

(Das Choudhury et al., 2018, 2019). It facilitates the analysis
of a large number of plants in a relatively short time with no
or little manual intervention to compute diverse phenotypes.

The process is generally non-destructive, allowing the same
traits to be quantified repeatedly at multiple times during a
plant’s life cycle. Extracting meaningful numerical phenotypes
based on image analysis remains a critical bottleneck in
plant science. Current image-based plant phenotyping methods

have mainly focused on the computation of phenotypes, e.g.,
morphological, architectural, textural and color-based, from 2D
plant image sequences for vegetative and reproductive stages
(Dellen et al., 2015; Brichet et al., 2017; Das Choudhury
et al., 2017, 2018; Pound et al., 2017; Zhang et al., 2017;
Yin et al., 2018). However, plants, 3D in nature, exhibit
increasing architectural complexity over time due to self-
occlusions and phyllotaxy (i.e., arrangements of leaves around
the stem), which pose significant challenges in the attempt
to accurately estimating phenotypes from a 2D image and
linking these phenotypes to genetic expression. For example,
the stem angle determination method in Das Choudhury
et al. (2017) from 2D single view image sequences (at which
the line of sight of the camera is perpendicular to the
line of axis of the leaves) in the 2D space, is unable to
account for stem lodging toward and away from the camera.
Furthermore, accurate estimation of the 3D structure of a
plant to compute 3D phenotypes is important for the study
of physiological processes in plants, e.g., plant leaf area and
leaf angle significantly influence light interception, and thereby,
transpiration, photosynthesis, and plant productivity (Thapa
et al., 2018).

The method by Bosquet et al. (2016) experimentally
demonstrated the temporal variation of leaf angle and leaf area
induced by light interception based on 3D reconstruction of
maize plants from multiple 2D side view images. The method
by McCormick et al. (2016) used a depth camera for 3D
reconstruction of the sorghum plants, and identified quantitative
trait loci regulating sorghum architecture for the measurements
of shoot height, leaf angle, leaf length, and shoot compactness.
The method by Golbach et al. (2016) used the shape-from-
silhouette method for reconstructing a 3D model of a tomato
seedling based on images captured from ten calibrated cameras.
The individual components of the plants, i.e., stem and leaves,
were segmented from the 3D model to determine stem height
and area of each leaf. A low-cost multiview stereo imaging
system was described in He et al. (2017) for 3D point cloud
reconstruction of strawberry fruits. The model was used to
estimate seven agronomically important strawberry traits, i.e.,
height, length, width, volume, calyx size, color, and achene

number. The method in Srivastava et al. (2017) described an
algorithm for 3D model reconstruction of wheat plants with
occluded leaves for drought stress characterization using deep
learning techniques. A depth camera was used to acquire
images of sorghum plants, and a semi-automated software
pipeline was developed to generate 3D plant reconstructions
from the images, which were used to compute standard
measures of shoot architecture such as shoot height, leaf
angle, leaf length and shoot compactness (McCormick et al.,
2016).

Most of the existing methods (Klodt and Cremers, 2015;
Golbach et al., 2016; Scharr et al., 2017) have focused on the
3D reconstruction of seedlings or early growth stages. Note that
the smaller plants are characterized by architectural simplicity
due to the absence of self-occlusions and concavities, and
hence, their reconstructions are easier and less error prone.
Unlike the previous studies, we aim to reconstruct plants at
later vegetative stages to address the complexity that arise from
self-occlusions and leaf crossovers. McCormick et al. (2016)
performed 3D reconstruction of sorghum plants using depth
images to identify quantitative trait loci for characterizing
shoot architecture. However, the procedure required manual
transportation of the plants from the greenhouse to a turn-table
for imaging that resulted in a low throughput analysis. A fast high
resolution volume carving method using octree was presented
by Scharr et al. (2017) for shoot reconstruction of maize
and banana seedlings. The method performed reconstruction
using five maize plants from seedling to 2–8 leaves stage.
The images were captured in a semi-automated system that
required manual positioning of the plant on a turntable. The
banana seedlings were imaged in an automatic screenhouse
system, however, the plant height was limited to few centimeters.
Furthermore, the method computed only three well-known
phenotypic traits, i.e., the volume of visual hull, leaf-count
and area of each leaf. The method in Guan et al. (2018)
used a density-based spatial clustering algorithm for 3D
reconstruction of soybean canopies to compute phenotypes. A
multi-source imaging system consisting of a photonic mixer
detector and a RGB camera was used to capture images of
soybean plants placed at a distance of 80 cm to capture
multiview images in an outdoor environment. The method in
Wu et al. (2019) used Laplacian skeleton extraction to extract
the skeleton of the 3D point cloud of a maize plant. It used
color information to estimate phenotypes, e.g., leaf length,
leaf inclination angle, leaf top length, leaf azimuthal angle,
leaf growth height, and plant height. The method attempted
to analyze plants after silking stage with reported limitations
of unsatisfactory skeletonization of upper plant part where
leaves were incompletely unfolded and also the reproductive
organs, i.e., tassel and ear. The 3D point clouds were obtained
using a terrestrial laser scanner (Faro Focus3D X130) in a
low throughput indoor setting, where six plants were scanned
at a time.

In this paper, we present a novel method called 3DPhenoMV
for computing 3D plant phenotypes based on a voxel-grid
reconstruction approach using multiview visible light image
sequences captured in an automated high throughput plant
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phenotyping platform (HTP3) where the distance between the
pot and the camera is significantly larger (5.5 m) compared
to the state-of-the methods. 3DPhenoMV uses a well-known
space carving technique for voxel-grid reconstruction and aims
to achieve the fully automatic reconstruction of a large number
of plants at their late vegetative stages (with plant’s height
up to 2.5 m) without requiring any manual intervention on
an individual plant basis. This scalability and lack of human
interaction will contribute to the method’s adaptability for a
large scale phenotypic study regulated by genotypes, and also
the method can be applied in the study of quantitative genetic
engineering to identify loci controlling variation in the 3D
phenotypic traits.

We also introduce a comprehensive taxonomy of 3D
phenotypes, first of its kind, that addresses some of the pitfalls
associated with 2D single view images due to self-occlusions
and leaf crossovers. In the proposed study, either the plant
is considered as a single object or as a composite of its
components to compute holistic and component structural
phenotypes respectively, from the voxel-grid of the plant.
The study focuses on maize plants as this species along
with rice and wheat, directly or indirectly provide over
half of the total world caloric consumption each year.
3DPhenoMV introduces a voxel overlapping consistency check
followed by point cloud clustering technique to detect and
isolate individual leaves and stem of the maize plants to
compute the component phenotypes. To evaluate the proposed
method, we also provide a publicly available benchmark
dataset called the University of Nebraska-Lincoln 3D Plant
Phenotyping Dataset (UNL-3DPPD). The dataset will foster
research in 3D image-based plant phenotyping, facilitate new
algorithm development, and enable uniform comparisons among
competing methods.

2. METHOD

3DPhenoMV consists of four key modules: (a) camera
calibration; (b) 3D plant voxel-grid construction; (c) plant
component detection and separation; and (d) computation of
holistic and component phenotypes.

Figure 1 shows the block diagram of 3DPhenoMV. The
images of a plant captured from multiple side views are
used as the input to the algorithm. Before the 3D volumetric
representation of the plant is reconstructed, the camera
parameters must be computed in a calibration step. The 3D
model of the plant is reconstructed using the multiple side
view images and camera parameters. A set of 3D holistic
phenotypes are computed from the 3D model. The individual
components of the plant are detected and separated to compute
the 3D component phenotypes. These modules are discussed in
detail next.

2.1. Camera Calibration
Camera calibration is an essential prerequisite for accurate
reconstruction of 3D models based on projective geometry (Ji
and Zhang, 2001). It is also necessary to account for geometrical
lens distortion. The process involves the determination of

intrinsic (e.g., focal length, skew and optical center) and extrinsic
(e.g., location and rotation of the camera in space) camera
parameters to relate the 2D image pixel coordinates to object
points in a 3D reference coordinate system. A cube with
checkerboard patterns on side surfaces is used as the calibration
target (see Figure 2). The cube is then fitted to the metallic
and composite carrier placed on the movable conveyor belt of
the HTP3, which moves the calibration cube to the imaging
chamber for capturing images in the visible range from multiple
side views.

The calibration algorithm described in Heikkila and Silven
(1997) involves direct linear transformation based on the
collinearity principle of pinhole camera model, where each
point in the object space is projected by a straight line
through the projection center into the image plane. First, a
set of images of the calibration target is derived from multiple
viewing angles. Then, interest points from the images are
identified, aligned, and the camera parameters are obtained
by simultaneous estimation of the parameters based on the
Levenberg-Marquardt optimization method. We captured 40
images of the checkerboard cube at 9◦ intervals. The calibration
algorithm uses Harris corner detection algorithm to detect the
corners of the 2D checkerboard images. It is evident from
Figure 2 that each corner of all four checkerboard surfaces
are correctly detected. The additional steps to compensate for
radial and tangential distortions due to circular features add
robustness to the method. We used camera calibrator app
of image processing and computer vision toolbox of Matlab
based on this algorithm to compute the camera parameters.
To determine the orientation of the checkerboard pattern,
it is important that the checkerboard pattern should not
be a square, i.e., one side must contain an even number
of squares and the other side an odd number of squares.
The measurement of the square is required for calibration.
The dimension of each square of our checkerboard pattern
is 2.5× 2.5 inches.

2.2. 3D Plant Voxel-Grid Construction
A voxel is a unit of graphic information that defines
a value of a regular grid in 3D space. The first step
for 3D model reconstruction of a plant as a grid of
voxels (referred to as 3D plant voxel-grid construction) is
to segment the plant (foreground), from the background,
i.e., the part of the scene which remains static over the
period of interest, from images of the plant captured from
multiple views. Since, the imaging chambers of HTP3 have
a fixed homogeneous background, the simplest background
subtraction technique based on frame differencing is often
adequate to extract the plant from the background. However,
different segmentation techniques may be required in more
complex imaging setups. The successful execution of the
frame differencing technique requires the background and
foreground images to be aligned with respect to scale
and rotation. Hence, prior to applying frame differencing
technique of background subtraction, we used automated
image registration technique based on feature matching to
account for change in zoom levels (resulting in scale variation)
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FIGURE 1 | The block diagram of the proposed method.

during the image capturing process. Figures 3A,B show the
background image without any plant and an image of a sample
plant, respectively.

The extracted foreground obtained using the frame
differencing technique is shown in Figure 3C. This image
retains some pixels corresponding to the background due to
lighting variations, and also some undesirable parts, e.g., soil,
soil covering film, etc. In order to remove resulting noises
due to variation in lighting, the green pixels of the original
image are superimposed onto Figure 3C, which results in the
image as shown in Figure 3D. The green pixels constituting the
plant are retained, while nosy pixels of other colors are set to
zero values to make them part of the background. Thus, the
noises are removed. The resulting foreground consisting of only
green pixels characterizing the plant is shown in Figure 3E. A
color-based thresholding in HSV (Hue, Saturation and Value)
color space is applied on this image. The thresholds will depend
on the imaging environment, camera characteristics and the
reflectance properties of the plant, and can be empirically
determined. The following ranges were found to be effective
for our imaging setup: hue (range: 0.051–0.503), saturation

(range: 0.102–0.804), and value (range: 0.000–0.786). The
resulting binary image is subjected to connected-component
analysis involving morphological erosion to remove noisy
pixels and dilation to fill up any small holes inside the
plant image to derive a single connected region as shown in
Figure 3F.

After the silhouettes (binary images) of the plant from
multiple views are obtained, the 3D model is reconstructed
using a space carving approach extended by photo-consistency
theory, as explained in Kutulakos and Seitz (2000). Given an
initial volume that contains the scene, the algorithm proceeds by
iteratively removing (i.e., “carving”) portions of that volume until
it converges to the photo hull which is defined as the maximal
shape that encloses the set of all photo-consistent silhouettes
(Kutulakos and Seitz, 2000). Figure 4 shows the 3D voxel-grid
reconstruction of a plant iteratively using the space carving
approach. The images in the right cell show the reconstructed
3D plant using the side view images shown in the corresponding
left cell for each row. The figure shows that the accuracy
in the voxel-grid reconstruction increases with the number
of views.
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FIGURE 2 | Camera calibration process: checkerboard images with detected corners.

2.3. Plant Component Detection and
Separation
Here, we explain the overlapping consistency check and point

cloud clustering techniques to divide the 3D plant voxel-

grid into three components based on the structure of the

plants: stem, leaves and top leaf cluster (TLC) to compute

component phenotypes. The TLC denotes the top part of the

plant where the last few newly emerged leaves are not attached

to distinct junctions, instead, multiple incompletely unfolded
leaves surround a single junction occluding each other. In this
paper, we are interested in computing phenotypes of full-grown
leaves. The endpoint of the stem is considered as the location
from where the TLC emerges. These components, i.e., stem,

each full-grown leaf and the TLC are shown in Figure 5. The
steps to separate these components from the voxel-grid are
summarized below.

• Stem: The height of the bounding cube enclosing the
reconstructed plant voxel-grid (VG) is considered as the height
of the plant. The cross-section of VG at height = 0 denotes
the base of the stem. We then proceed along height and
consider the next adjacent cross-section at height = 1. At
this level, we count the total number of cross-sections, and
measure their areas by the number of constituent voxels. if
the number of cross-section at the next level is still one,
we conclude that the cross-section is part of the stem and
add it to the stem. if the number of cross-section is two,
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FIGURE 3 | Illustration of segmentation process: (A) background image; (B) original image; (C) foreground obtained after applying frame differencing technique; (D)

foreground obtained by green pixel superimposition; (E) foreground containing green pixels characterizing the plant; and (F) binary image.

then we conclude the presence of a junction with a leaf.
Note that this assumption holds true for maize plants, as
in maize plants leaves emerge using bottom-up approach in
alternate opposite fashion, and a single leaf is attached to each
junction. We then compute the area of overlapping regions of
each of these two cross-sections with the cross-section at the
previous level. The cross-section which shows the maximum
overlapping with the previous level based on the number
of voxels, is considered to be the most consistent cross-
section with the previous one, and is considered as the part
of the stem. This technique is called as the voxel overlapping
consistency check. At this point, we form a frustum of a
right circular cone with the two adjacent cross-sections of the
stem as the two parallel surfaces of the frustum. All voxels
not included in this frustum are discarded. This process is
called stem trimming. The iterative process continues until it
reaches the TLC, i.e., the termination condition. When TLC is
reached, there is no one or two distinct cross-sections, instead
a group of several cross-sections are formed with much higher
area. The part of the plant thus extracted, is the stem of
the plant.

• Top leaf cluster (TLC): The part of the plant enclosed between
the endpoint of the stem and the upper horizontal side
of the bounding cuboid enclosing the plant is considered
as TLC.

• Leaves: Once the stem and TLC are separated out from
the plant, the voxels that remain (denoted as leaf point
cloud), are the constituents of leaves. We use pcsegdist()
function of Matlab R2018a to segment the leaf point
cloud into different clusters based on minimum Euclidean
distance value of 0.5 between points in different clusters.
The points belonging to each cluster represent a leaf.
The function pcsegdist() assigns an integer cluster label
to each point in the point cloud, and returns the labels
of all points. The total number of clusters returned as
the output of the function represents the total number
of leaves.

2.4. Phenotype Computation
Figure 6 shows the proposed taxonomy of 3D phenotypes.
Image-based above-ground 3D plant phenotypes are broadly
classified into three categories, namely structural, physiological
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FIGURE 4 | Illustration of 3D plant voxel-grid reconstruction using iterative

space carving algorithm, where the right cell shows the reconstructed plants

using the image views in the left cell for each row.

and temporal. Structural phenotypes are based on morphological
characteristics of the plants, whereas physiological phenotypes
refer to the physiological processes in plants regulating growth
and metabolism. Structural and physiological phenotypes
are grouped into two categories: holistic and component.
Holistic phenotypes consider the whole plant as a single object
to compute basic geometric properties, e.g., the volume of
convex-hull enclosing the plant to account for the size of the
plant. The component phenotypes consider the individual parts
of a plant, e.g., leaf, stem, flower, and fruit. Examples of 3D
component phenotypes include stem volume, cross-sectional
area of the stem, total number of leaves, leaf curvature, leaf
thickness, flower and fruit volume. Temporal phenotypes
are either trajectory-based to account for variations of the
static phenotypes with respect to time, e.g., plant growth
rate, or event-based which records the important events
in a plant’s life cycle, e.g., germination and emergence of
a new leaf. If a phenotype is based on a single attribute, it
is called primary phenotype, e.g., stem height, leaf length
and flowering time. A derived phenotype combines two or
more primary phenotypes, e.g., the ratio of stem circularity
to plant height, time to flowering from germination, etc. In
this paper, we focus on holistic and component structural
phenotypes and trajectory-based temporal phenotypes of
maize plants.

2.4.1. Holistic Phenotypes
Once the 3D volumetric representation of the plant is
constructed, a number of holistic phenotypes can be computed.
We list the most significant holistic phenotypes below.

Plant volume: It is the number of voxels in the reconstructed
voxel-grid of the plant.

Volumetric occupancy ratio: It is defined as the ratio of number
of plant voxels in the reconstructed 3D plant model to the volume
of the 3D convex-hull.

Spherical volume: It is measured as the volume of the
minimum enclosing sphere of the plant.

3D aspect ratio: It is defined as the ratio of the height
(vertical axis) of the bounding cube of the plant to either
the width (longer horizontal axis) or the depth (shorter
horizontal axis) of the bounding cube. Based on these two
choices, we define two types of aspect ratios: primary and
secondary. The primary and secondary aspect ratios are
defined as

PARp =
HeightBC at side view

WidthBC at side view
, (1)

and

PARs =
HeightBC at side view

DepthBC at side view
. (2)

Where, HeightBC denotes the height of the bounding cube,
WidthBC denotes the width of the bounding cube and DepthBC
denotes the depth of the bounding cube of the plant in the
side views.
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FIGURE 5 | Illustration of plant component labeling. ‘Key’: TLC, top leaf cluster.

FIGURE 6 | A taxonomy of 3D plant phenotypes.
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2.4.2. Component Phenotypes
We define the following component phenotypes that can be
computed after the individual leaves, stem, and the TLC of
the plants have been separated. These component phenotypes
significantly contribute to the assessment of the plant’s vigor.

Leaf count: This is the total number of leaves in the plant, and
can be computed as the number of clusters in the leaf point cloud.

3D leaf length: It measures the length of each leaf. First, the
skeleton of the point cloud of each separated leaf is computed
using the Laplacian based contraction method as explained
in Cao et al. (2010). Then an n-th order polynomial, p(x),
is used to approximate the leaf skeleton using polynomial
curve fitting based on a least square error approach. It is
given by

y = p(x) = p1x
n + p2x

n−1 + p3x
n−2 + ...+ pnx+ pn+1, (3)

where, p1, p1,..., pn+1 are the coefficients of the best fit polynomial
for the leaf skeleton optimizing the least square error. The leaf
length is computed as

∫ x2

x1

√

1+ (dy/dx)2, (4)

where, x1 and x2 denote the x-co-ordinates of the two extreme
points of the skeleton.

Total leaf volume: It is measured by the number of voxels in
the leaf cluster.

TLC volume: It is measured by the number of voxels in the
TLC.

Stem height:Given stem S = {(xi, yi, zi)}, the height of the stem
(Sh) is computed by

Sh = zmax − zmin, where,

zmax = z : ∀(xi, yi, zi) ∈ S, z ≥ zi

zmin = z : ∀(xi, yi, zi) ∈ S, z ≤ zi (5)

Stem volume: It is measured by the number of voxels in the stem.
Average stem cross-section area: Stem cross-section

area is measured as the total number of voxels in the
transverse plane of the stem at any stem height. The
average cross-section area over the height of the stem is a
useful phenotype.

Stem circularity-height: The rate of change of stem
cross-section area with respect to stem height is
introduced as stem circularity-height phenotype. Stem
circularity-height is an example of a trajectory based
derived phenotype.

Let us consider a 3D voxel-grid of a plant P of size M ×

N × H be aligned with X, Y , Z axes, respectively. H is the
height of the plant, which is computed as the height of the
enclosing bounding cube of the plant. Without loss of generality,
we assume that the stem of the plant, although not perfectly
vertical, is generally aligned with the z-axis. Hence, P can be
represented by

P = {(x, y, z) :VG[x, y, z] = 1}. (6)

Algorithm 1. 3DPhenoMV: Performs voxel-grid construction of
a plant from 2D multiview images to compute 3D holistic and
component phenotypes.

Input: The 2D multiview images of a plant, i.e., MV = {v1,
v2,...,vp}, where, vi denotes the i-th view of the image of the
plant, ∀ i = 1 ≤ i ≤ p, where denotes the total number of
available image views.
Output: [H, C].H is a set of holistic phenotypes, i.e.,H = {h1,
h2,..., hn}, where n is the total number of holistic phenotypes.
C is a set of component phenotypes, i.e., C = {c1, c2,..., cm},
wherem is the total number of component phenotypes.
B= ∅; //The set of silhouettes

1: for i = 1 : p do
si = segment(vi); // Segment the image vi using frame
differencing
bi = binarize(si); // Get the binary image
B= B ∪ {bi}; // Add the image to the set of silhouettes

2: end for

VG = space-carving(B); // Construct the voxel-grid of the
plant
[P, S, T, L] = componentSeparate3D(VG); //Divide plant
into three components: stem, leaves and TLC
MBS = computeMinBoundingSph(P); // Compute
minimum bounding sphere
BC = computeBoundingCuboid(P); // Compute bounding
cuboid
CV = compute3DConvexhull(P); // Compute 3D convex-
hull
MBC = computeMinBoundingCuboid(P); //Compute
minimum bounding cuboid
H = computeHolisticPhenotypes(MBS, BC, CV, MBC);
C = C ∪ computeStemPhenotypes(S); //Compute stem
phenotypes
C = C ∪ computeTLCPhenotypes(T);// Compute TLC
phenotypes

3: for li ∈ L do

{
C = C ∪ computeLeafPhenotypes(li);//Compute

phenotypes for each leaf
}

return[H, C];
}

4: end for

A cross-section, CS of the stem of a plant P, is a slice obtained at
a given height, h, and is give by

CS(P, h) = {(x, y, z) :(x, y, z) ∈ P ∧ (z = h)}. (7)

3DPhenoMV is summarized in Algorithm 1.
The algorithm for plant component detection and separation

is summarized in Algorithm 2.
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Algorithm 2. componentSeparate3D(): The function performs
plant component detection and separation, i.e., divides a plant
into three components, i.e., stem, leaves and TLC.

Input: VG = A voxel-grid derived from a set of views of a
plant using space carving.
Output: [P,S,T,L] where

P: 3D point cloud of the whole plant.
S: 3D point cloud of the stem.
T: 3D point cloud of the TLC.
L: 3D point cloud of the leaves.

componentSeparate3D(VG)
{
P={(x,y,z):VG[x,y,z]=1}
zbase = zmin: zmin < zi ∀ (xi, yi, zi)∈ P; //z coordinate of plant’s
base
z = zbase;
done= false; // Set to true when TLC is reached
while (!done){
CSz = CS(P, z) // Cross-section at h= z
CCz = countCross-section(CSz) //Count number of cross-
sections components
if (|CCz| == 1)

{
S= S ∪ CSz ; // Add the voxels to the stem

}
else if (|CCz| > 1)

{
CSc = checkComponentConsistency(CCz);// Find

the most consistent cross-section
CSct = trim(CSc); // Trim it to match the previous

cross-section
S= S ∪ CSct;

}
else

{ // Reached TLC
zt = z; // z coordinate of the bottom of the TLC
done= true;

}
z++;
}
T = {(x, y, z): (x, y, z) ∈ P ∧ z ≥ zt};// All points above the
top of the stem

1: allLeavesCluster = P−S−T; // Leaves are what is left after
removing stem and TLC

2: L = leavesSeparate(allLeavesCluster)// Separate individual
leaves using point cloud clustering
return [P, S, T, L];

3: }

3. BENCHMARK DATASET

3.1. Imaging Setup
The Lemnatec 3D Scanalyzer of the high throughput plant
phenotyping core facilities at the University of Nebraska-Lincoln
(UNL) is used to acquire images for this research. In this
system, each plant is placed in a metallic carrier (dimension:
236 × 236 × 142 mm) on a conveyor belt that moves the plants

from the greenhouse to the four imaging chambers successively
for capturing images in different modalities. The conveyor belt
can accommodate up to 672 plants with height up to 2.5 m. It has
three watering stations with balance that can add water to target
weight or specific volume, and records the specific quantity of
water added daily.

The cameras installed in the four imaging chambers are (a)
visible light side view and top view, (b) infrared side view
and top view, (c) fluorescent side view and top view, and (d)
hyperspectral side view and near infrared top view, respectively.
Each imaging chamber has a rotating lifter for up to 360 side
view images. The specifications of the cameras and detailed
descriptions of the HTP3 can be found in Das Choudhury et al.
(2018). The average time interval between a plant entering into
and exiting from each of the first three imaging chambers for
capturing 10 side view images is approximately 1 min 50 s. Since
a hyperspectral camera typically captures a scene in hundreds of
bands at a narrow interval over a broad range of the spectrum,
its image capturing time is significantly higher than that of the
other imaging modalities. For our HTP3, the time to capture a
single side view image of a plant using a hyperspectral camera
(total number of bands: 243; spectrum range: 546–1,700 nm) is
approximately 2 min 15 s.

3.2. Dataset Description
We introduce a benchmark dataset called UNL-3DPPD to
evaluate our algorithms and extraction of holistic and component
phenotypic parameters specifically for maize. The dataset is
also made publicly available to stimulate 3D phenotyping
research, and to encourage researchers to evaluate the accuracy
of these algorithms for related crop species with similar plant
architectures.1 The dataset consists of images of the 20 maize
plants for 10 side views, i.e., 0◦, 36◦, 72◦, 108◦, 144◦, 180◦, 216◦,
252◦, 288◦, and 324◦. The images were captured daily by the
visible light camera for 4 consecutive days. The plants were in
their late vegetative stage. Figure 7 shows 10 sample images of
a maize plant of the dataset, where each image is captured at
36◦ intervals of viewing angles. The resolution of each image
is 2454 × 2056. Figure 8 shows images of a sample cotton
plant captured from five side views, i.e., 0◦, 72◦, 144◦, 216◦,
and 288◦.

4. RESULTS

We evaluated the performance of 3DPhenoMV algorithm on
UNL-3DPPD. Figure 9 (rows 1 and 2) show different views of
a 3D plant model reconstructed from 10 side view images of a
maize plant. Similarly, Figure 9 (rows 3 and 4) show different
views of a reconstructed 3D model of a cotton plant using the
five side view images as shown in Figure 8. The experimental
results for holistic and component phenotyping analysis, are
given below.

4.1. Holistic Phenotyping Analysis
Figure 10 (row-1) shows a sample 3D volxel grid plant
from UNL-3DPPD enclosed by bounding rectangular prism,

1UNL-3DPPD can be freely downloaded from http://plantvision.unl.edu/.
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FIGURE 7 | Sample images of a maize plant from UNL-3DPPD dataset for 10 side views.

FIGURE 8 | Images of a sample cotton plant captured from five side views.

minimum bounding sphere, 3D convex-hull and minimum
bounding rectangular prism. Similarly, Figure 10 (row-2) shows
the 3D volxel grid of a sample cotton plant enclosed by bounding

rectangular prism, minimum bounding sphere, 3D convex-
hull and minimum bounding rectangular prism. Figures 11A,B
graphically demonstrate two holistic phenotypes, i.e., the volume
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FIGURE 9 | Different views of reconstructed 3D models of plants: rows 1 and 2-maize; and rows 3 and 4-cotton.

of convex-hull and the total number of plant voxels, of several
representative plants from UNL-3DPPD for 4 days. The scatter
plot in Figure 12A shows the three dimensions of the bounding
cuboid enclosing a plant, i.e., height, width and depth, for five
maize plants from UNL-3DPPD for 4 consecutive days. The
same markers are used to denote the same plant for ease of
visualization. Figure 12B shows the trajectories of the bounding

volume of the same five maize plants for 4 consecutive days to
represent the plant growth rate.

4.2. Component Phenotyping Analysis
To compute the component phenotypes, it is essential to detect
and separate individual parts of a plant accurately. The result
of plant component detection and separation, i.e., separating
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FIGURE 10 | Computation of holistic phenotypes of a sample maize (row 1) and cotton (row 2) plants: bounding rectangular prism; minimum bounding sphere; 3D

convex-hull and minimum bounding rectangular prism (left to right).

FIGURE 11 | The number of plant voxels of sample maize plants (A); and the volume of convex-hull of the same plants (B) over consecutive 4 days.

full-grown leaves, stem and TLC from the reconstructed plant
voxel-grid, is shown in Figure 13. Figure 13 (left) shows
the reconstructed voxel-grid of a plant with its three main
components, i.e., stem, individual leaves and TLC, shown in
different colors. A separated view of these components is shown

in Figure 13 (right) for illustration. The figure shows that the
total number of full-grown leaves (not included in TLC) are five
in number.

Figure 14 shows the reconstructed voxel-grid of a plant (left)
and the isolated stem (middle) computed by the plant component
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FIGURE 12 | The dimensions of bounding cuboid of sample maize plants (A) and the volume of bounding cuboid of the same plants (B) over consecutive 4 days.

FIGURE 13 | Illustration of plant component segmentation: (left) the voxel-grid reconstruction of a plant; and (right) plant voxel-grid with its three disjoint components.

detection and separation algorithm. Figure 14 (right) shows the
rate of change of stem cross-section area as a function of stem
height. Figure 15 shows the isolated TLC and the individual
leaves of the plant shown in Figure 14 (left). We also show the
volumes of the stem, the TLC and the individual leaves of the
plant using a pie chart for comparative analysis. The chart shows

that the volume of the TLC is significantly larger than that of
the stem, and is comparable to the volume of all the leaves
combined. The leaves are numbered in order of emergence. Note
that the volume of the leaves are directly related to the order
of emergence, e.g., the first leaf has the highest volume, and
vice versa.
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FIGURE 14 | Illustration of stem-based component phenotypes: the 3D voxel-reconstruction of a plant (left); the isolated stem (middle); and line graph showing the

rate of change of stem cross-section area as a function of stem height (right).

5. DISCUSSION

The number of leaves that emerge in the life cycle of a
maize plant are the indicator of the plant’s growth stage. The
number of leaves present at any point in the plant’s life cycle,
the size of individual leaves, stem height, rate of growth of
stem cross-section area, are the important phenotypes that best
represent plant’s vigor. However, accurate computation of these
phenotypes from 2D projections (images) of 3D plants is not
possible in general, especially in the late vegetative growth
stages where maize plants exhibit complex architecture due
to cluttered leaves. While most state-of-the-art methods have
addressed the 3D reconstruction of plants in early growth stages
due to simplicity, we contribute in the research advancement
of 3D phenotyping analysis of plants in the late vegetative
stage by developing an algorithm, introducing a 3D plant
phenotyping taxonomy and public release of a multiview
benchmark dataset consisting of original image sequences
of maize plants and images of checkerboard patterns for
camera calibration.

We introduce a novel method, i.e., 3DPhenoMV, to compute
3D holistic and component structural phenotypes based on
voxel-grid construction of plants using images captured from
multiple viewing angles in a HTP3. Plants like maize are
characterized by thin ribbon-like architecture, where some parts
of leaves may be as wide as only a few pixels in images. In addition
to thin structures, lack of textures in the surface of the plants
pose challenges to the accurate 3D reconstruction of plants, often
resulting in the disjoint leaf parts (Furukawa and Hernandez,
2013). Unlike maize, cotton plants have a bushy architecture
with lots of cluttered leaves around the stem. To demonstrate
the efficacy of the 3DPhenoMV to reconstruct the 3D voxel-
grid of plants with different architectures, we used five side view
RGB images of a cotton plant to reconstruct its 3D model and
compute the holistic phenotypes. The creation of a new dataset
consisting of images of the different types of plants with varying
architectures, e.g., sorghum, tomato, and wheat, and additional
view angles, will be examined in the future work.

The significance of the 3D phenotypes computed by
3DPhenoMV are discussed below. Leaves are one of the primary
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FIGURE 15 | Illustration of leaf-based component phenotypes: isolated TLC (top left); isolated leaves (top right) and pie graph showing the total number of voxels

constituting stem, TLC and individual leaves (bottom).

organs of plants which transform solar energy into chemical
energy in the form of carbohydrate through photosynthesis,
releasing oxygen as a byproduct. Maize plants alter leaf
arrangement around the stem (i.e., phyllotaxy) at different stages
of the life cycle in response to light signal perceived through the
phytochrome to optitmize light interception. The total number,
orientation and size of leaves are therefore linked to plant
photosynthetic light efficiency and net primary productivity.
Thus, the total number of voxels constituting each leaf can
be used as a proxy for leaf size, and hence, is an important

phenotype. The stem height is a direct measure of a plant’s
growth. The stem cross-section area is a measurement of
toughness of a stem. Stem cross-section area appears to be an
important defense mechanism in maize across diverse groups
of germplasms. Stem cross-section area as a function of stem
height, i.e., circularity-height ratio, provides information on
plant’s strength, and hence, can be an early signal to lodging
susceptibility. Stem lodging is primarily caused due to water
logging, nutrient imbalances and deficiencies. Yield loss due to
lodging reduces the US corn harvest by 5–25% per year (2.4–12
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billion dollars at 2015 corn prices), and hence, a phenotype to
measure its susceptibility is important.

The area of convex-hull enclosing the plant computed from
2D image sequences is not an accurate estimation of plant’s
biomass, because maize plants may rotate for shade avoidance
(Das Choudhury et al., 2016). This is evident from the fact
that graph for the area of convex-hull as a function of time
oscillates randomly instead of following an increasing trend. The
volume of bounding cuboid enclosing the plant provides a more
accurate estimation of its biomass. 3D Plant aspect ratio is a
metric for distinguishing between genotypes with narrow vs.
wide leaf extent after controlling for plant height. The volume
of bounding cuboid and 3D plant aspect ratio are important
phenotypes that are influenced by the genetic environment
interaction. They also help in the study of determining plants’
response to environmental stresses. The time rate of variation
of these phenotypes (i.e., trajectory-based phenotypes) is also
demonstrated in this paper. The graph showing the variation of
volume of bounding cuboid as a function of time is a trajectory-
based temporal phenotype, and is an illustration of the plant’s
growth rate.

The 3D voxel-grid reconstruction and 3D phenotype
computation algorithms are implemented using Microsoft
Visual Studio 2017 Edition on an Intel Core i7-7700HQ
processor with 16 GB RAM and Nvidia GeForce GTX 1060
with Max-Q Design 6 GB DDR5 memory working at 2.80-
GHz. The computer runs a 64 bit Windows 10 operating
system. The original input images are re-scaled to the size
of 1200 × 1200 prior to the reconstruction. The algorithms
use NVIDIA GPU Computing Toolkit 9.0 and OpenCV 3.3,
and the implementation is parallelized on GPU cores using
Nvidia’s CUDA library. The size of the input voxel-grid is
1200 × 1200 × 1200. The time taken for reconstructing the
3D voxel-grid of a single maize plant (that requires carving
out 2402365 total number of voxels) using 10 side views
captured by the visible light camera is approximately 3.5 min on
this platform.

6. CONCLUSION

The paper introduces a novel method called 3DPhenoMV for
3D voxel-grid reconstruction of maize plants based on images
captured from multiple views to compute 3D holistic and
component phenotypes in the late vegetative stage. It also
provides a broad taxonomy of 3D phenotypes, and publicly
disseminates a benchmark 3D dataset for the development and
uniform comparisons of algorithms to compute phenotypes
for the advancement of 3D image-based high-throughput plant
phenotyping research. In addition to maize, the efficacy of
3DPhenoMV for 3D voxel-grid reconstruction is demonstrated
using a sample cotton plant which assumes more complex
architecture than a maize plant, due to the presence of
cluttered leaves around the stem. The promising reconstruction
performance of cotton using half of the number of side views

that are used for maize reconstruction, shows the potential of the
method to be extended to other plant architectures.

We use the space carving approach to construct the 3D
voxel-grid of a plant using multiple side view images. We
compute a set of holistic phenotypes by considering the plant
as a whole, e.g., volumetric occupancy ratio to estimate the
biomass yield and 3D aspect ratio which provides information
on canopy architecture. It is essential to detect and separate
the individual components of the plant to compute component
phenotypes. Thus, we use point cloud clustering and overlapping
consistency check methods to separate individual leaves, stem
and the TLC of the plant. A set of component phenotypes,
e.g., total leaf-count, length and volume of individual leaves,
stem height, stem circularity-height, stem volume and volume of
TLC are proposed in this paper. The component detection and
separation algorithm is applicable for plants with distinct stems
that are above-ground, not highly branched, and characterized
by distinct nodes and internodes. Experimental analyses on
UNL-3DPPD consisting of images of maize plants shows the
efficacy of the proposed method. Future work will consider
creation of a new dataset consisting of larger number plants
belonging to different genotypes with additional views, and
validation of the phenotypes with physical measurements from
the plant, destructively if needed, e.g., for biomass. Additional
phenotypes and computational methods to compute them will
also be explored in our future research. The method will also
be evaluated to estimate the temporal variation of phenotypes
controlled by genetic factors for heritability analysis.
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