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Short interfering RNAs (siRNAs) are processed from long double-stranded RNA
(dsRNA), and a guide strand is selected and incorporated into the RNA-induced
silencing complex (RISC). Within RISC, a member of the Argonaute protein family directly
binds the guide strand and the siRNA guides RISC to fully complementary sites on-
target RNAs, which are then sequence-specifically cleaved by the Argonaute protein—a
process commonly referred to as RNA interference (RNAi). In animals, endogenous
microRNAs (miRNAs) function similarly but do not lead to direct cleavage of the target
RNA but to translational inhibition followed by exonucleolytic decay. This is due to only
partial complementarity between the miRNA and the target RNA. SiRNAs, however,
can function as miRNAs, and partial complementarity can lead to miRNA-like off-target
effects in RNAi applications. Since siRNAs are widely used not only for screening but
also for therapeutics as well as crop protection purposes, such miRNA-like off-target
effects need to be minimized. Strategies such as RNA modifications or pooling of
siRNAs have been developed and are used to reduce off-target effects.
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INTRODUCTION

Double-stranded RNA (dsRNA) as trigger for RNA interference (RNAi) has been discovered
decades ago in plants and nematodes (Baulcombe, 1996; Fire et al., 1998). Although these organisms
are rather distant, the underlying mechanisms are remarkably conserved. dsRNA is generated by
transcription or enzymes such as RNA-dependent RNA polymerases (RdRPs), which use single-
stranded RNA as a template to generate long dsRNA (Meister and Tuschl, 2004; Mello and
Conte, 2004; Sharp and Zamore, 2000). This RNA is further processed to short interfering RNAs
(siRNAs), which serve as guides for the RNA-induced silencing complex (RISC) that binds and
sequence-specifically cleaves complementary target RNAs (Zamore and Haley, 2005). This process
is commonly referred to as RNAi. However, long dsRNA is toxic for animal organisms with
more sophisticated immune systems that are capable of sensing long dsRNA as “foreign” as such
RNAs could, for example, result from viral infections (Schlee and Hartmann, 2016). However, a
breakthrough was reached when it was found that short siRNAs bypass immune sensing and can
be used for gene knockdown also in higher organisms such as mammals (Elbashir et al., 2001).
Besides broad usage in basic research, siRNAs have now been developed to target genes for therapy
and indeed the first siRNAs reached the market (Dorsett and Tuschl, 2004; Sheridan, 2017). In
addition to the therapeutic use in mammals, RNAi is also being explored as crop protection agent
(Zhang et al., 2017). dsRNA directed against pests such as fungi, nematodes, or insects is sprayed
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onto the leaves of plants and upon uptake selectively affects
growth of distinct target species. Since dsRNA is species specific,
is a natural product, and with no genetically modified organism
needs to be generated, such strategies are considered highly
promising next-generation plant protection agents. Nevertheless,
both for human disease and for plant protection purposes, high
specificity is critical and off-target effects need to be minimized
(Seok et al., 2018). The following chapters will summarize
principles of small RNA functions and highlight strategies to
reduce off-target effects in gene knockdown experiments.

RNAi COMPONENTS IN ANIMALS AND
PLANTS

Both in animals and plants, long dsRNA is processed to double-
stranded siRNAs by Dicer-like enzymes (Bernstein et al., 2001;
Grishok et al., 2001; Ketting et al., 2001). In Arabidopsis thaliana,
four Dicer-like enzymes exist (referred to as DCL1-4), which
are specialized for the generation of different classes of small
RNAs (Bologna and Voinnet, 2014). DCL1 processes primary
microRNAs (miRNA) to 21-nt-long mature miRNAs. DCL2 is
involved in antiviral strategies and cleave viral dsRNA to 21/22-
nt-long siRNAs, which target viral RNAs. DCL3 functions in
silencing processes targeting transposable elements and produces
siRNAs of about 24 nt in length. Finally, DCL4 generates
21 nt transacting siRNAs (tasiRNAs), which silence specific
endogenous genes. Except for DCL1 that engages already-folded
and dsRNA precursors, DCL2-4 cooperate with specialized
RdRPs that generate the dsRNA substrates from single-stranded
transcripts [for more information on plant Dicer enzymes, see
Bologna and Voinnet (2014), Fukudome and Fukuhara (2017)].

In animals, Dicer enzymes are typically less diverse (Meister
and Tuschl, 2004). Dicer enzymes belong to the RNase III enzyme
family, which recognizes the ends of long dsRNAs and cleave
the RNA about 21 nt from the end (Treiber et al., 2019). Dicer-
like enzymes possess two catalytic RNase III domains, which
cleave both strands and due to their positioning on the dsRNA,
leave two nucleotides 3′ overhangs (Filipowicz, 2005; Treiber
et al., 2019). In subsequent steps, commonly referred to as RISC
loading, a member of the Argonaute protein family recognizes
particularly the 3′ overhangs and selects one strand of the duplex
to become the guide strand (also referred to as the antisense
strand). The other strand, referred to as passenger strand, is
degraded (Dueck and Meister, 2014; Ipsaro and Joshua-Tor,
2015; Sheu-Gruttadauria and MacRae, 2017). While structural
information for most Ago proteins is lacking (including all plant
Ago proteins), human Ago2 is reasonably well understood and
is presented as an example for general structural features of Ago
proteins. Argonaute proteins are structurally highly conserved
and typically contain four domains (Figures 1A,B), as follows:
the N domain, which has been implicated in siRNA duplex
unwinding (Kwak and Tomari, 2012), the PAZ domain that
anchors the 3′ end of the selected guide strand (Lingel et al., 2003;
Ma et al., 2004; Yan et al., 2003), the MID domain that binds the 5′

end of the guide strand (Ma et al., 2005; Parker et al., 2004), and
the PIWI domain. The PIWI domain has structural similarities

to RNase H, which cleaves RNA molecules in RNA-DNA hybrids
(Song et al., 2004; Wang et al., 2009; Yuan et al., 2005). Thus,
some, but not all Argonaute proteins are endonucleases that
cleave the target RNA in siRNA-target RNA hybrids using a
catalytic tetrad in their active centers (Nakanishi et al., 2012)
(Figure 1C). These proteins are referred to as Slicer enzymes (Liu
et al., 2004; Meister et al., 2004). Furthermore, structural work
revealed that MID domains of animal and plant Ago proteins
display a sequence bias regarding the 5′ terminal nucleotide,
which is important for sorting specific classes of small RNAs into
their correct silencing pathways (Frank et al., 2010; Frank et al.,
2012; Mi et al., 2008).

Plant Argonaute proteins are functionally diverse and are
involved in various different gene silencing processes (Carbonell,
2017). In A. thaliana, Ago1, Ago7, and Ago10 bind to miRNAs
and silence target genes. Ago4 has been implicated in RNA-
directed DNA methylation and chromatin is epigenetically
modified by this pathway. Generally, through their small RNA
partner, plant Ago proteins are also involved in antiviral or
bacterial defense mechanisms as well as responses to herbivore
attack (Pradhan et al., 2017; Sibisi and Venter, 2020).

In plants as well as some animal species, which tolerate long
dsRNA, the RNAi signal can be amplified by RdRPs (Maida et al.,
2011). These enzymes use a siRNA strand bound to its target
RNA as primer and synthesize the complementary strand to the
target RNA resulting in a long dsRNA, which again enters Dicer
processing and a second wave of siRNAs against a specific target
is generated. Furthermore, in plants and also in some animal
species, particularly nematodes such as Caenorhabditis elegans,
siRNAs can be actively transported between cells and tissues [see,
for example, (Das et al., 2019) for more information on this broad
topic]. Remarkably, siRNA signals can also be inherited and
target RNAs can be silenced over many generations. This process
has been studied in C. elegans and is known as transgenerational
gene silencing (TGS) [for more information on this exciting
topic, please see, for example, (Iwasaki et al., 2015; Lev et al., 2019;
Schraivogel and Meister, 2014)].

miRNA-GUIDED GENE SILENCING

MiRNAs are found in almost all plants and animals and
in contrast to siRNAs, are transcribed from distinct miRNA
genes (Bartel, 2009; Kim et al., 2009). RNA polymerase II
transcription results in capped and poly-adenylated primary
miRNA transcripts (pri-miRNAs), which are recognized and
processed by the nuclear microprocessor containing the RNase
III enzyme Drosha and its interaction partner DGCR8 (Cai
et al., 2004; Denli et al., 2004; Gregory et al., 2004; Han et al.,
2004; Landthaler et al., 2004; Lee et al., 2003; Lee et al., 2004).
Drosha/DGCR8 do not exist in plants and therefore DCL1
processes primary miRNA hairpins to mature miRNAs already
in the nucleus of plant cells (Bologna and Voinnet, 2014; Bologna
et al., 2018; Fukudome and Fukuhara, 2017).

Within pri-miRNAs, the miRNA strand itself is embedded
in the stem of a local hairpin and the microprocessor cleaves
the hairpin at the base of the stem. The resulting hairpin
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FIGURE 1 | (A) Schematic representation of human Ago2. Argonaute proteins contain four conserved domains: the N domain (red), the PAZ domain (green), the MID
domain (blue), and the PIWI domain (yellow). The PIWI domain contains the four catalytic residues D597, E637, D669, and H807 that are required for mRNA target
cleavage. (B) Crystal structure of human Ago2 loaded with a siRNA (PDB ID 5JS1) (Schirle et al., 2016). The four domains are colored as in panel (A), the catalytic
residues are highlighted in pink, and the 5′ region of the loaded siRNA is shown in orange. (C) Detailed view of catalytic center of the Ago2 structure from panel (B).

structure, referred to as miRNA precursor (pre-miRNA), is
exported to the cytoplasm by the export receptor Exportin-
5 in animals (Bohnsack et al., 2004; Lund et al., 2004; Yi
et al., 2003). In the cytoplasm, Dicer binds to the end of
the hairpin and cleaves off an approx. 21-nt-long dsmiRNA
intermediate, which is reminiscent of a siRNA duplex described
above (Zhang et al., 2002). Consistently, RISC loading processes
are similar to siRNAs and both in plants and in animals
require the action of heat shock protein 90 (HSP90) that
holds Ago proteins in a loading competent open conformation
(Dueck and Meister, 2014; Iki et al., 2012; Iwasaki et al., 2010;
Miyoshi et al., 2010). Moreover, miRNAs function like siRNAs
in case the miRNA and the target RNA are fully or almost
fully complementary (Doench et al., 2003). This mechanism
is predominant in plants (Song et al., 2019). In animals,
however, target RNA binding as well as the mechanism of gene
silencing is different. MiRNA-target sites are typically located
in the 3′ untranslated region (UTR) of mRNAs (Bartel, 2009).
Nucleotides 2–8 of the miRNA represent the seed sequence,
which is generally fully complementary to the target site while the
remaining sequence is often only partially paired (Rajewsky and
Socci, 2004). This incomplete pairing prevents Slicer-mediated
cleavage as it is observed also in siRNA-guided knockdown
studies. Instead, Argonaute proteins recruit a member of the
GW protein family, which coordinates the following steps in
miRNA-guided gene silencing (Behm-Ansmant et al., 2006;
Jakymiw et al., 2005; Liu et al., 2005; Meister et al., 2005). GW

proteins are characterized by glycine-tryptophane repeats and are
referred to as TNRC6 proteins in mammals (Pfaff and Meister,
2013; Pfaff et al., 2013). GW proteins establish interactions
with the poly(A) tail of the mRNAs as well as deadenylase
complexes including the CCR4/NOT complex or PAN2/3 leading
to translational repression, deadenylation of the mRNA, and,
finally, to the removal of the 5′ cap by decapping enzymes
(Figure 2). The unprotected mRNA is then degraded by 5′–3′

exoribonucleases [for more details, see Braun et al. (2013), Jonas
and Izaurralde (2015), Krol et al. (2010)]. Translation repression
without site-specific cleavage has also been observed in plants
of target sites that are fully complementary but located in the 3′

UTR of mRNAs (Brodersen et al., 2008). Since GW proteins are
not conserved in plants, the extent of this type of miRNA action
remains to be further investigated in plants (Song et al., 2019).

MiRNA-LIKE OFF-TARGET EFFECTS IN
RNAi STRATEGIES

Although miRNA-guided gene silencing is distinct from siRNA-
guided knockdown experiments, the pathways are intertwined
and miRNAs can function as siRNAs and vice versa. This is
particularly important for off-target effects observed in RNAi
experiments (Seok et al., 2018). SiRNAs may, in addition to their
fully complementary on-targets, bind to an undefined number
of miRNA-like target sites in 3′ UTRs of mRNAs using their
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FIGURE 2 | The guide strand of the siRNA or a miRNA is loaded into an Argonaute protein. In case of a perfect complementarity through siRNAs or miRNAs (which
is often observed in plants), a catalytically active Argonaute protein cleaves the mRNA as part of RISC (left). As miRNAs in animals are only partially complementary to
their target RNAs, Slicer-facilitated cleavage is impaired. In this case, Argonaute recruits a member of the GW protein family. These proteins mediate the interaction
with further downstream acting factors like poly-(A)-binding proteins (PABPs) or the deadenylase complexes PAN2/PAN3 and CCR4/NOT. This leads to translational
repression, deadenylation, decapping, and 5′–3′ exonucleolytic decay of the mRNA. Translational repression by miRNAs has also been observed for plant miRNAs.

seed sequence. This will lead to silencing and unwanted off-
target effects. Since such sequences are only 6–7 nt long, these
unspecific target sites are hardly predictable and are thus very
difficult to avoid. Indeed, miRNA-like off-target effects are highly
problematic in large-scale RNAi screening approaches, and many
hits are false positive and caused by off-target effects [e.g.,
(Birmingham et al., 2006; Buehler et al., 2012; Fedorov et al., 2006;
Jackson et al., 2006b)]. Thus, strategies that control for or even
reduce or eliminate such off-target effects are urgently needed.

In RNAi-mediated pest control, such off-target effects might
not be predominantly problematic for the plant system since such
a translational control system might be rather rare. However,
in strategies, in which plants express si- or shRNAs that are
taken up by animals and are toxic to defined species, off-
target effects need to be considered. For example, non-target
animals might incorporate these RNAs as well and, although
perfect complementary target RNAs are absent, the expression
of partially complementary sites could be affected through the
endogenous miRNA system.

STRATEGIES TO REDUCE miRNA-LIKE
OFF-TARGET EFFECTS

SiRNAs are typically designed to avoid complementary sequences
to other RNAs besides the on-target. However, miRNA-like seed
matches are difficult to predict because they statistically occur
very frequently on mRNAs and not all such matches are always
leading to significant knockdown effects. A conclusive strategy
to monitor such effects are whole transcriptome sequencing

in case target organisms and cells are identifiable. However,
molecules with strongly reduced off-target effects would be
the most desirable approach. To reduce miRNA-like off-target
activities, two main strategies have been developed (Jackson and
Linsley, 2010; Seok et al., 2018). First, siRNA guide strands
are chemically modified within their seed region particularly
at position 2 from the 5′ end (Jackson et al., 2006a). Such
modifications are either 2′-O-methylations or locked nucleic
acid incorporations, in which the 2′-OH is chemically linked
to the 4′ carbon of the ribose (Elmen et al., 2005). Both
modifications weaken the interaction between the guide strand
and the target. Since seed matches are short, such interactions
are much stronger affected by this mild destabilization than
siRNAs, which are typically fully complementary to their on-
target. Thus, miRNA-like off-target interactions are reduced
while on-target silencing is not compromised. In addition to
the modification at position 2, other modifications have also
been explored [for more details, please see Seok et al. (2018)].
A second approach to reduce off-target effects is pooling of
multiple siRNAs. It is important to notice that miRNA-like
off-target effects are specific to individual sequences. Thus,
reducing the concentration of the applied siRNAs will also
reduce miRNA-like off-target effects. This could be achieved
by administration of very low concentrations (Persengiev
et al., 2004). However, this would also directly affect on-
target activity. An elegant way of lowering concentrations
of siRNAs is siRNA pooling. Individual siRNAs within such
a pool are directed against the same on-target at different
positions, but each individual siRNA has a unique off-
target signature. Consequently, all siRNAs act synergistically
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on the same on-target RNA. In complex pools, concentrations of
individual siRNAs are very low and thus miRNA-like off-target
effects are diluted out and cannot be measured anymore. Based
on these ideas, three main pooling strategies are currently used.
First, in the so-called smartPools, four individual siRNAs are
combined. However, the complexity of such pools is low and
thus the desired dilution effects are often not very pronounced.
In contrast, endoribonuclease-produced siRNA pools (esiRNAs)
are generated in vitro by recombinant RNase III digestion of
long dsRNA (Kittler et al., 2005). These pools are then applied
to cell cultures and, since these highly complex pools contain
hundreds of different siRNAs, sequence-specific off-targets are
not observed (Hannus et al., 2014; Kittler et al., 2005). A third
strategy are so-called siPOOLs, which are highly complex but
in contrast to esiRNAs, well defined. Up to 30 different siRNAs
are designed and generated in vitro and such pools eliminate
off-target effects even when a single siRNA with a pronounced
off-target is included into the pool (Hannus et al., 2014).

Chemical modifications are the preferred choice when siRNAs
are used for therapeutic purposes. For drug development,
single and well-defined molecule species are preferred since
broad toxicological validations are required during clinical trials
and final approval. SiRNA pooling strategies are preferred
in individual knockdown studies for research purposes or in
genome-wide RNAi screening studies. Such pools are cost-
efficient and thus genome-scale libraries are available.

CONCLUSION FOR RNA-BASED CROP
PROTECTION AND OUTLOOK

Plants and animals with rather primitive immune systems
tolerate long dsRNA and process it to siRNAs for gene silencing.
One strategy in RNA-based crop protection is to spray dsRNA
directed against pest-specific genes onto plants (Cai et al.,
2018). Fungi or herbivores will take up these RNAs and
process them to complex siRNA mixtures similar to esiRNA
pools. This will kill or affect growth of the pathogens. Since
such complex pools are naturally generated from dsRNAs in
nematodes, insects, or fungi, miRNA-like off-target activity might

be neglectable, when dsRNA is applied. In higher organisms
such as mammals, the dsRNA will be fully degraded while
transitioning through the digestive tract and only free nucleosides
will be taken up. Thus, the administration of dsRNA to
plants is an elegant and presumably very safe way of plant
protection. SiRNAs are designed sequence specifically, and effects
on other even highly related species could be minimized.
Furthermore, since dsRNA is a natural product that is present
in human diet, it might be better accepted by local communities
than other plant protection strategies including the generation
of genetically modified organisms (GMOs) or the use of
conventional pesticides.
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