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Nitrogen oxides (NOx), mainly a mixture of nitric oxide (NO) and nitrogen dioxide (NO2), are
formed by the reaction of nitrogen and oxygen compounds in the air as a result of
combustion processes and traffic. Both deposit into leaves via stomata, which on the one
hand benefits air quality and on the other hand provides an additional source of nitrogen
for plants. In this study, we first determined the NO and NO2 specific deposition velocities
based on projected leaf area (sVd) using a branch enclosure system. We studied four tree
species that are regarded as suitable to be planted under predicted future urban climate
conditions: Carpinus betulus, Fraxinus ornus, Fraxinus pennsylvanica and Ostrya
carpinifolia. The NO and NO2 sVd were found similar in all tree species. Second, in
order to confirm NO metabolization, we fumigated plants with 15NO and quantified the
incorporation of 15N in leaf materials of these trees and four additional urban tree species
(Celtis australis, Alnus spaethii, Alnus glutinosa, and Tilia henryana) under controlled
environmental conditions. Based on these 15N-labeling experiments, A. glutinosa showed
the most effective incorporation of 15NO. Third, we tried to elucidate the mechanism of
metabolization. Therefore, we generated transgenic poplars overexpressing Arabidopsis
thaliana phytoglobin 1 or 2. Phytoglobins are known to metabolize NO to nitrate in the
presence of oxygen. The 15N uptake in phytoglobin-overexpressing poplars was
significantly increased compared to wild-type trees, demonstrating that the NO uptake
is enzymatically controlled besides stomatal dependence. In order to upscale the results
and to investigate if a trade-off exists between air pollution removal and survival probability
under future climate conditions, we have additionally carried out a modeling exercise of
NO and NO2 deposition for the area of central Berlin. If the actually dominant deciduous
tree species (Acer platanoides, Tilia cordata, Fagus sylvatica, Quercus robur) would be
replaced by the species suggested for future conditions, the total annual NO and NO2
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deposition in the modeled urban area would hardly change, indicating that the service of
air pollution removal would not be degraded. These results may help selecting urban tree
species in future greening programs.
Keywords: nitric oxide, nitrogen dioxide, 15N, phytoglobin, air pollution mitigation, urban trees
INTRODUCTION

Urban air is posing a risk to health in most parts of the world,
with emissions from industrial processes, residential heating, and
heavy traffic based on fossil fuels being the principal causes. This
results in high levels of particles, nitrogen oxides (NOx), and
other dangerous compounds.

Particularly NOx, which is formed by the reaction of nitrogen
and oxygen compounds as a result of combustion processes, is a
pollutant of great concern since it is directly related to
cardiovascular diseases and respiratory malfunctions (Mannucci
et al., 2015) as well as being a precursor for ozone formation
(Sillman, 1999). Additionally, they have also been found to
increase the allergenicity of pollen (Zhao et al., 2016). In areas
with heavy vehicle traffic, such as in large cities and conurbations,
the amount of NOx emitted as an air pollutant into the lower
troposphere is significant, and the resulting concentrations often
exceed national regulation. For instance, in 2017, around 10% of
all the air quality monitoring stations in Europe recorded average
annual concentrations above the annual limit value of 40 mg m-3

(EEA, 2019). Plants can play an important role in mitigating the
NOx related damages on health and environment because their
large surface represents efficient “sinks” for air pollutants (Hill,
1971). In cities, the air phytoremediation abilities combined with
other ecosystem services of trees (e.g., mitigate air temperature
extremes) give urban greening the potential to improve human
health while mitigating the effects of climate change (Salmond
et al., 2016; Kabisch and van den Bosch, 2017). Plants remove
gaseous air pollutants such as NOx and ozone mainly by uptake
through the stomata of leaves, although some gaseous
compounds may also be deposited on the plant surface (Elkiey
et al., 1982; Jud et al., 2016). The ability to absorb NO2 has been
reported for a variety of plant species, including many tree
species, such as loblolly pine (Pinus taeda), white oak (Quercus
alba), silver birch (Betula pendula), European beech (Fagus
sylvatica), pedunculate oak (Quercus robur), holm oak (Quercus
ilex), California oak (Quercus agrifolia), Scots pine (Pinus
sylvestris), and Norway spruce (Picea abies) (Rogers et al., 1979;
Geßler et al., 2002; Eller and Sparks, 2006; Chaparro-Suarez et al.,
2011; Breuninger et al., 2013; Delaria et al., 2018). NO2 deposition
is influenced by stomata aperture, nitrogen status, leaf
development and -age, photosynthetic rate, and the position of
leaves within the plant canopy (Morikawa et al., 1998; Sparks
et al., 2001; Takahashi et al., 2005; Hu and Sun, 2010). Thus, a
clear difference between tree species and dependence on vitality
can be expected. In contrast to NO2 deposition, studies on NO
uptake by plants are scarce in the literature. Nevertheless,
measurements of atmospheric NO levels in the presence of
horticultural crops, including lettuce, strawberry, apple, and
.org 2
banana, showed a significant decrease in atmospheric NO
concentrations, indicating the ability of these plants to absorb
NO (Hanson and Lindberg, 1991; Soegiarto et al., 2003).

If NOx is taken up through the stomata, it needs to be further
processed or deposited into the plant structure. In fact, evidence
exists that various enzymes have the ability tometabolize NOx. For
example, phytoglobins (PGBs) are proteins regarded as important
for the nitrogen metabolisms and are ubiquitously distributed in
plants (Becana et al., 2020). These proteins play a major role in
regulating many biological processes, such as normal growth and
development, hypoxic stress, symbiotic nodulation and nitrogen
fixation, and are activated in response to low mineral nutrient
status and abiotic stress (Hebelstrup et al., 2006; Mira et al., 2016;
Mira et al., 2017; Shankar et al., 2018; Becana et al., 2020; Berger
et al., 2020). Particularly, PGBs can oxidize NO to nitrate during
hypoxic stress, which is called the PGB/NO cycle (Igamberdiev
and Hill, 2004; Igamberdiev et al., 2006; Becana et al., 2020). In
previous publications on Arabidopsis and barley, we reported on
the ability of PGBs (Kuruthukulangarakoola et al., 2017; Zhang
et al., 2019) to fix atmospheric NO and incorporate N into the
nitrogen metabolism of the plants. Atmospheric nitrogen supply
has been formerly regarded as gaseous nitrogen fixation or
ammonia uptake only in connection with microbial or fungal
associations (Granhall and Lindberg, 1980; Papen et al., 2002).
This new NO fixation process seems to be a new pathway in this
cycle, which can potentially play an important role within the
whole nitrogen cycle, which is essential for building up proteins,
nucleic acids, chlorophyll and many other organic compounds.
Although the ability for NOx uptake may be ubiquitous in plants,
the actual uptake capacity of different species is likely to vary
(Takahashi et al., 2005).

In the near future, tree species composition in urban areas is
likely to change towards climate-change resilient species, which
can cope with increases in intensity, frequency, and severity of
abiotic stresses (Burley et al., 2019). In particular, drought and heat
resistance are primary selection criteria for urban greening
programs (e.g., Roloff et al., 2009). Therefore, stress-tolerant
species such as C. betulus, F. ornus, F. pennsylvanica, O.
carpinifolia, C. australis, Alnus x spaethii, A. glutinosa, and T.
henryana are currently being proposed (e.g., Böll, 2017; Dickhaut
and Eschenbach, 2019). However, it is known that different tree
species have different pollution removal capacities that are related
to various leaf traits that influence deposition velocity and to their
stomatal behavior in response to drought (Grote et al., 2016). The
ability to process NOx may thus be a further trait that influences
the uptake of gaseous nitrogen compounds. Particularly trees that
are considered suitable under future environmental conditions
and which, therefore, might have a reduced stomatal conductance
adapted to high temperatures and low water supply, could be
September 2020 | Volume 11 | Article 549913
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assumed to have less NOx removal capacity. Therefore, tree species
that are selected to withstand increasing heat and drought stress in
urban areas need to be checked for their ability to provide the same
degree of ecosystem services, i.e. air pollution removal.

To provide a quantitative estimate of pollution removal of
current and potential future tree species, we determined the
deposition rates of NO and NO2 in tree species that are regarded
as suitable candidates for urban trees under future climatic
conditions in Central Europe (Böll, 2017; Böll, 2018a; Böll,
2018b). Moreover, we used gas exchange measurements and
followed the capacity of NO uptake and metabolization in eight
different tree species fumigated with 15NO under controlled
environmental conditions. Additionally, we demonstrated that
the NO uptake could be enhanced in trees by introducing the
Arabidopsis phytoglobin 1 and 2 (AtPGB1, AtPBG2) genes into
poplars. Finally, using the newly determined deposition rates, we
compared the potential NOx removal for a scenario that assumes
a high abundance of tree species proposed for adaptation to
climate change conditions with the removal capacities of the
current urban tree distribution. This should indicate potential
changes in NOx removal due to the selection of these species in
future urban planning under “real world conditions”. For this
exercise, we use state-of-the-art calculation processes,
parameters from literature for the current tree species, and the
boundary conditions for a Metropolitan area, Central Berlin.
MATERIALS AND METHODS

Plants Material
All plant species with altered PGB expression used in this study
are listed in Table 1. Arabidopsis thaliana (Columbia-0) with
Frontiers in Plant Science | www.frontiersin.org 3
overexpressing class 1 PGB (AtPgb1+) or class 2 PGB (AtPgb2+),
as well as plants with reduced (AtPgb1-) or knocked out (AtPgb2-)
Pgb expression were obtained inAarhusUniversity as described in
Hebelstrup et al. (2006). Transgenic hybrid poplars [Populus x
canescens, syn. P. tremula x P. alba, number 7171-B4, Institute de
la Recherche Agronomique (INRA), Nancy, France] were
generated following the protocol of Bi et al. (2015). PcPgb1+
and PcPgb2+ lines are grey poplars with overexpressing
Arabidopsis class 1 PGB gene (AtPgb1) and Arabidopsis class 2
PGB gene (AtPgb2). The different tree species Carpinus betulus
‘Frans Fontaine’, Fraxinus ornus ‘Loisa Lady’, Fraxinus
pennsylvanica ‘Summit’, Ostrya carpinifolia, Celtis australis L.,
Alnus x spaethii (syn.A. japonica xA. subcordata),Alnus glutinosa
‘Imperialis’, and Tilia henryana were obtained from Wilhelm Ley
Baumschule (Meckenheim, Germany) and plants were 2–4 years
old. These climate-resilient tree species are tested for their
suitability for future urban greening in Germany (http://www.
lwg.bayern.de/landespflege/urbanes_gruen/085113/index.php;
Böll, 2018a; Böll, 2018b).

Experimental Setup and Determination of
NO/NO2 Specific Leaf Deposition
Velocities
All experiments were performed in the phytotron chambers of
Helmholtz Center in Munich, under highly controlled conditions
(for a detailed description of the chambers, see Ghirardo et al.,
2020). In brief, the phytotron is composed of unique climate
chambers for exposure experiments of reactive gasses (Kozovits
et al., 2005), and analyses of gas-exchange of CO2, H2O (Vanzo
et al., 2015) under a realistic simulation of the solar radiation
spectra of UV-Vis-NIR (Seckmeyer and Payer, 1993; Döhring
et al., 1996; Thiel et al., 1996).
TABLE 1 | Tree species and plants with altered PGB expression used for the different experiments in the study.

Abbreviation Plant species Characteristics Number of used individual/samples

At A. thaliana (Col-0) Wild-type 4 (15NO uptake)
AtPgb1+ A. thaliana (Col-0) Overexpressing Arabidopsis PGB1 4 (15NO uptake)
AtPgb2+ A. thaliana (Col-0) Overexpressing Arabidopsis PGB2 4 (15NO uptake)
AtPgb1- A. thaliana (Col-0) Knock-down of PGB1 (RNAi) 4 (15NO uptake)
AtPgb2- A. thaliana (Col-0) Knock-out of PGB2 4 (15NO uptake)
Pc Populus x canescens Wild-type 4 old, 3 young (15NO uptake)
PcPgbOx1 Populus x canescens Overexpressing Arabidopsis PGB1 4 old, 3 young (15NO uptake)
PcPgbOx2 Populus x canescens Overexpressing Arabidopsis PGB2 4 old, 3 young (15NO uptake)
T1 Carpinus betulus ´Frans Fontane´ 3 (C and N content,

15NO uptake)
4 NO and NO2 deposition)

T2 Fraxinus ornus ´Loisa Lady´ 3 (C and N content,
15NO uptake)
4 NO and NO2 deposition)

T3 Fraxinus pennsylvanica ´Summit´ 3 (C and N content,
15NO uptake)
4 NO and NO2 deposition)

T4 Ostrya carpinifolia 3 (C and N content,
15NO uptake)
4 NO and NO2 deposition)

T5 Alnus glutinosa ´Imperialis´ 4 (C and N content, 15NO uptake)
T6 Tilia henryana 4 (C and N content, 15NO uptake)
T7 Alnus x spaethii 4 (C and N content, 15NO uptake)
T8 Celtis australis L. 4 (C and N content, 15NO uptake)
Septemb
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To determinate the ability of plants to emit or remove NO/
NO2 from the atmosphere, we performed NO and NO2

fumigation experiments on four different tree species (C.
betulus, F. ornus, F. pennsylvanica, and O. carpinifolia) under
steady-state conditions by using a dynamic branch enclosure
system. Experiments were repeated using different trees to obtain
four replicates (n = 4). Plants were moved inside the climate
chambers two days before starting the fumigation experiment,
and one tree branch containing 5–8 mature leaves was enclosed
the day before the NO/NO2 experiment. The cuvette system
consisted of eight odorless polyethylene terephthalate (PET) bags
(size: 60x31cm) without plasticizer (Toppits Cofresco, Minden,
Germany). All the line tubes (1/4"), fittings, and T-pieces were
made of the inert material polytetrafluoroethylene (PTFE). The
inlet air tube was placed on the side of the stem and tightened
together. Each of the eight cuvettes was continuously flushed
with 1,000 ml min-1 of humidified (60% RH) NOx-free air
(Ghirardo et al., 2020) containing ambient CO2 concentrations
(~ 400 ppm).

The environmental conditions of the enclosed branches were:
leaf temperatures of 25/12°C and relative humidity (RH) of 60/
80% (light/dark); light intensities of maximum incident
photosynthetically active quantum flux density (PPFD) levels
of 300 mmol m-2 s-1 and a photoperiod of 14 h. Experiments
started four hours after switching on the light to ensure steady-
state photosynthetic conditions (Ghirardo et al., 2010; Ghirardo
et al., 2014). Overall, measurements followed the experimental
procedures described elsewhere (Wildt et al., 1997; Chaparro-
Suarez et al., 2011), although specific leaf deposition velocities of
NO/NO2 were determinate on tree branches. Branches of healthy
trees were exposed to six different mixing ratios of NO and NO2

of 0, 2.5, 12.5, 25, 45, 90 ppb. Clean air enriched in NO/NO2 was
produced by dilution steps using mass flow controllers (MKS,
Andover, USA), starting from a gas cylinder containing 2% NO
in N2 (Air Liquide, Düsseldorf, Germany), and converting 50%
NO to NO2 using pure O2 and reaction chambers as previously
described (Mayer et al., 2018).

NO and NO2 concentrations at the inlet and outlet of the
cuvettes were measured online throughout all experiments by
chemiluminescence technique and using an ultra-high precision
and sensitive NO/NO2 analyzer (limit of detection <0.025 ppb;
model nCLD 899Y SupremeLine, Eco Physics AG, Duernten,
Switzerland). Calibration of the instrument was achieved by
using N2 (purity 5.0) for the zero measurements and certified
NO standards at 850 ppb (Air Liquide) for the span calibration.

The cuvettes were run in parallel, and NO/NO2 were
measured sequentially by switching automatically every 9 min
using an automatic multiport valve in a similar manner as
described before (Ghirardo et al., 2010; Ghirardo et al., 2020).
The first 8 min of measurements were used as flushing time, and
the corresponding acquisition data were disregarded from the
data analysis to remove any interference from the previous
cuvette measurement. The last 1 min containing six
measurement points (10 s integration time) were averaged and
used for calculation of gas-exchange based on projected leaf area
(m2) as previously described (Ghirardo et al., 2011). As the
Frontiers in Plant Science | www.frontiersin.org 4
reference of the fumigation levels, the inlet air was measured
every four cuvettes. Therefore, the entire measurement cycle
through all eight cuvettes and two references took 1 h and 30
min, before switching to the next concentration and waiting
another 30 min for reaching the equilibrium of NO/
NO2 concentrations.

Fluxes (F) of NO (FNO) and NO2 (FNO2) (nmol m-2 s-1) were
calculated following Chaparro-Suarez et al. (2011) as:

F = ½Cout� − ½Cin�ð Þ �Q=A eq: (1)

based on the concentration differences between the outlet ports
of the branch cuvette and the inlet air reference ([Cout] and [Cin],
respectively, in nmolmol-1), the enclosed project leaf area (A, in m2),
and the airflow rate through the cuvettes (Q, in mol s-1). The linear
relationship was calculated between FNO/FNO2 and the fumigated
NO/NO2 concentration:

y = kx + b eq: (2)

(where x represents the fumigated NO/NO2 concentration; y, the
net exchange rates of NO (FNO) or NO2 (FNO2), b, the leaf
emission rate of NO/NO2 (in nmol m-2 s-1). The deposition
potential (in nmol m-2 s-1 ppb-1) is the slope (k) value of eq. 2,
and the compensation point is determined as the x value when y
equals zero (i.e., the NO/NO2 air concentrations when leaf
emission equals uptake and therefore net exchange rate is
zero). Deposition potentials were converted to absolute values
of specific deposition velocities (sVd, in m s-1) using the ideal gas
equation for conditions of 1 atm and 20oC. Background
measurements were conducted using empty cuvettes and all
the data have been corrected, accordingly. All calculations were
performed using data of stable leaf gas-exchange of NO/NO2

collected under steady-state conditions of photosynthesis. The
total projected leaf area was determined from drawings of leaves
on paper prior cuvette enclosure to allow an immediate harvest
after the fumigation experiment.

Determination of 15N Content in Leaves
30 day-old Arabidopsis, 15 day-old grey poplar (the height was
around 15 cm), 40 day-old grey poplar (the height was around 50
cm), and 8 different urban tree species were used in this
fumigation experiment. All plants were transferred to the
climate chamber two days before fumigation. 15NO (99 %
atom isotopic abundance) was obtained from Linde (Pullach,
Germany) and diluted to 2% (v/v) with nitrogen by Westfalen
AG (Münster, Germany). Fumigation with 50 ppb of 15NO and
50 ppb of unlabeled NO (control) was performed for 4 days.
After the experiment, plant leaf material was dried at 60°C for 48
h and ground to a homogenous powder using a ball mill (Tissue
Lyser II, Qiagen, Venlo, Netherlands). Aliquots of about 2 mg
leaf powder was transferred into tin capsules (IVA
Analysentechnik, Meerbusch, Germany). 15N abundance as
well as N and C contents were determined with an Isotope
Ratio Mass Spectrometer (IRMS, delta V Advantage, Thermo
Fisher, Dreieich, Germany) coupled to an Elemental Analyzer
(Euro EA, Eurovector, Milano, Italy). IRMS measurements were
September 2020 | Volume 11 | Article 549913
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always be performed in comparison with one or more standards
with known isotope composition in the same range of the
analyzed samples. For that purpose, a laboratory standard
(acetanilide), being part of every sequence in intervals, was
used. A series of working standards of different weights were
measured to determine the isotope linearity of the system.
All lab standard measurements were also the base for the
calibration of N and C content calculation. The lab standard
itself was calibrated against several suitable international
isotope standards (International Atomic Energy Agency, Vienna,
Austria). International and suitable laboratory isotope standards
were also part of every sequence to create a final correction
of 15N covering all 15N results of this sequence. The accuracy
of the 15N measurements can be described by a coefficient of
variation of less than 0.5%. That of the element analyses is less
than 2%.

Modeling the NO2 and NO Deposition for
Central Berlin
The deposition potentials measured for the four species (C.
betulus, F. ornus, F. pennsylvanica and O. carpinifolia) were
used to investigate the effect that planting these species may have
on dry NOx deposition under realistic conditions. For this
purpose, we have calculated total atmospheric NO and NO2

deposition fluxes into the street tree foliage (F, in g m-2 s-1)
within the central district of Berlin (Mitte), simplified as the
product of the deposition velocity (vd, m s-1) and the NO/NO2

concentration (C, in g m-3):

F = vd  �   C eq: (3)

For this exercise, 78,000 trees within one district area of Berlin
(Mitte, 39.47 km2) were considered, available from the city-tree
inventory presented by Tigges et al. (2017). Species and
dimension of each tree is known, indicating that the four most
prominent genera in this area are Acer (26.2%, mostly A.
platanoides), Tilia (25.7%, mostly T. cordata), Fagus sylvatica
(17%), and Quercus (10.9%, mostly Q. robur) which together
have a share of about 80%. The leaf area (LA) has been calculated
using a formula based on the Beer-Lambert Law according to
Nowak (1996), considering the crown dimension, which is
available from the inventory.

In order to demonstrate the potential impact of the new
parameters, we determined the deposition first by considering
the prescribed species selection using a daytime vd value of 0.001
m s-1 for NO2 and 0.0001 m s-1 for NO for all trees (standard
run). The NO2 value is the average of published measurements
from tree species that are relevant for Central European urban
areas, i.e., maple, oaks, and birches (Elkiey et al., 1982; Chaparro-
Suarez et al., 2011). It is at the lower end of the range suggested
by Lovett (1994) considering a wide range of plant species. For
NO deposition velocity, we assumed a 10-fold smaller value as
recommended by Hanson and Lindberg (1991), which is
consistent with findings from Neubert et al. (1993). The
simulation was carried out for the entire year 2014 using
measured precipitation (data obtained from the German
Weather Service) and air pollution data (from station “Mitte”,
Frontiers in Plant Science | www.frontiersin.org 5
available from the BLUME network Berlin on request, https://
www.berlin.de/senuvk/umwelt/umweltratgeber/de/spiu/luft.
shtml). In a second simulation (scenario run), all trees of the
aforementioned most abundant genera were replaced by the four
species which had been investigated in the laboratory, using the
experimentally measured sVd based on projected leaf area
measurements that were converted into deposition velocity
(m s-1) to leaf canopy according to:

vd = sVd � LAI eq: (4)

Where LAI is the leaf area index, assumed a value of 3,
commonly found for urban trees (Öztürk et al., 2015; Massetti
et al., 2019). To have the largest effect, we replaced species in the
order of descending vd for NO2, which is C. betulus (0.933mm s-1)
replacing Acer, O. carpinifolia (0.666 mm s-1) replacing Tilia, F.
pennsylvanica (0.600 mm s-1) replacing Fagus and F. ornus (0.453
mm s-1) replacing Quercus trees. All other boundary conditions
were the same as in the standard run. The respective vds for NO
are 0.568 mm s-1 for C. betulus, 0.1152 mm s-1 for O. carpinifolia,
0.184 mm s-1 for F. pennsylvanica, and 0.169 mm s-1 for F. ornus.
In addition, we considered a decrease in vd to one-fifth of the
daytime value during night as suggested by Lovett (1994),
assuming the stomata to be mostly closed.

Statistics
All experiments were performed using three or four different
plants as independent replicates (n = 3-4, Table 1). Principal
component analysis and group comparisons were done in R
version 3.6.0 (R Core Team, 2019). Normality and homogeneity
of variances were checked via the Shapiro-Wilk test (R Core
Team, 2019) and Levene’s test with group medians (Fox and
Weisberg, 2019), respectively. If both assumptions were not
rejected (p > 0.05), ANOVA was applied, otherwise the non-
parametric Kruskal-Wallis test. Raw p-values were Bonferroni-
corrected across all variables of a data set. For posthoc analysis of
significant ANOVA results, we applied Tukey’s test (Hothorn
et al., 2008) to identify group differences. Letter assignment to
groups was performed with multcompView (Graves et al., 2015).
RESULTS

NOx Deposition Velocities and 15NO
Labeling Studies in Different Tree Species
To determine the NO and NO2 specific deposition velocities to the
leaf surface of Carpinus betulus, Fraxinus ornus, Fraxinus
pennsylvanica, and Ostrya carpinifolia, we performed fumigation
experiments and dynamic branch enclosure measurements. The
experiment was performed under highly controlled environmental
conditions of a phytotron. For each of the four plant species, one
branch containing 5–8 mature leaves was enclosed in parallel into
a respective odorless bag inside the climate chambers (Figure 1A).
Increasing concentrations of NO and NO2 up to 90 ppb were
applied via the inlet air, and the concentration-dependent capacity
of the different tree species to remove atmospheric NO/NO2 was
observed (Figures 1B, C). Then, deposition and compensation
September 2020 | Volume 11 | Article 549913
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parameters were determined for NO and NO2. Experiments were
repeated using four different trees (n = 4) per plant species.
Although the different tree species did not fall into clearly
distinct groups (Supplementary Figure S1), the foliage of C.
betulus showed the highest NO deposition velocity, although not
statistically different from that of the others (Figure 1D). Similary,
the NO2 deposition velocity in C. betulus leaves tend to be higher
compared to the other tree species (Figure 1D). Detected
compensation points for NO were in the range of 1.8–2.6 ppb
and for NO2 in the range of 0.8–1.5 ppb (Figure 1E).
Frontiers in Plant Science | www.frontiersin.org 6
To study the NO uptake capacity of tree foliage, a 15NO
labeling experiment was performed with three trees of each
species listed above. Moreover, four additional tree species
(Celtis australis, Alnus spaethii, Alnus glutinosa, and Tilia
henryana; four trees of each species) were included in the
analysis. The trees were exposed to 50 ppb of 15NO for 5 days,
while fumigation with 50 ppb of unlabeled NO was used as
control. Then total N and C content, C/N ratio and 15N content
were determined. Overall, the different tree species formed
characteristic gradients, with Fraxinus ornus, Celtis australis,
A

B

D E

C

FIGURE 1 | Exchange of NO and NO2 fluxes of four trees species resilient to heat and drought stresses suitable for urban greening. (A) Trees (C. betulus, F. ornus,
F. pennsylvanica and O. carpinifolia) were placed into the climate chambers two days before fumigation to adapt to the environmental conditions. Fumigation
experiments were performed with a dynamic branch enclosure system under steady-state conditions using NO and NO2. One branch was enclosed in odorless
polyethylene terephthalate bags serving as cuvette system during fumigations and online measurements of NO/NO2. The inlet air tube was placed on the side of the
stem and tightened together. Each cuvette was continuously flushed with 1,000 ml min-1 of humidified (60% RH) NOx-free air containing ambient CO2 concentrations
(~ 400 ppm). NOx was measured sequentially by switching automatically every 9 min using an automatic multiport valve. (B) Linear regressions of NO deposition
fluxes and (C) NO2 deposition fluxes are shown. (D) Specific deposition velocities based on projected leaf area for each tree species was calculated from the
corresponding linear regressions. (E) Compensation points, the NO/NO2 air concentrations (in ppb) when leaf emission equals uptake (i.e., net exchange rate is
zero). nd, not detectable. Bars in (C) represents means ± SD. Experiments were replicated with four different trees. None of the NO and NO2 parameters in (D) and
(E) showed significant differences [Kruskal-Wallis test for NO in (D): p > 0.05; ANOVA for NO2 in (D) and for NO and NO2 in (E): p>0.05; Shapiro-Wilk test: p < 0.05
for NO in (D), p > 0.05 otherwise; Levene’s test: p < 0.001 for NO in (D), p > 0.05 otherwise].
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and Alnus glutinosa representing the extremes (Supplementary
Figure S2). The trees differed in their total dry matter N content
ranging from 0.016 g per g dry matter (F. ornus) to 0.036 g per g
dry matter (C. australis) (Figure 2A). The total C content was in
the range of 0.42 to 0.51 g per g of dry matter, with significantly
larger values in both Alnus species than in C. australis, F. ornus
and C. betulus (Figure 2B). Consequently, we observed a C/N
ratio between 13 (C. australis) and 26 (F. ornus) (Figure 2C). The
highest daily 15N uptake was found in A. glutinosa (3.6 mg per kg
dry matter), followed by C. betulus and C. australis, respectively.
The lowest daily uptake of 15N was detected in F. ornus (0.8 mg
per kg dry matter) (Figure 2D).

Modelling NO2 and NO Dry Deposition for
Central Berlin.
The NOx specific deposition velocities are not plant-species
dependent (Figure 1D), concluding that all the tree species
investigated are suitable for urban greening. Based on our
determined NOx deposition rates, we defined a tree population
for the effective reduction of NOx in Central Berlin. Therefore,
the four dominant tree genera in this area as depicted in Figure
3A, which represent the standard simulation, were replaced by C.
betulus, F. ornus, F. pennsylvanica, and O. carpinifolia. For
discussion, we also present the distribution of each tree species
within the Berlin district Mitte in Figure 3B. The simulations
indicate that the overall pollution removal of the newly
Frontiers in Plant Science | www.frontiersin.org 7
investigated species was in the same range as that of the four
currently dominant genera. According to our rough estimates
that assume no changes in tree dimensions or tree positions and
an equal share of the abundance of the new species, the total
annual NO deposition would more than double, but the NO2

deposition would slightly decrease by ~23% (Figure 3C).

Improved NO Uptake in Phytoglobin
Transgenic Arabidopsis and Poplar
As previously reported for Arabidopsis and barley, PGBs are able
to fix atmospher ic NO into ni t rogen metabol i t e s
(Kuruthukulangarakoola et al., 2017; Zhang et al., 2019). The
reaction mechanism of the NO-fixation by PGB is illustrated in
Figure 4A. To investigate if an enhanced expression of PGBs can
enhanced NO uptake in trees, we generated transgenic grey
poplar overexpressing the Arabidopsis class 1 and class 2
PGB gene.

The enzymatically dependent NO uptake capacity of these
transgenic lines was studied in four 40-day-old trees and three
15-day-old poplars. We exposed the trees to 50 ppbv of labeled
15NO for 5 consecutive days under controlled environmental
conditions, and we studied the 15N label in the harvested leaf
materials. Wild type poplar of the corresponding age, as well as
transgenic Arabidopsis plants with enhanced and reduced
expression of PGB genes, were used as controls (Figures 4B, C).
15N levels in AtPGB overexpressing plants were higher than in
A B

DC

FIGURE 2 | N, C, C/N ratio and 15N content in different tree species after fumigation with 50 ppb of 15NO for 5 days. Trees were exposed to 50 ppb of 15NO in
climate chambers, and leaf samples were taken for 15N measurements after 4 days of treatment. Total N (A) and C (B) contents as well as 15N (D) content were
determined with an Isotope Ratio Mass Spectrometer (IRMS) coupled to an Elemental Analyzer (EA). Calculated C/N ratio for each tree is shown in (C). 15N uptake
values are shown after square root transformation. Each plot represents means ± SD. Three individuals of Carpinus betulus, Fraxinus ornus, Fraxinus pennsylvanica,
and Ostrya carpinifolia were measured (n = 3). Four individuals of Celtis australis, Alnus spaethii, Alnus glutinosa, and Tilia henryana were measured (n = 4).
Significant species differences were observed for N, C, C/N and 15N (ANOVA: p < 0.01; Shapiro-Wilk test: p > 0.05; Levene’s test: p > 0.05). Different letters indicate
significant differences according to Tukey’s posthoc test (p < 0.05).
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the corresponding WT and PGB knockdown/knockout mutants
(Figure 4B), confirming that enhanced production of the protein
PGB can significantly increase the enzymatic process towards
higher foliage NO uptake capacity in trees. Interestingly, we
observed a higher level of 15N incorporation in young poplars
(15 day-old poplars) in comparison to older (40 day-old poplars)
plants (Figure 4B).
DISCUSSION

Our results showed that under well-watered conditions, A.
glutinosa has the most effective NO uptake. Overall, specific
deposition velocities measured in this study are in the same order
of magnitude as observed in other tree species relevant for
Central European urban areas such as A. platanoides, A.
pseudoplatanus, Q. robur, Q. petraea, and Betula pendula
(Elkiey et al., 1982; Chaparro-Suarez et al., 2011). However,
some species seem to deviate from this average, as demonstrated
in our study for C. betulus which at least tended to have higher
sVd for NO and NO2 deposition rates. Assuming a standard
transformation procedure, the resulting uptake/deposition
velocities were between 0.15 and 0.56 mm s-1 for NO and 0.45
and 0.95 mm s-1 for NO2. This strongly agrees with previous
studies (Hanson and Lindberg, 1991; Hereid and Monson, 2001;
Teklemariam and Sparks, 2006; Breuninger et al., 2013; Delaria
et al., 2018). The reasons for the considerable difference between
NO and NO2 are manifold: The assimilation of NOx is controlled
Frontiers in Plant Science | www.frontiersin.org 8
by several factors, including the resistance to the entry of NOx

gas molecules through the stomata and mesophyll conductance,
cuticle layer, and intercellular cavity to reach the surface of
mesophyll cells (Morikawa et al., 1998). Overall, NO is low
soluble in water, whereas NO2 quickly reacts in water to form
nitrate and nitrite in the apoplast (Lee and Schwartz, 1981a; Lee
and Schwartz, 1981b). Because air pollutants need to go through
the extracellular aqueous covering plant cell when they enter the
mesophyll cells, it is logical to expect much lower deposition
velocities for NO than for NO2. Also, the permeability of nitrate
and nitrite ions through cell walls and plasma membranes (Lee
and Schwartz, 1981a; Lee and Schwartz, 1981b; Ramge et al.,
1993; Ammann et al., 1995), as well as the activity in the primary
nitrate assimilation pathway through which NO2-nitrogen is
reported to be metabolized do play a role in NOx uptake
(Rogers et al., 1979; Yoneyama and Sasakawa, 1979; Wellburn,
1990). The NO2 uptake by leaves of the same plant species is
furthermore affected by stomatal dynamics, rate of
photosynthesis, and position within the canopy (Sparks et al.,
2001; Chaparro-Suarez et al., 2011). Altogether, these features
can largely explain the different uptake/deposition rates for NO.

In addition to the physicochemical controls on NO/NO2

deposition velocities, we demonstrate that the fixation of NO is
also under the control of an enzymatic process. The amount of
PGB proteins and the activity of the NO-fixing machinery are
important factors for an effective NO uptake and might differ
between tree species. According to the biochemical activities of
PGBs as NO dioxygenase [EC 1.14.12.17] (Perazzolli et al., 2004),
A B

C

FIGURE 3 | Tree population in Central Berlin and modeling of NOx deposition. The calculations are done with NO2 and NO concentrations of the year 2014 for the
central district of Berlin (Mitte). This area hosts about 78,000 trees with the species composition indicated in (A) and the spatial distribution depicted in (B). The
overall annual deposition of NO2 and NO per m2 regarding this species composition (standard) and alternative species composition (scenario) is shown in (C). For
the scenario, the four urban climate-resilient tree-species (Carpinus betulus, Fraxinus ornus, Fraxinus pennsylvanica, Ostrya carpinifolia) replaced the four actual
dominant tree genera as indicated by the senate of Berlin. For parameterization, we assume that the genera can be characterized by the most abundant species
in each genera group (Acer platanoides, Tilia cordata, Fagus sylvatica, Quercus robur, Aesculus hypocastanum, Platanus hispanica, Populus nigra/alba, and
Pinus sylvestris).
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nitrite reductase [EC 1.7.2.1] (Sturms et al., 2011a; Tiso et al.,
2012; Kumar et al., 2016), and hydroxylamine reductase [EC
1.7.1.10] (Sturms et al., 2011b), they seem to be of general
importance for the nitrogen metabolism. Since different PGB
isoforms differ in their kinetic properties regarding oxygen and
NO binding as well as NO deoxygenase activity (Smagghe et al.,
2008; Calvo-Begueria et al., 2017; Eriksson et al., 2019), inducing
the biosynthesis of PGBs and improving the biochemical features
for NO-fixation might increase the uptake of atmospheric NO.
We demonstrated that overexpression of Arabidopsis PGB 1 and
2 in grey poplar could indeed significantly enhance the NO
uptake capacity. Therefore, producing and planting highly
efficient NOx removing trees, transgenic ones or after derived
from “natural” selection from phenotype screening, could be a
Frontiers in Plant Science | www.frontiersin.org 9
potential means to reduce the atmospheric NOx level and
improve air quality in urban areas.

Our modeling exercise resulted in only moderate to minor
changes in overall NOx removal during a full year in a
Metropolitan area. Nevertheless, differences between compounds
exist, indicating that the total NO2 deposition would only slightly
decrease while NO deposition would increase by a factor of more
than two, if the four dominant tree genera grown in Central Berlin
would be replaced by the four tree species considered for climate
change adaptation. This is partly due to the differences between
the investigated species but also due to the relatively rough
estimate that the standard run was based upon. Indeed, this run
is parametrized with very few deposition velocity data available for
the tree species populating urban areas. Besides, the scaling of
A

B C

FIGURE 4 | NO-fixation by plant phytoglobin. (A) Illustration of the biochemical NO-fixing reaction mechanism. NO is converted to nitrate (NO3
-) by the oxygenated

ferrous phytoglobin [PGB(Fe2+)], which turns to the metPgb form [PGB(Fe3+)]. The latter is reduced by a NAD(P)H-dependent reductase (metPGB) and then
oxygenated again. (B) 15N content in transgenic poplar and (C) Arabidopsis determined 5 days after fumigation with 50 ppbv of 15NO. In (B) leaves of old (40 day-
old) and young (15 day-old) poplar tree have been analyzed. Each plot depicts means ± SD. Four samples of Arabidopsis and old poplar trees were measured (n =
4) and three samples of the young poplar trees were measured (n = 3). 15N content values are shown after square root transformation. Different letters indicate
significant differences according to Tukey’s posthoc test (p < 0.05) after significant ANOVA (p < 0.001; Shapiro-Wilk test: p > 0.05; Levene’s test: p > 0.05).
September 2020 | Volume 11 | Article 549913

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Zhang et al. Air Quality and NO Consumption
specific deposition velocities based on leaf area that is also
estimated with a relatively crude method includes considerable
uncertainties. As a criterion for deposition removal capacity, we
used stomatal conductance that is easily scalable with LAI to
obtain a canopy- or regional level result (Teklemariam and Sparks,
2006; Chaparro-Suarez et al., 2011; Breuninger et al., 2013; Delaria
et al., 2018). Respective functions consider crown size and
competition that are estimated based on site conditions (e.g.,
Pace et al., 2018). Since we did this estimation based on species-
specific parameterization, the differences in LAI due to the new
tree species are already considered in the calculations.
Nevertheless, LAI estimates may still considerably deviate from
reality because the estimation method provides high uncertainty
and pruning intensity as well as frequency. Thus, crown size
strongly depends on the management practice of the city, which
may differ with species. In addition, the stomatal dependency of
gas uptake implies that growing under dry conditions substantially
decrease removal capacity. Different water-use strategies thus
result in differences in gaseous uptake. For example, an
isohydric species such as A. platanoides that establishes drought
resistance by closing stomata early would perform less well under
medium water supply compared to an anisohydric species such as
Alnus or Carpinus (Li et al., 2016). Considering this behavior, we
can assume that the removal capacity of the tree species resilient to
drought episodes would be higher under realistic environmental
conditions and even higher under projected future climate
conditions, provided the drought episodes are moderate. The
picture, however, might change under more severe drought that
might deplete water reservoirs completely and may
induce mortality.

It is, overall, desirable to choose city tree species that have a
relatively high NO and NO2 uptake/deposition capacity since
they could provide a viable means to reduce atmospheric NOx

level and help meet clean air standards. The selection of
appropriate tree species able to cope with increased heat and
drought stress while keeping a high capacity to “clean” air may
thus support urban planning strategies. Also, the NO-fixing
capability of PGBs could be a valuable trait that might be
increasingly applied to characterize tree species in the context
of urban air quality.
Frontiers in Plant Science | www.frontiersin.org 10
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