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The rapid development of phenotyping technologies over the last years gave the
opportunity to study plant development over time. The treatment of the massive
amount of data collected by high-throughput phenotyping (HTP) platforms is however
an important challenge for the plant science community. An important issue is to
accurately estimate, over time, the genotypic component of plant phenotype. In outdoor
and field-based HTP platforms, phenotype measurements can be substantially affected
by data-generation inaccuracies or failures, leading to erroneous or missing data. To
solve that problem, we developed an analytical pipeline composed of three modules:
detection of outliers, imputation of missing values, and mixed-model genotype adjusted
means computation with spatial adjustment. The pipeline was tested on three different
traits (3D leaf area, projected leaf area, and plant height), in two crops (chickpea,
sorghum), measured during two seasons. Using real-data analyses and simulations,
we showed that the sequential application of the three pipeline steps was particularly
useful to estimate smooth genotype growth curves from raw data containing a large
amount of noise, a situation that is potentially frequent in data generated on outdoor
HTP platforms. The procedure we propose can handle up to 50% of missing values. It
is also robust to data contamination rates between 20 and 30% of the data. The pipeline
was further extended to model the genotype time series data. A change-point analysis
allowed the determination of growth phases and the optimal timing where genotypic
differences were the largest. The estimated genotypic values were used to cluster the
genotypes during the optimal growth phase. Through a two-way analysis of variance
(ANOVA), clusters were found to be consistently defined throughout the growth duration.
Therefore, we could show, on a wide range of scenarios, that the pipeline facilitated
efficient extraction of useful information from outdoor HTP platform data. High-quality
plant growth time series data is also provided to support breeding decisions. The R
code of the pipeline is available at https://github.com/ICRISAT-GEMS/SpaTemHTP.

Keywords: high-throughput phenotyping, SpATS, cross-validation, simulation, change point
analysis, HTP-pipeline
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INTRODUCTION

During the last decade, progress in phenotyping methods have
given ground for the development of many high-throughput
phenotyping (HTP) platforms (Berger et al., 2010; Tisne et al.,
2013; Cabrera Bosquet et al., 2015; Vadez et al., 2015), established
across the globe to support rapid screening of plant phenotypes.
These platforms generate large-scale phenotypic datasets that are
complex to handle, process, and interpret. An important aspect
that contributes to the complexity of HTP data handling is the
presence of exogenous effects, which primarily include system-
generated noise and fluctuations in environmental conditions.
This is particularly the case in HTP platforms characterizing
phenotypes in open-environments or under non-controlled
conditions like the LeasyScan, the PhenoField (Barker et al.,
2016), or the Field scanalyzer (Virlet et al., 2017) platforms.
These effects can result in large heterogeneity besides erroneous
and missing observations. Hence, the data treatment from
outdoor platforms requires a systematic approach to deal with
such artifacts and facilitate routine usage of HTP data (Dupuy
et al., 2017; Namin et al., 2018; Tello et al., 2018). There are
few existing automated procedures (pipelines) to process and
analyze HTP data (Klukas et al., 2014). In addition, existing ones
largely use image-based analysis of plant phenotypes (Hartmann
et al., 2011; Artzet et al., 2019), and some are even platform
or trait-specific (Galkovskyi et al., 2012; Faroq et al., 2013;
Hasan et al., 2018).

This paper presents an automated data analysis pipeline called
SpaTemHTP that processes and analyzes large temporal HTP
data taking into consideration the specificity of data generated
on outdoor platforms. The general philosophy of our pipeline
is to progressively increase the information content of the data
by applying a succession of analytical steps, which subsequently
enhances the understanding of complex biological processes (Van
Eeuwijk et al., 2019). The pipeline comprises three components:
(a) data preprocessing; (b) genotype adjusted mean computation
with spatial adjustment; and (c) further analysis of the genotype
adjusted means time series by logistic curve fitting and change-
point analysis.

Data generated in outdoors or field-based HTP platforms like
the LeasyScan (Vadez et al., 2015) are subjected to conditions
that result in occasional inaccuracies/failure of data-generation
resulting in extreme or missing values. Therefore, the first step
of our pipeline was to preprocess raw data by removing outliers
and imputing missing values. We hypothesized that those steps
increase the quality of the genotype adjusted mean computation,
which is the crucial task of the pipeline. The detection of
outliers prevents the model estimates from being impacted by
extreme values that are inflated or wrong. Removing outliers also
positively influences the imputation step by restricting the data
distribution to a more realistic observation from which candidate
values will be chosen. In a similar way, the imputation of missing
values can help the estimation of the mixed model estimates by
providing complete data that were imputed taking the temporal
dimension into consideration. The use of imputation methods in
longitudinal data has been shown to have a positive effect on the
accuracy of the mixed-model estimates (Huque et al., 2018).

The second and main step of the pipeline was to calculate
genotype adjusted means using spatial adjustment. The need to
adjust phenotypic data for heterogeneity due to field variation
is known since many years (Gilmour et al., 1997). So far,
spatial adjustment was generally done by a sequential procedure
of model fitting and diagnostics steps, which was difficult to
implement in an automated way. More recently, Rodríguez-
Álvarez et al. (2016) introduced the SpATS model, a two-
dimensional (2D) P-spline approach for mixed model spatial
adjustment. Velazco et al. (2017) demonstrated that the SpATS
model could be successfully adapted for routine applications.
Therefore, the SpATS model gave us the opportunity to perform
spatial adjustment for genotype adjusted mean computation in
an automated way on large HTP time series data. To the extent
of our knowledge, the routine application of spatial adjustment
to obtain genotype adjusted mean time series from outdoor
platform HTP data has not yet been done.

Another advantage of the SpATS model application is the
possibility to improve the estimation of the trait heritability,
which is an important criterion for breeders (Velazco et al.,
2017). In this article, we have considered the broad-sense trait
heritability defined as h2 = σ2

g /(σ
2
g + σ2

e ), where σ2
g and σ2

e
represent genotypic and error variance, respectively. Therefore,
accounting for spatial variation will reduce σ2

e since some
variation that was previously considered random noise will
be considered spatial variation. Such a reduction of σ2

e would
increase h2 and help obtain a better estimate of the proportion
of the genetic component that resulted in phenotypic variability.

In the last step of the pipeline, we continued the temporal
analysis of the genotype adjusted means generated in the
previous step by modeling the growth curve and by identifying
important plant growth stages. Indeed, temporal analysis of
HTP data has also been rarely considered, although it is
known that phenotypic expressions of genotypes vary with crop
growth stages (Coleman et al., 1994; Ibañez et al., 2017). Plant
growth typically follows temporal patterns that can be generally
described as (i) initial slow growth (lag phase), (ii) phase of
rapid (exponential) growth which gradually slows down toward
the end of the system cycle, and (iii) steady phase (Yin et al.,
2003; Shi et al., 2016). Phenotypic variations across these stages
(i.e., the growth patterns) also contribute to the differences
among the genotypes and influence genotypic adaptation to
environmental contexts (Chapman, 2008; Kholová et al., 2014).
These growth phases can be statistically detected and used to
analyze genotypic variance (Chapman, 2008). Here, we used a
change point analysis to identify the portion in the temporal
dataset where the probability to capture genotypic variance was
maximized. Therefore, the second important contribution of this
study was the use of genotype adjusted means time series and
heritability estimates (obtained after spatial correction) to enable
the systematic identification of critical growth phase(s) having
maximum genotypic variance.

In the following sections, SpaTemHTP is illustrated by
applying it on a wide range of scenarios varying in terms
of species (chickpea, sorghum), phenotypic traits (leaf area,
projected leaf area, plant height), and experiment replications.
Using real-data analyses and simulations, we evaluated the
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different components of SpaTemHTP (outlier detection, missing
value imputation, and spatial adjustment) to estimate their
relative contribution in the quality of the temporal series of
genotypic estimates. We further illustrated the capacity of
SpaTemHTP to detect growth phase and cluster genotypes in
consistent groups.

MATERIALS AND METHODS

Data and Test-Site Description
Phenotypic data from two diversity panels were used (Table 1).
The first was a chickpea (legume) panel comprising 288
genotypes, and the second was a sorghum (cereal) panel with
384 genotypes. Those panels cover around 90% of the genetic
diversity of their respective species (Upadhyaya et al., 2002; Billot
et al., 2013). The two populations were phenotyped at ICRISAT-
Patancheru (17.5111◦ N, 78.2752◦ E) using the LeasyScan HTP
platform (Vadez et al., 2015)1 during two seasons. Information
about the season, date, and the duration of each experiment
is given in Table 1. In each experiment, four replicates of
each genotype entry were laid out in an alpha design with 12
blocks containing 24 and 32 genotypes for the chickpea and the
sorghum population, respectively. The crops were raised in plots
of dimensions: 60 × 40 × 65 cm3 (length, width, and height)
filled with farm-collected vertosol using agronomic practices
recommended by Trivedi (2008). Here, we want to emphasize
that using four replicates per genotype is larger than what is
generally done in phenotyping experiments of similar association
panels, e.g., in Rodríguez-Álvarez et al. (2016), two replicates
were used, and in Zaman-Allah et al. (2015) and Prom et al.
(2019), three replicates were used.

In the LeasyScan HTP platform (see schematic visualization
in Supplementary Figure 1), Phenospex’s 3D laser scanners are
employed to provide 3D images of the plants. The platform has a
total capacity of around 5,000 sectors arranged in eight trenches
(each having two columns). There are eight scanners (one per
trench) mounted on top of an irrigation boom (automated
sprinkle irrigation is used for the platform) which project a laser
line on top of the canopy. A camera with 45◦ angle of view
captures the reflection of the laser line at a high rate (50–80
pics/s), allowing the simultaneous reconstruction of 3D images
of all the plants. Several algorithms then operate (handled by

1www.gems.icrisat.org/LeasyScan

Phenospex engineers) to extract several morphological traits. The
scanners measure the canopy parameters of each sector at an
interval of 2 h, and the median value per day is used as the
daily measurement of a given trait. Among the available traits, we
used the daily means of 3D-reconstructed leaf area (LA3D; mm2),
projected leaf area of the canopy (PLA; mm2), and plant height
(PH; cm). Those traits indicate the rates of biomass accumulation
and can be considered an estimate of crop vigor (Flood et al.,
2016; Sivasakthi et al., 2017; Yang et al., 2020).

Pipeline Overview
The pipeline outline is illustrated in Figure 1 which sequentially
represents the discrete modules used for converting raw
phenotypic data into useful information. The following sections
describe each of the methods used for data preprocessing,
genotype adjusted mean computation, and temporal analysis of
genotypic estimates.

Stage 1: Preprocessing
Outlier Detection
The first step in preprocessing was the detection of outliers, which
are the extreme values that occurred mostly due to measurement
errors. Outliers in the raw data were detected for each day
using boxplots (Sun and Genton, 2011) of the phenotypic value
distribution per day, i.e., the distribution included all genotype
and replicate values of a specific day. The 25% quantile (QR1),
75% quantile (QR3), and 50% interquantile range (IQR) were
calculated, and the observations below QR1 – 1.5 ∗ IQR or above
QR3 + 1.5 ∗ IQR were considered outliers. Those outliers were
replaced by missing values and then imputed in the next step
along with the already existing missing values in the dataset.

Missing Value Imputation
The second step in preprocessing was the imputation of missing
values. According to Huque et al. (2018), the use of multiple
imputations (MI) on longitudinal data can improve the accuracy
of mixed model estimates. This can be due to the capacity
of MI to borrow information on the past and future points
of the time series to identify genotypes with similar growth
pattern and fill the gap of the missing genotypes with similar
observed values. We performed MI using the predictive mean
matching (PMM) method from the R package “mice” (Buuren
and Groothuis-Oudshoorn, 2010). PMM is a method that was
developed to reduce the bias by drawing real values sampled
from the observed data (Rubin and Schenker, 1986). Therefore,

TABLE 1 | Dataset description.

Experiment Date MinT (◦C) MaxT (◦C) RH (%) Min (%) Max (%) Mean (%)

Chickpea E1 (CPE1) 25 Nov 2014–17 Dec 2014 13.15 29.02 89.73 0.000 52.080 5.797

Chickpea E2 (CPE2) 01 Dec 2015–07 Jan 2016 13.97 31.22 89.78 1.040 56.250 17.434

Sorghum E1 (SGE1) 15 Mar 2015–06 Apr 2015 18.42 40.67 45.84 0.000 2.210 0.293

Sorghum E2 (SGE2) 22 Oct 2015–12 Nov 2015 14.02 30.51 89.67 0.000 26.560 1.456

The duration of data collection, the minimum and maximum recorded temperatures (MinT, MaxT) in degree Celsius (◦C), and the average relative humidity (RH%) during
the experiments (E) are shown for each crop (chickpea, sorghum) and experiment data, along with the minimum (Min), maximum (Max), and mean percentage of daily
amount of missing data points.
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FIGURE 1 | Block diagram of the three stages of SpaTemHTP pipeline, illustrated according to the sequence of steps followed for HTP data analysis.

the detection of outliers prior to imputation helps in restricting
the observed values distribution to credible values by removing
extreme observations. PMM is also a robust and an assumption
free method, which can be used for traits with any type of
distributions (White et al., 2011).

In our situation, PMM sequentially imputes the missing values
of a specific day using the other days information by applying the
following steps:

(a) Let us assume we impute the missing values of di. In that
case, the other days constitute the set of predictors, z = [d1,
. . ., d(i−1), d(i+1), . . ., dn].

(b) For the non-missing values of di, PMM performs a linear
regression of di on z: di = b∗1d1 + . . . + b∗(i−1)d(i−1) +
b∗(i+1)d(i+1) + . . . + bn

∗dn using the complete time series
information to determine phenotypic values with similar
biological trends.

(c) PMM samples a reduced number of linear regression
coefficients from the whole sample b = [b1, b2, . . .,
bn] to predict values for both missing ŷdiMiss

and non-
missing values of di ŷdiObs . The random sampling of the b
coefficients allows to generate some variability by sampling
in the multivariate normal distribution with mean b
variance σ2 (b).

(d) For each predicted value corresponding to a missing value
ŷdiMiss , PMM identifies a number of close values in ŷdi
(in our case 5) corresponding to an observed value ydiObs .
Those values can come from any observed data point of
the ŷdiObs distribution.

(e) PMM imputes each missing values ydiMiss by drawing one
of the observed values ydiObs from the sample of values
for which the predictions ŷdiObs were close enough to the
missing value prediction ŷ diMiss .

(f) The procedure is repeated for each missing value of di
and for each day. For further details, see van Buuren and
Groothuis-Oudshoorn (2009).

PMM works with data missing at random (MAR) or missing
completely at random (MCAR) (Morris et al., 2014). In our
case, the daily amount of missing values ranged between 0 and
56.25% with an average of 6.25% across the eight configurations
(crop × experiment × traits) (Table 1). We noticed that missing
data did not show any pattern across time (see Supplementary
Figure 2). Therefore, we could reasonably assume that data were
not missing not at random (MNAR) because the missing pattern
did not depend on the plant or trait growth stage. In the case
of the LeasyScan, which is set up outdoors with partly wireless
data transmission, we assumed that data were mostly missing at
random being a mix of: (a) MCAR data due to external factors

like technical problems and/or natural phenomenon (e.g., wind,
birds, or other animals) and (b) MAR data due to time and spatial
position. In the latter case, temporal and spatial information
was taken into consideration in the PMM imputation process.
According to Marshall et al. (2010), the PMM algorithm can
handle up to 75% of missing values.

We hypothesize that the sequential application of outlier
detection and PMM missing value imputation in HTP time series
data is a simple strategy to replace extreme values by realistic
observations using the information from the growth pattern,
which will ultimately improve the accuracy of the genotype mixed
model estimates.

Stage 2: G-BLUE Computation With
Spatial Adjustment
The second step of the pipeline was the computation of
genotype best linear unbiased estimates (G-BLUEs) using spatial
adjustment. The G-BLUEs were calculated using the following
realization of the SpATS model (Rodríguez-Álvarez et al., 2016;
Velazco et al., 2017):

yijklm = µ+ repj + blockk(j) + f
(
rowl, colm

)
+ rowl + colm + genoi + eijklm (1)

where, yijklm is the trait value of jth replication of genotype i
in block k, row l, and column m. The term f

(
rowl, colm

)
is an

expression of the smooth spatial surface expressed in terms of row
and column information accounting for spatial variation. In the
SpATS model, f

(
rowl, colm

)
is modeled by a 2D-penalized spline

including linear trends across rows and columns, row-column
linear interaction, smooth trend across rows and columns, and
a smooth-by-smooth interaction between rows and columns. For
further details, see Rodríguez-Álvarez et al. (2016) and Velazco
et al. (2017). Finally, eijklm represents the plot error term that
is normally distributed N

(
0, σ2

e
)
. The replicate, block, row, and

column terms were considered random with a specific error term.
To calculate the G-BLUEs, the genotype term was treated as fixed.

To evaluate the effect of spatial adjustment, we calculated the
G-BLUEs with and without spatial adjustment. The G-BLUEs
without spatial adjustment were calculated using a reduced
version of model 1 without the f

(
rowl, colm

)
term. In a similar

way, we used those two versions of model 1 (with and without
spatial term) to calculate the heritability (h2). In those cases, we
treated the genotype term as random to estimate the genetic
variance σ2

g . For the non-spatially adjusted model, h2 = σ2
g

/(σ2
g + σ2

e ). For the spatially adjusted model, h2 is calculated
in terms of the effective dimension or the effective degrees of
freedom associated to the genetic component in the SpATS
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TABLE 2 | List of strategies to process data from the raw data to the
G-BLUE computation.

Strategy Outlier
detection

Missing value
imputation

Spatial
adjustment

S1 7 7 7

S2 3 7 7

S3 7 3 7

S4 3 3 7

S5 7 7 3

S6 3 7 3

S7 7 3 3

S8 3 3 3

S9 Single-step mixed model

S1–S8 represent a combination of use (3) or no use (7) of outlier detection, missing
value imputation, and spatial adjustment. S9 is an iterative strategy for spatial
adjustment where missing values are imputed during the mixed model computation
and outliers detected using the mixed model residuals.

model (EDg) (Rodríguez-Álvarez et al., 2016). The effective
dimension of a model is computed as the trace of the hat matrix
H, and Hg is the hat matrix for genotypes. If the number of
genotypes = ng and the number of zero eigenvalues of Hg = l, then
h2 = EDg/(ng − l). We calculated models with spatial adjustment
using the R package “SpATS” (Rodríguez-Álvarez et al., 2016)
and the one without spatial adjustment in GenSTAT version 18
(VSN International, 2015).

The combination of each of the abovementioned data
processing and G-BLUE calculation options: outlier detection
(yes/no), missing value imputation (yes/no), and spatial
adjustment (yes/no), represents a total of eight strategies (S1–S8)
to calculate G-BLUEs from raw data (Table 2). In the next part of
the article, we will refer to those strategies as S1–S8.

Single-Step Mixed-Model G-BLUE
Computation
An alternative to generate the G-BLUEs is to use a single-step
mixed-model approach where outliers are iteratively removed
based on the model residuals and the missing values imputed
during the estimation procedure. We called this strategy S9 and
compared it with the other strategies (S1–S8). To perform S9,
outliers were iteratively removed by applying the Grubbs test (p
< 0.05) (Grubbs, 1950) on the residuals of model 1. This strategy
is similar to the one applied in Lehermeier et al. (2014).

Validation of the G-BLUE Computation
To validate our pipeline, the G-BLUE computation and the data
preprocessing steps were extensively evaluated. We performed
cross validation (CV) to assess the predictive ability of the mixed
model used for the G-BLUE and heritability (h2) computation,
which are important information for breeding purposes. We also
performed a more direct evaluation of the G-BLUE computation
by estimating the correlation between the G-BLUEs obtained
from the same population but in two different experiments (e.g.,
CPE1 and CPE2) at the same stage of development.

Cross Validation
For each combination of population (chickpea, sorghum), trait
(PH, LA3D), and experiment (E1, E2), 10 replications of a
fivefold CV were performed. To cover the time variability, a
different day for each CV replication was randomly selected.
In each CV replication, the trait observations were randomly
assigned to five samples of equal size. During the five runs, each
sample was successively used as the validation set, and the rest
of the data went into the estimation set. The estimation set was
used to estimate the parameters of model 1. Then, using those
parameters estimates, validation set trait values were predicted
(ŶVS) as per the experimental design and genotype information
of the validation set. We used the Pearson correlation (ρŷ, y)
between (ŶVS) and the observed trait values as a measure of the
predictive ability. During the CV, the h2 in the training sets was
also estimated to evaluate the influence of the procedure options
on this parameter.

For each CV run, we sequentially applied S1–S9 preprocessing
and spatial adjustment strategies on the same estimation and
validation data partitions. This allowed us to evaluate the
contribution of each component (outlier detection, missing value
imputation, and spatial adjustment) on the predictive ability
of the mixed model used to calculate the G-BLUEs and the
heritability. Using 10 replications of a fivefold CV gave 50 values
to determine the average ρŷ, y and h2 of each strategy.

Between Experiment Comparison
To complement the CV, we also performed a comparison between
experiments run on the same population but at different times,
for example, CPE1 and CPE2. For each day at a comparable
growth stage, we calculated the Pearson correlation (ρE1, E2)
between the G-BLUEs in the two experiments. ρE1, E2 evaluates
the ability of a strategy to estimate accurately the genotypic
component of the phenotype measurements (Velazco et al.,
2017). Ideally, we expect this genetic component to be stable
across experiments.

The average ρE1, E2 was calculated for each combination of
trait (PH, LA3D) and pair of experiments (CPE1–CPE2, SGE1–
SGE2) over all comparable days (CP, 22 days; SG, 21 days). This
operation was repeated for all Table 2 strategies to evaluate the
respective influence of outlier detection, missing data imputation,
and spatial adjustment on ρE1, E2.

Simulations
As suggested by one of the reviewers, we performed simulations
based on real data to evaluate the robustness of the methods
to manage outliers and/or missing values in the G-BLUE
computation. For that purpose, the SGE1 PH data was selected as
the most “controlled” dataset, since it had the lowest percentage
of missing values (0.29%), a low percentage of outliers (1.6%),
and a high heritability (around 0.7) showing the importance of
the genetic component compared with other factors. The 15th
day of the series was selected as the reference since it contained
no missing values and a low number of outliers (1.4%). The
G-BLUEs of that day were calculated and kept as reference.
Then some noise was introduced in the time series by adding
extreme and/or missing values. We tested three scenarios: (a)
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addition of x percent of missing values; (b) addition of noise
on x percent of the values to generate outliers; and (c) a + b.
To generate outliers, we added values drawn from a normal
distribution N(0, 3∗σ2(population at day i)) to x percent of
the data. The simulations were run setting x at 10, 20, 30, 40,
and 50%. We evaluated the efficiency of the outlier detection,
missing value imputation, and their combination by calculating
the correlation between the reference G-BLUEs and the G-BLUEs
obtained with strategies S5–S9. We repeated the procedure 10
times for each scenario.

Assessment of the Genotype Growth Patterns
Time-ordered plots of G-BLUEs obtained with strategies S5–
S9 were used to visualize the general growth pattern of the
genotypes. We also performed some modeling of the growth
curves by fitting a logistic curve to the genotype-specific G-BLUE
time series. The logistic curve can be used to describe data with a
sigmoidal pattern as the one we expect in biological growth (Cao
et al., 2019). To fit the logistic curve, the function “drm” from the
“drc” R package (Ritz et al., 2015) was used, which determines
the curve parameters by likelihood function maximization. The
average coefficient of determination (R2) was used as a goodness-
of-fit measurement to evaluate the possibility to summarize the
G-BLUEs data with the logistic function for each combination of
species, trait, experiment, and strategy (S5–S9).

Stage 3: Temporal Analysis of G-BLUEs
In the LeasyScan platform, it has been observed that the scanner
resolution drops as plants grow larger and canopies overlap
with each other (Vadez et al., 2015). At this stage, while trait
value differences between genotypes increase, the h2 tends to
decrease (Vadez et al., 2015). Both trait differences and h2

represent two key components for breeders to make selection.
They need to select from maximum trait differences (canopy
growth traits here), while having maximum genetic variance
(highest possible h2). It was thus, important to identify the time-
points (or duration) at which the progression and relationship
between both the variables altered together. Additionally, we also
wanted to identify a window, called the optimal time window
(OTW) in the crop growth duration which maximizes genotypic
diversity as well as h2. To obtain the OTW, simultaneous changes
in the distributions of the two variables during crop growth were
first identified using the multivariate change-point analysis (CPA)
method (Matteson and James, 2014). CPA was performed for
each trait separately.

To represent the evolution of the genetic diversity over time,
we used a measurement of distance between genotype cluster
(Clust-Dist). Clust-Dist was calculated through clustering of the
entire spatially adjusted G-BLUEs time series (of each trait) using
the Gaussian Kernel K-Means clustering method (Dhillon et al.,
2004; Steinbach et al., 2004). To determine the optimal number
of genotypic clusters, the Silhouette method (Rousseeuw, 1987;
Das and Padhy, 2017) was used. After determining the optimal
number of clusters, genetic diversity values between those clusters
were estimated by calculating the Euclidean distance between the
cluster centers at each day (Dhillon et al., 2004). The Clust-Dist
were leveraged as a measurement of genetic diversity change over
time. The incorporation of distance between clusters as a measure

of genotypic diversity has also been shown in Tyagi et al. (2015)
and Sarker et al. (2017). Subsequently, the trait h2 calculated
for each day resulted in a time-ordered set, that was used as
the second variable for performing CPA. The E-statistic-based
multivariate CPA was implemented to identify the TWs using the
R package “ecp” (Matteson and James, 2014). The utilization of
multivariate time series data for detecting and understanding the
temporally changing relationships between different variables is
also shown in Cabrieto et al. (2017).

Genotypic Clusters × Time Window
Analysis
A genotypic clusters (Gc) × time window (TW) analysis was
conducted as a validation of the final pipeline results. This
analysis was used for understanding the relative importance
of identified groups of genotypes, of the TWs, and of their
interaction. For that purpose, we clustered the G-BLUEs within
the OTW into three groups (“low,” “medium,” and “high”) using
a k-means clustering procedure (Ding and He, 2004). A two-way
analysis of variance (ANOVA) was performed to examine the
stability of the clusters in terms of the statistical significance of the
Gc × TW interaction for each trait. In this step, the average values
of the G-BLUEs within each TW of each genotype, were used to
estimate the interaction effects using the model: yijk = µ+ Gci +
TWj + Gc× TWij + eijk, where yijk is the average G-BLUE value
of the genotypes present in ith genotypic cluster, jth time window
and kth replicate. Gci and Tj are the effects of ith cluster and
the jth TW, respectively. GcGc × TWij denotes the interaction
effect between the ith cluster and the jth TW. eijk represents the
residual error term.

Pipeline Code and Data Availability
The pipeline was programmed in an R (R Core Team,
2017) package available at: https://github.com/ICRISAT-GEMS/
SpaTemHTP. All data, scripts, and functions required to
reproduce the results can be found at: https://github.com/
ICRISAT-GEMS/SpaTemHTP_Validation.

RESULTS

Validation
Cross Validation
In Table 3, we present the average ρŷ, y and h2 results obtained
over the whole CV procedure. The information is organized per
data treatment (outlier detection, missing value imputation, and
spatial adjustment) such that each cell represents the average
treatment effect, e.g., outlier detection yes over the two other
treatments (i.e., missing value imputation: yes and no, and
spatial adjustment: yes and no). For example, the first cell
represents the average ρŷ, y results of S2, S4, S6, and S8 (all
strategies with outlier detection). For each treatment, the average
ρŷ, y difference with and without the treatment was calculated
to evaluate its usefulness. The statistical significance of those
differences was estimated using a t-test. At the end of Table 3,
the difference between S8, which includes all data treatment
options, and the single-step mixed-model G-BLUE computation
(S9) is also compared.
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TABLE 3 | Average predictive ability (ρŷ,y) and heritability (h2) for LA3D and PH traits of chickpea (CP) or sorghum (SG) experiments 1 and 2 (E1, E2) obtained with
(denoted as “yes”) and without (denoted as “no”) the effect of each data treatment (outlier detection, missing value imputation, and spatial adjustment (ρŷ,y).

Predictive ability (ρŷ,y) CP SG

LA3D PH LA3D PH

E1 E2 E1 E2 E1 E2 E1 E2

Outlier detection No 0.75 0.58 0.89 0.67 0.67 0.60 0.75 0.56

Yes 0.75 0.57 0.88 0.69 0.67 0.56 0.75 0.56

Difference 0.00 0.01 0.00 −0.03 0.00 0.04 0.00 −0.01

Missing value imputation No 0.75 0.57 0.88 0.68 0.67 0.56 0.75 0.55

Yes 0.75 0.59 0.88 0.69 0.67 0.60 0.75 0.56

Difference 0.00 0.02 0.00 0.01 0.00 0.04 0.00 0.01

Spatial adjustment No 0.70 0.54 0.88 0.68 0.65 0.50 0.71 0.52

Yes 0.80 0.60 0.89 0.68 0.69 0.66 0.79 0.60

Difference 0.10*** 0.06** 0.00 0.00 0.04 0.16*** 0.08** 0.08**

S8 0.81 0.64 0.89 0.70 0.69 0.67 0.78 0.60

S9 0.81 0.63 0.88 0.70 0.70 0.67 0.80 0.61

Difference 0.00 0.01 0.00 0.00 0.00 0.00 −0.02 −0.01

Heritability (h2) CP SG

LA3D PH LA3D PH

E1 E2 E1 E2 E1 E2 E1 E2

Outliers removal No 0.69 0.37 0.87 0.64 0.65 0.34 0.70 0.48

Yes 0.69 0.35 0.79 0.74 0.65 0.34 0.73 0.51

Difference −0.01 −0.01 −0.08*** 0.10*** 0.00 0.01 0.03 0.04**

Missing value imputation No 0.68 0.35 0.78 0.65 0.65 0.34 0.72 0.49

Yes 0.69 0.37 0.87 0.74 0.65 0.34 0.71 0.50

Difference 0.01 0.03 0.09*** 0.09** 0.00 0.00 −0.01 0.01

Spatial adjustment No 0.54 0.26 0.72 0.56 0.54 0.20 0.59 0.34

Yes 0.84 0.45 0.94 0.82 0.75 0.48 0.83 0.65

Difference 0.31*** 0.19*** 0.23*** 0.26*** 0.21*** 0.28*** 0.24*** 0.31***

S8 0.85 0.47 0.94 0.88 0.75 0.49 0.84 0.70

S9 0.85 0.46 0.95 0.87 0.76 0.47 0.86 0.68

Difference 0.00 0.01 −0.01 0.01 0.00 0.01 −0.03 0.02

“Difference” corresponds to the average difference between the ρŷ, y and h2 results obtained in scenarios with and without the data treatment. The difference between
S8 and S9 is also shown for both ρŷ, y or h2. **p < 0.01; ***p < 0.001.

Concerning ρŷ, y, spatial adjustment was the only treatment
that enabled a significant improvement in the results. The effect
of spatial adjustment was significant in five out of eight cases. The
significance of spatial adjustment was also noticed in terms of
h2. The average h2 difference between strategy with and without
spatial adjustment was always large and highly significant. For
further details about the implementation of spatial adjustment
for different traits see Supplementary Figures 3, 4. The effect
of missing value imputation on h2 was also beneficial in some
cases (CPE1 PH, CPE2 PH). Finally, from the comparison
between the S8 and S9, it can be emphasized that there were
no significant differences either in terms of ρŷ, y or h2 in
the CV procedure.

Between Experiment Comparison
Table 4 consolidates the results from the between experiment
comparison procedure, and it is similarly organized as Table 3.

The information per data treatment is presented such that
each cell represents the average G-BLUEs correlation (ρE1, E2)
for a specific treatment (e.g., remove outliers) over the other
treatments (i.e., missing value imputation: yes and no, and
spatial adjustment: yes and no). For example, the first cell
represents the average ρE1, E2 for S2, S4, S6, and S8 (all strategies
with outlier detection). For each treatment, the difference
between the average ρE1, E2 with and without the treatment
was calculated to evaluate the usefulness of each treatment.
The statistical significance of those differences was estimated
using a t-test. The end of Table 4 shows the comparison
between S8 and S9.

The between experiment comparison results confirmed what
we observed in the CV procedure. The most influential factor was
the spatial adjustment. In three situations out of four, we observed
a significantly larger ρE1, E2 in strategies with spatial adjustment.
We could also observe a small positive effect with the detection of
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TABLE 4 | G-BLUEs correlation between two experiments on the same population (ρE1, E2) of chickpea (CP) and sorghum (SG), for the traits LA3D and PH, obtained
with (denoted as “yes”) and without (denoted as “no”) the effect of each data treatment (outlier detection, missing value imputation, and spatial adjustment.

G-BLUEs between experiments correlation (ρE1, E2) CP SG

LA3D PH LA3D PH

Outlier detection No 0.71 0.85 0.55 0.68

Yes 0.66 0.90 0.54 0.67

Difference −0.04 0.05* −0.01 −0.01

Missing value imputation No 0.66 0.88 0.54 0.67

Yes 0.69 0.87 0.55 0.68

Difference 0.03* −0.01 0.01 0.01

Spatial adjustment No 0.65 0.84 0.53 0.65

Yes 0.69 0.90 0.56 0.69

Difference 0.04* 0.06* 0.03 0.04*

S8 0.72 0.90 0.57 0.70

S9 0.71 0.87 0.56 0.69

Difference 0.01 0.03* 0.01 0.01

“Difference” represents the average difference in ρE1, E2 between strategies including or not the data treatment, as well as between S8 and S9. *p < 0.05.

TABLE 5 | Results of the simulation using real data (SGE1 PH).

Strategy x = 10% x = 20% x = 30% x = 40% x = 50%

Add x missing values S5 0.99 0.98 0.96 0.94 0.92

S6 0.98 0.97 0.95 0.93 0.91

S7 1 1 1 1 0.99

S8 0.98 0.98 0.98 0.98 0.98

S9 0.99 0.96 0.96 0.94 0.92

Add x noise values S5 0.87 0.8 0.73 0.67 0.64

S6 0.95 0.89 0.8 0.72 0.64

S7 0.87 0.8 0.73 0.67 0.64

S8 0.96 0.9 0.81 0.73 0.65

S9 0.93 0.8 0.74 0.68 0.66

Add x missing values + x noise values S5 0.84 0.68 0.57 0.48 0.39

S6 0.93 0.79 0.6 0.47 0.38

S7 0.85 0.72 0.62 0.52 0.43

S8 0.94 0.83 0.68 0.51 0.43

S9 0.88 0.69 0.58 0.47 0.4

Correlation coefficient between 15th-day G-BLUE reference values and values from the simulation for the three scenarios: (a) addition of x percent of missing values, (b)
addition of noise x percent of the values to generate outliers, (c) a + b, for strategies S5–S9.

outliers (CP PH) and imputation of missing values (CP LA3D).
Concerning the comparison between S8 and S9, we could observe
a small positive effect of using S8 in the CP PH case.

Simulations
Table 5 contains the simulation results. As expected, the
correlation between the calculated G-BLUEs and the reference
decreased from the scenario with only missing values to the
scenario with missing values and noise. We could also notice
that the correlation decreased when the amount of missing values
and/or noise increased from 10 to 50%. We could observe that,
generally, the results obtained in the scenarios with only missing
values were high and stable with values between 0.91 and 1.
The result obtained with method S7 using only imputation were
particularly good (0.99–1).

In the simulations with noise addition and noise addition
along with missing values, we could observe that strategy S8,
which combines outlier detection and missing value imputation,
produced the largest correlation in almost all situations. In all
those cases but one (addition of 50% of noise), S8 outperformed
S9. The differences between the best method (S8) and the
others increased until 20% of noise and/or missing values
and then decreased.

Assessment of the Genotype Growth Patterns
In Figure 2, the raw genotype scores and the G-BLUEs time
series obtained with different strategies (S5–S9) were plotted in an
increasing order of data treatment: from raw data to S8 involving
all data treatments. This figure helped to visually evaluate the
quality of the time series in two specific scenarios (CPE2 LA3D
and SGE2 PH). The G-BLUEs time series of the more erratic
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FIGURE 2 | Comparison of the biological growth pattern of the raw data for chickpea (CPE2) LA3D and sorghum (SGE2) PH and the series of genotypic BLUEs
obtained from S5 to S9. The red line in each plot represents the average of the fitted logistic curves for all genotypes.

raw chickpea data was found to improve considerably from S5
to S8 with progressive introduction of the data treatment steps
(outlier detection, imputation, and spatial adjustment). The data
treatment sequence reduced the amount of abrupt fluctuations
in the time series. In CPE2 LA3D, it was also observed that the

G-BLUEs time series obtained from S8 were less erratic than the
ones obtained with S9 (single-step mixed model).

An inspection of the SGE2 PH time series revealed that the
phenotypic data were originally less noisy than the raw CPE2
LA3D values. The differences between the time series and the
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TABLE 6 | R2 estimates of the logistic fit for the G-BLUEs time series data
obtained with strategies S5–S9 for traits, LA3D, and PH of each chickpea (CP)
and sorghum (SG) experiments.

Strategy CP SG

LA3D PH LA3D PH

E1 E2 E1 E2 E1 E2 E1 E2

S5 0.94 0.95 0.71 0.8 0.98 0.97 0.99 0.99

S6 0.95 0.95 0.77 0.85 0.98 0.98 0.99 0.99

S7 0.95 0.98 0.73 0.81 0.98 0.98 0.98 0.99

S8 0.95 0.98 0.79 0.87 0.98 0.98 0.99 0.99

S9 0.94 0.95 0.74 0.83 0.98 0.97 0.98 0.99

growth trend corresponding to the different scenario (S5–S9)
were also less prominent than in CPE2 LA3D. From the general
shape of SGE2 PH values and the average logistic function (red
curve), it was evident that these data present a nice example of
the sigmoidal growth pattern.

From a general point of view, we could notice in Table 6
that the G-BLUEs growth pattern was well described by the
logistic curve. The growth patterns of the sorghum experiments
(R2: 0.97–0.99) and chickpea LA3D (R2: 0.94–0.98) were almost
perfectly described by the logistic curve. For chickpea PH, 71–
85% of the variation could be explained by the logistic curve. In
all situations, the use of strategy S8 combining outlier detection
and missing value imputation produced the highest R2 values. In
the chickpea PH experiments, we could see that strategy S6 using
outlier detection performed better than S7 with only missing
value imputation.

Change-Point Analysis of G-BLUEs
Figure 3 illustrates the TWs obtained after preprocessing
and spatial adjustment in a chickpea example (CPE2 LA3D,
Figure 3A) and a sorghum example (SGE2 PH, Figure 3B).
The TWs essentially represented the initial lag-phase of plant
canopy establishment, the phase of rapid canopy expansion
and the later vegetative stage during which the canopies
closed. Four TWs were obtained in the chickpea example
(Figure 3A) and the last one depicted the canopy closure
phase during which reliable measurements of the canopy growth
parameters were not feasible. Although both the second and
third TWs depicted linearly increasing (sometimes erratic)
growth, heritability estimates were observed to exhibit a linearly
decreasing trend in the third TW. Hence, the second TW was
considered optimal for further analysis. The trait development
growth curve in the sorghum example (Figure 3B) was both
smoother and closer to the sigmoidal pattern compared with the
chickpea example (Figure 3A), owing to two factors: (i) better
quality raw data in sorghum and (ii) since sorghum plants are
larger than chickpea, the former reached a plateau within the
time course of the experiment. The second TW in the sorghum
example represented the steepest trend in crop growth as well as
highest median h2 estimate, and hence was optimal. The median
h2 (∼0.7) during the OTW of both examples ensured reasonable

genotypic variance during that growth phase, which could be
suitably leveraged for breeding applications.

Gc × TW Analysis
The results of Gc × TW analysis are presented in Tables 7, 8.
The effect of TW was found to be highly significant (p < 0.001)
for all the traits, species, and experiments, while the interaction
term had the least significant effect. In terms of crop types,
TW explained an average of approximately 85 and 95% of
the total sum of squares in chickpea (Table 7) and sorghum
(Table 8), respectively. This implied that sorghum exhibits more
vigorous transitions in phenotypic development than chickpea.
The relative effect of TW was similar for both the traits (LA3D
and PH) of sorghum, which exhibited quite close mean sum
of square percentage (SS%), i.e., ∼94–95%. However, LA3D
(mean SS% of TW ∼87%) in chickpea developed more diversely
across growth phases than PH (mean SS% of TW ∼82%). It
was further observed that the cluster differences in chickpea
were significantly larger than that of sorghum. The relative effect
of the Gc × TW interaction was however similar in both the
chickpea experiments but differed between the two sorghum
experiments. In terms of traits, SS% associated with Gc was
again found similar for both LA3D and PH, in sorghum, while
it differed marginally between PH and LA3D of chickpea. The
average SS% explained by the Gc × TW interaction in chickpea
(4%) and sorghum (0.5%) also suggested that chickpea clusters
varied more between the TWs than that of sorghum. Hence, it
showed that sorghum clusters were probably more consistent
over time than the chickpea clusters. These Gc × TW findings
thus, corroborated (i) the stability of clustering and (ii) the
importance of OTW identification.

DISCUSSION

Effect of Data Preprocessing
As observed from the simulation results (Table 5), the use
of a strategy combining outlier detection and missing value
imputation (S8) performed the best in most of the cases.
Especially in the datasets affected by both missing values and
contaminated data, which increased the number of outliers. Such
outcomes were also reflected in the real data analyses, but to a
lesser extent. For example, the positive effect of outlier detection
was noticed only in the CP PH between experiment comparison
(Table 4). We could also detect a positive effect of missing value
imputation on h2 in the CV performed on dataset CPE1 PH
(Table 3). Those results were all observed in the chickpea data
that contained more missing and extreme values. Therefore, data
preprocessing we propose is mostly useful for data characterized
by a large amount of noise, which can be characteristics of data
generated on outdoors HTP platforms.

The difference between the simulations results and the real
data evaluation can be explained by two factors. The first
one is the amount of contaminated data needed to observe
significant differences. As per the simulations, we could start to
observe significant differences between the procedures when the
proportion of contaminated data was at least 10–20%. Whereas,
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FIGURE 3 | The plots of change point analysis (CPA), illustrating the patterns of daily heritability (h2) estimate and the Clust-Dist for (A) LA3D of CPE2 and (B) PH of
SGE2. The vertical red lines in the plots denote the “change points” and the annotations between two change points (i.e., within each time-window) denote the
corresponding growth phases.

in the real data, the maximum proportion of the values that could
be considered outliers was only 3.6%, which certainly represented
lower levels of data contamination. Another reason is that in the
CV process, the days were randomly selected. While some of
those days could have many contaminated values, others might

have had a few, and averaging of those results could cancel
out the effects.

It was further noticed from the simulations that, the sole
presence of missing values is not a big problem. All the methods
were able to obtain particularly good results even in scenarios
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TABLE 7 | The degrees of freedom (Df), sum of squares (SS), percent sum of squares (SS%), mean squares (MS), and the F-value (F-val) are shown for each source of
variation, obtained from the Gc × TW analysis of LA3D and PH of chickpea experiments (CPE1, CPE2).

Sources of variation CPE1-LA3D CPE1-PH

Df SS SS% MS F-val Df SS SS% MS F-val

Genotypic clusters (Gc) 2 8.06E + 09 7.618 4.03E + 09 1046.981*** 2 5.12E + 03 6.907 2.56E + 03 898.522***

Time window (TW) 2 9.24E + 10 87.361 4.62E + 10 12006.383*** 2 6.23E + 04 84.098 3.12E + 04 10939.513***

Gc × TW 4 2.02E + 09 1.91 5.05E + 08 131.258*** 4 4.23E + 03 5.708 1.06E + 03 371.255***

Residuals 855 3.29E + 09 3.111 3.85E + 06 855 2.44E + 03 3.286 2.85E + 00

Total 1.06E + 11 74,123

Sources of variation CPE2-LA3D CPE2-PH

Df SS SS% MS F-val Df SS SS% MS F-val

Genotypic clusters (Gc) 2 7.48E + 08 4.196 3.74E + 08 603.549*** 2 7.20E + 03 10.186 3.60E + 03 1,002.001***

Time window (TW) 2 1.56E + 10 87.476 7.80E + 09 12,583.018*** 2 5.71E + 04 80.867 2.86E + 04 7,955.314***

Gc × TW 4 9.55E + 08 5.357 2.39E + 08 385.258*** 4 3.25E + 03 4.602 8.13E + 02 226.348***

Residuals 855 5.30E + 08 2.972 6.20E + 05 855 3.07E + 03 4.346 3.59E + 00

Total 1.78E + 10 70,669

**p < 0.01.

TABLE 8 | The degrees of freedom (Df), sum of squares (SS), percent sum of squares (SS%), mean squares (MS), and the F-value (F-val) are shown for each source of
variation, obtained from the Gc × TW analysis of LA3D and PH of sorghum experiments (SGE1, SGE2).

Sources of variation SGE1-LA3D SGE1-PH

Df SS SS% MS F-val Df SS SS% MS F-val

Genotypic clusters (Gc) 2 3.99E + 08 0.051 1.99E + 08 10.785*** 2 3.21E + 04 0.371 1.61E + 04 58.197***

Time window (TW) 2 7.64E + 11 97.215 3.82E + 11 20,665.584*** 2 8.31E + 06 95.947 4.16E + 06 15,063.085***

Gc × TW 4 3.55E + 08 0.045 8.87E + 07 4.802** 4 3.67E + 03 0.042 9.18E + 02 3.325*

Residuals 1,143 2.11E + 10 2.689 1.85E + 07 1143 3.15E + 05 3.64 2.76E + 02

Total 7.86E + 11 8,665,647

Sources of variation SGE2-LA3D SGE2-PH

Df SS SS% MS F-val Df SS SS% MS F-val

Genotypic clusters (Gc) 2 2.86E + 09 0.911 1.43E + 09 138.322*** 2 3.38E + 04 1.153 1.69E + 04 186.857***

Time window (TW) 2 2.98E + 11 94.953 1.49E + 11 14,413.423*** 2 2.74E + 06 93.53 1.37E + 06 15,154.881***

Gc × TW 4 1.17E + 09 0.372 2.92E + 08 28.255*** 4 5.25E + 04 1.789 1.31E + 04 144.959***

Residuals 1,143 1.18E + 10 3.764 1.03E + 07 1,143 1.03E + 05 3.527 9.05E + 01

Total 3.14E + 11 2,932,587

*p < 0.05; **p < 0.01; ***p < 0.001.

involving up to 50% of missing values. In those scenarios, we
could see that strategy using only imputation (S7) was very
performant. Such a result supports the idea that PMM is an
appropriate method for imputation in HTP time series data.
It is similar to previous findings showing the robustness of
PMM against large rate of missing values (Marshall et al., 2010;
Kleinke, 2018).

The presence of extreme values in the data is more problematic
than the one of missing values. According to the simulations, the
procedures could still produce reasonably good results up to 30%
of contaminated data if there are no missing values. The presence
of missing values along with noise results in reduced performance
of the procedures, which becomes critical beyond 20–30% of

contaminated and or missing values. Although these results are
quite informative, the simulations presented in this article are
derived from a single real-data situation. The users could apply
the same procedure on their data to determine the limitations
specific to their situation. Here, we also want to highlight
the fact that, in this study, we globally did not experience a
situation where the leaf area was substantially dropping over
time. However, as we could observe in Figure 2 (SG), the leaf
area tended to decrease on the last day. This could be the sign
that the plant started to reach the plateau phase. We could also
imagine that in other conditions like water stress, the total leaf
area would decrease at a certain point due to leaf senescence.
In that case, we would use another model to fit the data. For
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example, we could use a segmented linear function with one
linear function describing the growth phase and another function
describing the decrease phase when leaf senescence dominates
the process. However, currently those analyses are beyond the
scope of this work.

The simulation results also supported the use of S8 combining
outlier detection and missing value imputation in separate steps
over S9, which performs imputation during the estimation
process and detects outliers based on the mixed model residuals.
In all scenarios where noise was added to the data, S8 obtained
better results than S9. We could also observe such a result but
with a reduced difference in the between experiment comparison
(CP PH) and the goodness of fit results of the logistic curve
(e.g., CPE1 PH).

From a methodological point of view, the difference between
S9 and S8 is due to the fact that S9 uses data only from a single
day, while S8 benefits from the information present in the whole
time series to impute the missing values. In S8, the possibility to
use past and present information allows to build highly accurate
prediction for missing values using the growth trend information.
In S9, however, missing value imputation is done using the spatial
and genetic information of a single day, which makes it more
sensitive to the presence of extreme values on that day. The
sequential application of outlier detection and imputation by
considering the similar values in the phenotypic time series is
therefore, a simple yet effective strategy to restore information in
contaminated data.

Effect of Spatial Adjustment
The use of spatial adjustment had a positive and significant
effect in almost all data analysis evaluations. Such a result
can be explained by the fact that data measured in outdoor
or field conditions like on the LeasyScan platform are
subject to a substantial amount of spatial variation. More
precisely, we could see in the SpATS results (Supplementary
Figure 3) that the replicates located closer to the wall
(e.g., Supplementary Figure 3C) exhibited faster phenotypic
development (represented in yellow), likely because of overnight
dissipation of the heat accumulated in the concrete wall,
compared with the ones located in the middle or on the opposite
edges of the platform. Furthermore, the complexity of such
spatial interaction was found to increase as the crops grew
larger (Supplementary Figure 4). As far as we know, the use
of spatial adjustment to process HTP data from an outdoor
platform has not been evaluated in previous studies. Extending
the results from Velazco et al. (2017), we have shown that
the application of the SpATS model in a routine analysis is
of great value to account for spatial variation and increase
the genetic heritability. The high goodness of fit values for
the description of the G-BLUEs time series using a logistic
curve (Table 6) illustrates the overall quality of the proposed
procedure and its ability to obtain biologically relevant profiles
of plant growth traits.

Temporal Analysis of G-BLUEs
Phenotyping of complex traits, e.g., those associated with canopy
development, in a diverse set of genotypes is often found to

be challenging under non-controlled environments, due to the
differences in the responses of genotypes to ambient conditions.
This eventually results in reduced h2 of the growth-related
traits (Rebetzke et al., 2014). van der Heijden et al. (2012)
have discussed the need to exploit temporal information for
improving phenotyping efficiency of traits like total leaf area.
A few studies have considered temporal plant phenotyping for
assessing genotypes based on temporal patterns of phenotypic
development (van Dusschoten et al., 2016; Das Choudhury
et al., 2017). However, to the extent of our knowledge, a
systematic approach to determining an OTW where h2 and
genetic diversity are maximized, has not yet been proposed. The
incorporation of CPA in this study is therefore an effort to enable
an automated and systematic extraction of temporal information
from phenotypic data, such that both genetic diversity as well
as trait heritability are maximized. Hence, obtaining smoother
G-BLUEs time series was also beneficial for identifying the OTW,
since an important aspect of the pipeline was to differentiate
temporal sections of the G-BLUEs time series with maximum
genotypic resolution.

From Figure 3A, phenotypic data toward the later portions
of the chickpea experiment were erratic due to overlap of crop
canopies, especially during the rapid growth phase, resulting
in consequent loss of sensor resolution (Vadez et al., 2015;
Zhokhavets et al., 2018) and lowered h2. In the chickpea example
(Figure 3A), although both 2nd and 3rd TWs biologically
represented the rapid growth phase, a declining trend of h2 was
found in the 3rd TW. Therefore, the 2nd TW with the highest
genotypic resolution was chosen as optimal. The selected OTW
confirmed with our initial hypothesis, and as suggested by van der
Heijden et al. (2012) that—the most suitable time to phenotype
plants is during initial period of rapid development, when plants
are less high and dense, i.e., before the canopy closure phase.
Phenotypic data within the OTW of each trait were further
utilized to cluster genotypes based on the similarity in their
canopy growth or vigor patterns.

The stability of the clusters across the TWs (Tables 7, 8)
was also shown for each of the canopy-growth traits, since
the interaction effect was found to be small compared with
the TW and cluster effect. Minimal interaction effect achieved
through OTW cluster-based Gc × TW analysis also implies
more predictable performance of the trait of interest for each
genotype within a particular cluster (Sorrells, 2015). Thus,
by fitting the two-way ANOVA model, we could verify the
biological assumption that—most of the phenotypic variation
comes from the difference in growth stage (TW), to a reduced
but significant extent from the genotypic difference (Gc) and to a
lesser extent from difference in genotype modified by the time
(Gc × TW). However, several studies have reported that large
interaction effects that tend to complicate results interpretation,
since phenotypic expression (and hence, ranking) of genotypes
would differ across environments (Kaya et al., 2006; Tulu and
Wondimu, 2019). Those studies primarily consider genotypic
analysis across environments, and not growth-phases, which
could also potentially alter the ranking of genotypes. Therefore,
clustering similar genotypes based on the results of CPA was
performed, since information contained in temporal datasets
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is generally non-homogeneous throughout the crop growth
stage due to changing patterns of phenotypic development
(Shi et al., 2016).

Obtaining such consistent results from the temporal analyses
could be ascribed to the effects of systematic data treatment.
Those procedures helped produce “clean” time series that were
more representative of the underlying biological mechanism,
in terms of both trait growth and the differences among
genotypes. While the preprocessing procedures helped improve
the possibility to detect some continuity in the time series
(important to detect the effect of time), spatial adjustment
helped remove variability due to spatial heterogeneity and
then estimate the genotypic effect. Consequently, the improved
estimate allowed detecting the ‘true’ expected differences
between genotypes. Therefore, we believe that with the
proposed procedure the resultant data will be representative
of their expected behavior in future experiments, which is
essential for selection.

CONCLUSION

Many HTP platforms have been established to perform
large-scale experiments, where hundreds of genotypes are
screened simultaneously. Although such platforms can generate
large datasets, their usage is frequently limited because of
the non-availability of convenient and suitable HTP data
analysis pipelines. Hence, the sequential analytical pipeline
(SpaTemHTP) presented here addresses these limitations and
was developed to efficiently process data generated at outdoors
platforms, that are characterized by an important amount of
exogenous variation. The pipeline embeds a modular design to
process raw HTP data for calculating spatially adjusted genotypic
estimates, which is generally a complex procedure requiring
knowledge about handling of spatial variability using mixed
models. The significance of spatial adjustment in enhancing
the quality of model estimates was also demonstrated through
extensive testing of the pipeline for different species, traits,
and experiments. Using a sequence of steps including outlier
detection, missing value imputation, and spatial adjustment (S8)
allowed to obtain smoother G-BLUEs time series that conformed
to the biological expectation, better than the ones produced by
a single-step mixed-model approach (S9). Additionally, S8 is
conceptually simpler than S9 and computationally less intensive.
The usefulness of our approach was particularly relevant for raw
data with a large amount of noise, since it could be shown that the
pipeline can easily handle up to 50% of missing values with minor
impact on the results. We could also show that our procedure
produces acceptable results up to 20–30% of contaminated data.
Furthermore, the modular design of the pipeline allows to choose
the set of operations as per user requirements, e.g., some dataset
might not require preprocessing or CPA.

The genotype adjusted means data produced by the pipeline
allows the user (breeder) to get quality data for immediate
analysis (genotype comparison) or for further analysis like
statistical genetics models (QTL, GWAS, or genomic prediction
models). Hence, this automated procedure would also be

extremely useful for larger data workflow processing strategy.
Through CPA, we also showed the use of adjusted means to
identify important time sections during an experiment, which
provides a basis for further dissection of the genetic components
in terms of Gc × TW. For example, the G-BLUEs obtained at
different OTW could be used in a multitrait QTL analysis that
would help to model genetic effects that take into consideration
the longitudinal nature of trait development. This genotype
by time analysis could also be further extended to a genotype
by time by environment analysis that will help to understand
the environmental effect on trait development. Thus, it can
be concluded that the proposed pipeline can be employed
particularly for large-scale outdoors HTP data and be beneficial
for several biological applications.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

AUTHOR CONTRIBUTIONS

SK: conceptualization, methodology development, coding R
scripts, validation, writing original draft, and review and
editing. VG: validation, coding, and review and editing of the
draft. JK and VV: conceptualization, methodology development,
supervision, and review and editing of the draft. SD: supervision,
and review and editing of the draft. RT: conceptualization,
validation, coding, and review and editing of the draft. HI:
conceptualization, validation, and review and editing of the draft.
MU: experimental data. JA: conceptualization, supervision, and
review and editing of the draft. All authors contributed to the
article and approved the submitted version.

FUNDING

This study was supported by a grant (#OPP1129603) from the
Bill and Melinda Gates Foundation to the Donald Danforth
Plant Science Center (“Sorghum Genomics Toolbox”),
CRP-GLDC ICRISAT (http://crp-gldc.icrisat.org) and PSX
(www.phenospex.com). We are immensely grateful to all
GEMS team members (www.gems.icrisat.org) for extending
their support to accomplish this study. This study was
also supported by the SICORP, Indo-Japan Joint Research
Laboratory Programme initiative ‘Data Science-based Farming
Support System for Sustainable Crop Production under
Climatic Change’ (DSFS).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpls.2020.
552509/full#supplementary-material

Frontiers in Plant Science | www.frontiersin.org 14 November 2020 | Volume 11 | Article 552509

http://crp-gldc.icrisat.org
https://phenospex.com/
http://gems.icrisat.org/
https://www.frontiersin.org/articles/10.3389/fpls.2020.552509/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2020.552509/full#supplementary-material
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-552509 November 16, 2020 Time: 15:13 # 15

Kar et al. Data-Analysis Pipeline for High-Throughput Phenotyping

REFERENCES
Artzet, S., Chen, T. W., Chopard, J., Brichet, N., Mielewczik, M., Cohen-Boulakia,

S., et al. (2019). Phenomenal: An automatic open source library for 3D shoot
architecture reconstruction and analysis for image-based plant phenotyping.
bioRxiv 2019:805739. doi: 10.1101/805739

Barker, J., Zhang, N., Sharon, J., Steeves, R., Wang, X., Wei, Y., et al. (2016).
Development of a field-based high-throughput mobile phenotyping platform.
Comput. Electron. Agricul. 122, 74–85. doi: 10.1016/j.compag.2016.01.017

Berger, B., Parent, B., and Tester, M. (2010). High-throughput shoot imaging to
study drought responses. J. Exp. Bot. 61, 3519–3528. doi: 10.1093/jxb/erq201

Billot, C., Ramu, P., Bouchet, S., Chantereau, J., Deu, M., Gardes, L., et al.
(2013). Massive sorghum collection genotyped with SSR markers to enhance
use of global genetic resources. PloS One 8: e59714. doi: 10.1371/journal.pone.
0059714

Buuren, S. V., and Groothuis-Oudshoorn, K. (2010). mice: Multivariate imputation
by chained equations in R. J. Stat. Soft. 45, 1–68. doi: 10.18637/jss.v045.i03

Cabrera Bosquet, L., Brichet, N., Fournier, C., Grau, A., Mineau, J., Negre, V.,
et al. (2015). “PHENOARCH, a multiscale phenotyping platform for plant
architecture, growth rate, water use efficiency and radiation use efficiency.
2015,” in Proceedings of the EPPN Plant Phenotyping Symposium, Nov 2015,
Barcelona, 81.

Cabrieto, J., Tuerlinckx, F., Kuppens, P., Grassmann, M., and Ceulemans, E. (2017).
Detecting correlation changes in multivariate time series: A comparison of
four non-parametric change point detection methods. Behav. Res. Methods 49,
988–1005. doi: 10.3758/s13428-016-0754-9

Cao, L., Shi, P. J., Li, L., and Chen, G. (2019). A new flexible sigmoidal growth
model. Symmetry 11:204. doi: 10.3390/sym11020204

Chapman, S. C. (2008). Use of crop models to understand genotype by
environment interactions for drought in real-world and simulated plant
breeding trials. Euphytica 161, 195–208. doi: 10.1007/s10681-007-9623-z

Coleman, J. S., McConnaughay, K. D., and Ackerly, D. D. (1994). Interpreting
phenotypic variation in plants. Trends Ecol. Evol. 9, 187–191. doi: 10.1016/
0169-5347(94)90087-6

Das Choudhury, S., Goswami, S., Bashyam, S., Samal, A., and Awada, T.
(2017). “Automated stem angle determination for temporal plant phenotyping
analysis,” in Proceedings of the IEEE International Conference on Computer
Vision Workshops , (Venice : IEEE). 2022–2029. doi: 10.1109/ICCVW.
2017.237

Das, S. P., and Padhy, S. (2017). Unsupervised extreme learning machine and
support vector regression hybrid model for predicting energy commodity
futures index. Memet. Comput. 9, 333–346. doi: 10.1007/s12293-016-0191-4

Dhillon, I. S., Guan, Y., and Kulis, B. (2004). “Kernel k-means: spectral clustering
and normalized cuts,” in Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, (New York,NY: ACM),
551–556. doi: 10.1145/1014052.1014118

Ding, C., and He, X. (2004). “K-means clustering via principal component analysis,”
in Proceedings of the twenty-first international conference on Machine learning,
29. doi: 10.1145/1015330.1015408

Dupuy, L. X., Wright, G., Thompson, J. A., Taylor, A., Dekeyser, S., White, C. P.,
et al. (2017). Accelerating root system phenotyping of seedlings through a
computer-assisted processing pipeline. Plant Methods 13:57. doi: 10.1186/
s13007-017-0207-1

Faroq, A. T., Adam, H., Dos Anjos, A., Lorieux, M., Larmande, P., Ghesquière, A.,
et al. (2013). P-TRAP: a panicle trait phenotyping tool. BMC plant biol. 13:122.
doi: 10.1186/1471-2229-13-122

Flood, P. J., Kruijer, W., Schnabel, S. K., van der Schoor, R., Jalink, H., Snel,
J. F., et al. (2016). Phenomics for photosynthesis, growth and reflectance
in Arabidopsis thaliana reveals circadian and long-term fluctuations in
heritability. Plant Methods 12:14. doi: 10.1186/s13007-016-0113-y

Galkovskyi, T., Mileyko, Y., Bucksch, A., Moore, B., Symonova, O., Price, C. A.,
et al. (2012). GiA Roots: software for the high throughput analysis of plant root
system architecture. BMC Plant Biol. 12:116. doi: 10.1186/1471-2229-12-116

Gilmour, A. R., Cullis, B. R., and Verbyla, A. P. (1997). Accounting for natural and
extraneous variation in the analysis of field experiments. J. Agricultural, Biol.
Environ. Stat. 2, 269–293. doi: 10.2307/1400446

Grubbs, F. E. (1950). Sample criteria for testing outlying observations. Ann. Math.
Stat. 21, 27–58. doi: 10.1214/aoms/1177729885

Hartmann, A., Czauderna, T., Hoffmann, R., Stein, N., and Schreiber, F. (2011).
HTPheno: an image analysis pipeline for high-throughput plant phenotyping.
BMC bioinform. 12:148. doi: 10.1186/1471-2105-12-148

Hasan, M. M., Chopin, J. P., Laga, H., and Miklavcic, S. J. (2018). Detection and
analysis of wheat spikes using convolutional neural networks. Plant Methods
14:100. doi: 10.1186/s13007-018-0366-8

Huque, M. H., Carlin, J. B., Simpson, J. A., and Lee, K. J. (2018). A comparison
of multiple imputation methods for missing data in longitudinal studies. BMC
Med. Res. Method. 18:168. doi: 10.1186/s12874-018-0615-6

Ibañez, C., Poeschl, Y., Peterson, T., Bellstädt, J., Denk, K., Gogol-Döring, A., et al.
(2017). Ambient temperature and genotype differentially affect developmental
and phenotypic plasticity in Arabidopsis thaliana. BMC Plant Biol. 17:114.
doi: 10.1186/s12870-017-1068-5

Kaya, Y., Akcura, M., Ayranci, R., and Taner, S. (2006). Pattern analysis of multi-
environment trials in bread wheat. Commun. Biometry Crop Sci. 1, 63–71.

Kholová, J., Murugesan, T., Kaliamoorthy, S., Malayee, S., Baddam, R., Hammer,
G. L., et al. (2014). Modeling the effect of plant water use traits on yield and
stay-green expression in sorghum. Funct. Plant Biol. 41, 1019–1034. doi: 10.
1071/FP13355

Kleinke, K. (2018). Multiple imputation by predictive mean matching when sample
size is small. Methodology 14, 3–15. doi: 10.1027/1614-2241/a000141

Klukas, C., Chen, D., and Pape, J. M. (2014). Integrated analysis platform: an
open-source information system for high-throughput plant phenotyping. Plant
Physiol. 165, 506–518. doi: 10.1104/pp.113.233932

Lehermeier, C., Krämer, N., Bauer, E., Bauland, C., Camisan, C., Campo, L., et al.
(2014). Usefulness of multiparental populations of maize (Zea mays L.) for
genome-based prediction. Genetics 198, 3–16. doi: 10.1534/genetics.114.161943

Marshall, A., Altman, D. G., and Holder, R. L. (2010). Comparison of imputation
methods for handling missing covariate data when fitting a Cox proportional
hazards model: a resampling study. BMC Med. Res. Methodol. 10:112. doi:
10.1186/1471-2288-10-112

Matteson, D. S., and James, N. A. (2014). A nonparametric approach for multiple
change point analysis of multivariate data. J. Am. Stat. Assoc. 109, 334–345.
doi: 10.1080/01621459.2013.849605

Morris, T. P., White, I. R., and Royston, P. (2014). Tuning multiple imputation by
predictive mean matching and local residual draws. BMC Med. Res. Methodol.
14:75. doi: 10.1186/1471-2288-14-75

Namin, S. T., Esmaeilzadeh, M., Najafi, M., Brown, T. B., and Borevitz, J. O.
(2018). Deep phenotyping: deep learning for temporal phenotype/genotype
classification. Plant Methods 14:66. doi: 10.1186/s13007-018-0333-4

Prom, L. K., Ahn, E., Isakeit, T., and Magill, C. (2019). GWAS analysis of sorghum
association panel lines identifies SNPs associated with disease response to Texas
isolates of Colletotrichum sublineola. Theor. Appl. Genet. 132, 1389–1396. doi:
10.1007/s00122-019-03285-5

R Core Team (2017). R: A language and environment for statistical computing. R
Foundation for Statistical Computing. Vienna: R Core Team.

Rebetzke, G. J., Fischer, R. T. A., Van Herwaarden, A. F., Bonnett, D. G., Chenu, K.,
Rattey, A. R., et al. (2014). Plot size matters: interference from intergenotypic
competition in plant phenotyping studies. Funct. Plant Biol. 41, 107–118. doi:
10.1071/FP13177

Ritz, C., Baty, F., Streibig, J. C., and Gerhard, D. (2015). Dose-Response Analysis
Using R. PLoS One 10:e0146021. doi: 10.1371/journal.pone.0146021

Rodríguez-Álvarez, M. X., Boer, M. P., van Eeuwijk, F. A., and Eilers, P. H. (2016).
Spatial models for field trials. arXiv preprint arXiv 2016:1607.08255.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65. doi: 10.1016/
0377-0427(87)90125-7

Rubin, D. B., and Schenker, N. (1986). Multiple imputation for interval estimation
from simple random samples with ignorable nonresponse. J. Am. Stat. Assoc.
81, 366–374. doi: 10.1080/01621459.1986.10478280

Sarker, U., Islam, M. T., Rabbani, M. G., and Oba, S. (2017). Genotypic diversity
in vegetable amaranth for antioxidant, nutrient and agronomic traits. Indian J.
Genet. Pl. Breed 77, 173–176. doi: 10.5958/0975-6906.2017.00025.6

Shi, P. J., Chen, L., Hui, C., and Grissino-Mayer, H. D. (2016). Capture the time
when plants reach their maximum body size by using the beta sigmoid growth
equation. Ecol. Modeling 320, 177–181. doi: 10.1016/j.ecolmodel.2015.09.012

Sivasakthi, K., Thudi, M., Tharanya, M., Kale, S. M., Kholova, J., Halime,
M. H., et al. (2017). High throughput phenotyping and advanced genotyping

Frontiers in Plant Science | www.frontiersin.org 15 November 2020 | Volume 11 | Article 552509

https://doi.org/10.1101/805739
https://doi.org/10.1016/j.compag.2016.01.017
https://doi.org/10.1093/jxb/erq201
https://doi.org/10.1371/journal.pone.0059714
https://doi.org/10.1371/journal.pone.0059714
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.3758/s13428-016-0754-9
https://doi.org/10.3390/sym11020204
https://doi.org/10.1007/s10681-007-9623-z
https://doi.org/10.1016/0169-5347(94)90087-6
https://doi.org/10.1016/0169-5347(94)90087-6
https://doi.org/10.1109/ICCVW.2017.237
https://doi.org/10.1109/ICCVW.2017.237
https://doi.org/10.1007/s12293-016-0191-4
https://doi.org/10.1145/1014052.1014118
https://doi.org/10.1145/1015330.1015408
https://doi.org/10.1186/s13007-017-0207-1
https://doi.org/10.1186/s13007-017-0207-1
https://doi.org/10.1186/1471-2229-13-122
https://doi.org/10.1186/s13007-016-0113-y
https://doi.org/10.1186/1471-2229-12-116
https://doi.org/10.2307/1400446
https://doi.org/10.1214/aoms/1177729885
https://doi.org/10.1186/1471-2105-12-148
https://doi.org/10.1186/s13007-018-0366-8
https://doi.org/10.1186/s12874-018-0615-6
https://doi.org/10.1186/s12870-017-1068-5
https://doi.org/10.1071/FP13355
https://doi.org/10.1071/FP13355
https://doi.org/10.1027/1614-2241/a000141
https://doi.org/10.1104/pp.113.233932
https://doi.org/10.1534/genetics.114.161943
https://doi.org/10.1186/1471-2288-10-112
https://doi.org/10.1186/1471-2288-10-112
https://doi.org/10.1080/01621459.2013.849605
https://doi.org/10.1186/1471-2288-14-75
https://doi.org/10.1186/s13007-018-0333-4
https://doi.org/10.1007/s00122-019-03285-5
https://doi.org/10.1007/s00122-019-03285-5
https://doi.org/10.1071/FP13177
https://doi.org/10.1071/FP13177
https://doi.org/10.1371/journal.pone.0146021
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1080/01621459.1986.10478280
https://doi.org/10.5958/0975-6906.2017.00025.6
https://doi.org/10.1016/j.ecolmodel.2015.09.012
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-552509 November 16, 2020 Time: 15:13 # 16

Kar et al. Data-Analysis Pipeline for High-Throughput Phenotyping

reveals QTLs for plant vigor and water saving traits in a “QTL-hotspot”:
New opportunities for enhancing drought tolerance in chickpea. Hyderabad:
International Crops Research Institute for the Semi-Arid Tropics.

Sorrells, M. E. (2015). “Genomic selection in plants: empirical results and
implications for wheat breeding,” in Advances in Wheat Genetics: From Genome
to Field, eds Y. Ogihara, S. Takumi, and H. Handa (Tokyo: Springer), 401–409.

Steinbach, M., Ertöz, L., and Kumar, V. (2004). The challenges of clustering high
dimensional data. In New directions in statistical physics. Berlin: Springer,
273–309. doi: 10.1007/978-3-662-08968-2_16

Sun, Y., and Genton, M. G. (2011). Functional boxplots. J. Comput. Graph. Stat. 20,
316–334. doi: 10.1198/jcgs.2011.09224

Tello, J., Montemayor, M. I., Forneck, A., and Ibáñez, J. (2018). A new image-
based tool for the high throughput phenotyping of pollen viability: evaluation
of inter- and intra-cultivar diversity in grapevine. Plant methods 14, 3. doi:
10.1186/s13007-017-0267-2

Tisne, S., Serrand, Y., Bach, L., Gilbault, E., Ben Ameur, R., Balasse, H., et al.
(2013). Phenoscope: an automated large−scale phenotyping platform offering
high spatial homogeneity. Plant J. 74, 534–544. doi: 10.1111/tpj.12131

Trivedi, T. P. (2008). Handbook of Agriculture. Directorate of Information and
Publications of Agriculture. New Delhi, India: Indian Council of Agricultural
Research.

Tulu, L., and Wondimu, A. (2019). Adaptability and yield stability of bread wheat
(Triticum aestivum) varieties studied using GGE-biplot analysis in the highland
environments of South-western Ethiopia. Afr. J. Plant Sci. 13, 153–162. doi:
10.5897/AJPS2019.1785

Tyagi, V., Dhillon, S. K., Bajaj, R. K., and Gupta, S. (2015). Phenotyping and
genetic evaluation of sterile cytoplasmic male sterile analogues in sunflower
(Helianthus annuus L.). Bangladesh J. Bot. 44, 23–30. doi: 10.3329/bjb.v44i1.
22719

Upadhyaya, H. D., Ortiz, R., Bramel, P. J., and Singh, S. (2002). Phenotypic diversity
for morphological and agronomic characteristics in chickpea core collection.
Euphytica 123, 333–342. doi: 10.1023/A:1015088417487

Vadez, V., Kholová, J., Hummel, G., Zhokhavets, U., Gupta, S. K., and Hash, C. T.
(2015). LeasyScan: a novel concept combining 3D imaging and lysimetry for
high-throughput phenotyping of traits controlling plant water budget. J. Exp.
Bot. 66, 5581–5593. doi: 10.1093/jxb/erv251

van Buuren, S., and Groothuis-Oudshoorn, K. (2009). Multivariate Imputation by
Chained Equations. Leiden: TNO.

van der Heijden, G., Song, Y., Horgan, G., Polder, G., Dieleman, A., Bink,
M., et al. (2012). SPICY: towards automated phenotyping of large pepper
plants in the greenhouse. Funct. Plant Biol. 39, 870–877. doi: 10.1071/
FP12019

van Dusschoten, D., Metzner, R., Kochs, J., Postma, J. A., Pflugfelder, D., Bühler,
J., et al. (2016). Quantitative 3D analysis of plant roots growing in soil using

magnetic resonance imaging. Plant Physiol. 170, 1176–1188. doi: 10.1104/pp.
15.01388

Van Eeuwijk, F. A., Bustos-Korts, D., Millet, E. J., Boer, M. P., Kruijer, W.,
Thompson, A., et al. (2019). Modelling strategies for assessing and increasing
the effectiveness of new phenotyping techniques in plant breeding. Plant Sci.
282, 23–39. doi: 10.1016/j.plantsci.2018.06.018

Velazco, J. G., Rodríguez-Álvarez, M. X., Boer, M. P., Jordan, D. R., Eilers, P. H.,
Malosetti, M., et al. (2017). Modeling spatial trends in sorghum breeding field
trials using a two-dimensional P-spline mixed model. Theor. Appl. Genet. 130,
1375–1392. doi: 10.1007/s00122-017-2894-4

Virlet, N., Sabermanesh, K., Sadeghi-Tehran, P., and Hawkesford, M. J. (2017).
Field Scanalyzer: An automated robotic field phenotyping platform for
detailed crop monitoring. Funct. Plant Biol. 44, 143–153. doi: 10.1071/FP1
6163

VSN International. (2015). Genstat for Windows 18th Edition. Hemel Hempstead,
UK: VSN International.

White, I. R., Royston, P., and Wood, A. M. (2011). Multiple imputation using
chained equations: issues and guidance for practice. Stat. Med. 30, 377–399.
doi: 10.1002/sim.4067

Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J. H., Batchelor, W. D., et al.
(2020). Crop Phenomics and High-throughput Phenotyping: Past Decades,
Current Challenges and Future Perspectives. Mole. Plant 13, 187–214. doi:
10.1016/j.molp.2020.01.008

Yin, X., Goudriaan, Jan, Lantinga, E. A., Vos, Jan, and Spiertz, H. J. (2003). A
flexible sigmoid function of determinate growth. Ann. Bot. 91, 361–371. doi:
10.1093/aob/mcg029

Zaman-Allah, M., Vergara, O., Araus, J. L., Tarekegne, A., Magorokosho, C., Zarco-
Tejada, P. J., et al. (2015). Unmanned aerial platform-based multi-spectral
imaging for field phenotyping of maize. Plant Methods 11, 1–10. doi: 10.1186/
s13007-015-0078-2

Zhokhavets, U., Hummel, G. M., Schwartz, S., and Phenospex, B. V. (2018). System
for the Optical Detection of Objects. U.S. Patent Appl. 1:541.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Kar, Garin, Kholová, Vadez, Durbha, Tanaka, Iwata, Urban
and Adinarayana. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 16 November 2020 | Volume 11 | Article 552509

https://doi.org/10.1007/978-3-662-08968-2_16
https://doi.org/10.1198/jcgs.2011.09224
https://doi.org/10.1186/s13007-017-0267-2
https://doi.org/10.1186/s13007-017-0267-2
https://doi.org/10.1111/tpj.12131
https://doi.org/10.5897/AJPS2019.1785
https://doi.org/10.5897/AJPS2019.1785
https://doi.org/10.3329/bjb.v44i1.22719
https://doi.org/10.3329/bjb.v44i1.22719
https://doi.org/10.1023/A:1015088417487
https://doi.org/10.1093/jxb/erv251
https://doi.org/10.1071/FP12019
https://doi.org/10.1071/FP12019
https://doi.org/10.1104/pp.15.01388
https://doi.org/10.1104/pp.15.01388
https://doi.org/10.1016/j.plantsci.2018.06.018
https://doi.org/10.1007/s00122-017-2894-4
https://doi.org/10.1071/FP16163
https://doi.org/10.1071/FP16163
https://doi.org/10.1002/sim.4067
https://doi.org/10.1016/j.molp.2020.01.008
https://doi.org/10.1016/j.molp.2020.01.008
https://doi.org/10.1093/aob/mcg029
https://doi.org/10.1093/aob/mcg029
https://doi.org/10.1186/s13007-015-0078-2
https://doi.org/10.1186/s13007-015-0078-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	SpaTemHTP: A Data Analysis Pipeline for Efficient Processing and Utilization of Temporal High-Throughput Phenotyping Data
	Introduction
	Materials and Methods
	Data and Test-Site Description
	Pipeline Overview
	Stage 1: Preprocessing
	Outlier Detection
	Missing Value Imputation

	Stage 2: G-BLUE Computation With Spatial Adjustment
	Single-Step Mixed-Model G-BLUE Computation
	Validation of the G-BLUE Computation
	Cross Validation
	Between Experiment Comparison
	Simulations
	Assessment of the Genotype Growth Patterns

	Stage 3: Temporal Analysis of G-BLUEs
	Genotypic Clusters  Time Window Analysis
	Pipeline Code and Data Availability

	Results
	Validation
	Cross Validation
	Between Experiment Comparison
	Simulations
	Assessment of the Genotype Growth Patterns

	Change-Point Analysis of G-BLUEs
	Gc  TW Analysis

	Discussion
	Effect of Data Preprocessing
	Effect of Spatial Adjustment
	Temporal Analysis of G-BLUEs

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


