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The conserved oligomeric Golgi (COG) complex, functioning in retrograde trafficking,
is a universal structure present among eukaryotes that maintains the correct Golgi
structure and function. The COG complex is composed of eight subunits coalescing
into two sub-complexes. COGs1–4 compose Sub-complex A. COGs5–8 compose
Sub-complex B. The observation that COG interacts with the syntaxins, suppressors of
the erd2-deletion 5 (Sed5p), is noteworthy because Sed5p also interacts with Sec17p
[alpha soluble NSF attachment protein (α-SNAP)]. The α-SNAP gene is located within
the major Heterodera glycines [soybean cyst nematode (SCN)] resistance locus (rhg1)
and functions in resistance. The study presented here provides a functional analysis of
the Glycine max COG complex. The analysis has identified two paralogs of each COG
gene. Functional transgenic studies demonstrate at least one paralog of each COG
gene family functions in G. max during H. glycines resistance. Furthermore, treatment
of G. max with the bacterial effector harpin, known to function in effector triggered
immunity (ETI), leads to the induced transcription of at least one member of each
COG gene family that has a role in H. glycines resistance. In some instances, altered
COG gene expression changes the relative transcript abundance of syntaxin 31. These
results indicate that the G. max COG complex functions through processes involving
ETI leading to H. glycines resistance.

Keywords: conserved oligomeric Golgi (COG) complex, soybean, nematode, disease resistance, harpin, elicitor,
effector triggered immunity (ETI)

INTRODUCTION

Heterodera glycines [soybean cyst nematode (SCN)] is the most economically important pathogen
of Glycine max (soybean). The infection of G. max by H. glycines accounts for a 7–10% decrease
in yield and causes more economic loss than the rest of its pathogens combined losses (Wrather
et al., 2001; Wrather and Koenning, 2006). G. max may show clear signs of H. glycines parasitism,

Abbreviations: COG, conserved oligomeric Golgi; ETI, effector triggered immunity.
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including chlorosis and stunting. However, in some cases,
no adverse signs of parasitism may be observed, except an
approximately 15% decrease in yield (Wang et al., 2003). The life
cycle of H. glycines is 30 or more days, dependent on ambient
temperatures (Lauritis et al., 1983). During its obligate parasitic
life cycle, H. glycines females become a hardened cyst, which is
its carcass that contains 250–500 fertilized eggs. While within
the cyst in the soil, the eggs may remain dormant for up to
9 years. Once the proper conditions occur, H. glycines eggs hatch
as second-stage juveniles (J2s). Then, the J2s migrate toward
and then burrow into the root. As they burrow, the J2s slice
through root cells including epidermal, cortex, and endodermal
cells with a mouth apparatus known as a stylet that is both rigid
and tubular. It takes approximately 24 h for the J2 to reach its site
of parasitism (Endo, 1965; Endo, 1991). Another function of the
H. glycines stylet is to deliver effectors into a G. max pericycle
or neighboring cell that it will parasitize. During this process,
occurring over a period of days, the cell walls of the H. glycines-
parasitized root cells dissolve. The cell walls dissolve through
enzymatically driven processes facilitated by the nematode. As
a result, 200–250 neighboring root cells are incorporated into
a common cytoplasm producing a multinucleate syncytium.
Notably, the syncytium is also where the localized defense
response occurs, a process involving components of effector
triggered immunity (ETI) and pathogen-activated molecular
pattern (PAMP)-triggered immunity (PTI) (Ross, 1958; Endo,
1965, 1991; Jones and Dangl, 2006; Matsye et al., 2011, 2012; Pant
et al., 2014; McNeece et al., 2017, 2019) (Figure 1).

Experiments performed in G. max show that part of its major
resistance locus to the parasitic nematode H. glycines, rhg1,
contains alpha soluble NSF attachment protein (α-SNAP) in
tandemly copied arrays also including an amino acid transporter
and a wound inducible protein (Caldwell et al., 1960; Matsye
et al., 2011; Cook et al., 2012). Subsequent experiments have
shown α-SNAP has a role in resistance (Matsye et al., 2012;
Cook et al., 2012; Sharma et al., 2016). However, the genetic
diversity of H. glycines has both complicated and facilitated the
analysis of the rhg1 locus and resistance in general (Golden et al.,
1970; Riggs and Schmitt, 1988). These observations are consistent
with experiments showing membrane fusion apparatus proteins
participating in vesicle transport having a role in the plant defense
to pathogens (Collins et al., 2003). In those experiments, the
SNARE protein syntaxin 121 (SYP121) functions in impairing
fungal haustorial penetration, and thus, the mutant locus was first
called penetration1 (pen1) (Collins et al., 2003). Since those initial
observations, numerous other membrane fusion proteins found
at various subcellular membrane-enveloped structures have been
shown to function in defense processes (Lipka et al., 2005).
More recent experiments performed in Hordeum vulgare (wheat)
identified its COG3 (HvCOG3) functions during its defense
response to cellular penetration by the fungal pathogen Blumeria
graminis f.sp. hordei. (Ostertag et al., 2013). A number of G. max
homologs of membrane fusion proteins, including 20S particle
components and myosin XI, have been shown to function during
the resistant reaction it has to parasitic nematodes (Matsye et al.,
2012; Sharma et al., 2016; Klink et al., 2017; Austin et al., 2019).
However, the COG complex has not yet been studied.

FIGURE 1 | Heterodera glycines life cycle. (A) Eggs. (B) Second-stage
juveniles (J2). (C) Root infected with J2 at 1 day post infection (dpi). (D) 3 dpi.
(E) 6 dpi. (F) 30 dpi. The blue arrow indicates the nematode that will
experience a compatible reaction, leading to plant susceptibility (S). The
orange arrow indicates a nematode that will experience an incompatible
reaction, leading to resistance (R). H. glycines development halts at the J2
stage during a resistant reaction in G. max[Peking/PI 548402]. Syncytia have
been distinguished where, at 3 dpi, they are undergoing susceptible or
resistant reactions that appear similar cytologically, showing features that
include hypertrophy, an enlargement of nuclei, the development of dense
cytoplasm, and an increase in endoplasmic reticulum (ER) and ribosome
content. Due to these similarities, the 6 dpi time point is indicated,
distinguishing a susceptible (red) and resistant (cyan) reaction because the
syncytia undergoing a susceptible reaction are characterized by hypertrophy
of nuclei and nucleoli, proliferation of cytoplasmic organelles, a reduction and
dissolution of the vacuole, and cell expansion by incorporating adjacent cells.
The resistant reaction, in contrast, shows cytoplasmic characteristics that are
genotype-specific. The 6 dpi G. max[Peking/PI 548402] reaction has cell wall
appositions, structures that aggregate cytoplasmic components through actin
polarization and vesicle-mediated delivery of cargo, the production of a
necrotic layer of cells that surrounds the syncytium, and the accumulation of
ER. The G. max[Peking/PI 548402] resistant reaction leads to H. glycines
development being blocked at the J2 stage. The G. max[PI 88788] resistant
reaction lacks cell wall appositions and lacks a necrotic layer of cells that
surrounds the syncytium during the resistant reaction while having an
accumulation of ER. The G. max[PI 88788] resistant reaction leads to
H. glycines development being blocked at J3–J4 stage.

The α-SNAP gene was originally identified in Saccharomyces
cerevisiae as Sec17 in a genetic screen designed to find proteins
that function in secretion (Novick et al., 1980). The α-SNAP
gene is part of a larger complex known as the 20S particle that
functions in the fusion of vesicles to target membranes, leading
to the secretion of cargo (Söllner et al., 1993a,b). Experiments
performed in S. cerevisiae show Sec17p binds to the suppressors
of the erd2-deletion 5 (Sed5p), known in plants as syntaxin 31
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(Hardwick and Pelham, 1992; Lupashin et al., 1997; Bubeck et al.,
2008). Both α-SNAP and syntaxin 31 have roles in the defense
process G. max has to H. glycines (Matsye et al., 2012; Cook
et al., 2012; Pant et al., 2014; Sharma et al., 2016). Sed5p is
involved in retrograde trafficking through its interaction with the
conserved oligomeric Golgi (COG) complex (Shestakova et al.,
2007). Therefore, an indirect link exists between COG and α-
SNAP through Sed5p and implicates the COG complex as having
an important role in the defense process that G. max has toward
H. glycines parasitism.

The COG complex is universal among eukaryotes,
maintaining the correct structure and function of the Golgi
apparatus (Ungar et al., 2002; Vukašinović and Žárský, 2016).
An important facet of the COG complex is its role in retrograde
trafficking occurring between the Golgi cisternae (Ungar
et al., 2002). Furthermore, as part of its function, the COG
complex plays an important role in the homeostasis of enzyme
glycosylation (Ungar et al., 2002).

The COG complex is composed of eight subunits (Whyte and
Munro, 2001; Ungar et al., 2002; Willett et al., 2013). The eight
COG complex subunits coalesce into two sub-complexes (Fotso
et al., 2005; Ungar et al., 2005). Sub-complex A is composed
of COGs1–4, while sub-complex B is composed of COGs5–8
(Ungar et al., 2002). Components of the COG complex interact
with the soluble N-ethylmaleimide-sensitive factor attachment
protein receptor (SNARE), which is part of the 20S particle,
to effect membrane fusion (Söllner et al., 1993a,b; Cottam and
Ungar, 2012; Jahn and Fasshauer, 2012; Willett et al., 2013).
The COG complex also functions along with other SNARE
interacting proteins, Rabs, tethers containing coiled-coil proteins
and various molecular motors to perform its functions (Cottam
and Ungar, 2012; Willett et al., 2013). Consequently, the COG
complex performs a central role in the retrograde movement of
materials between Golgi cisternae.

Much understanding of the COG complex function has come
from mutant analyses in S. cerevisiae. For example, S. cerevisiae
mutants of COGs1–3 (i.e., sec36, sec35, and sec34, respectively)
exhibit very slow growth, while COG4 (cod1/sec38) mutants are
inviable (Whyte and Munro, 2001; Ram et al., 2002). In contrast,
mutants of COGs5–8 (cod4, sec37, cod6, and dor1, respectively)
are viable. The growth deficiencies are caused by various
impairments of Golgi function involving retrograde trafficking.

In plants, the Arabidopsis thaliana embryo yellow (eye) mutant
phenotype, which has impaired cell expansion and meristem
organization, results from a mutation in the AtCOG7 gene
AT5G51430 (Ishikawa et al., 2008). A surprising observation
in A. thaliana is that AtCOG2 (AT4G24840) performs a
role in recruiting the exocyst complex to xylem cell sites of
secondary cell wall deposition (Oda et al., 2015). This process
appears to involve the targeting of the exocyst to microtubules
through the direct interaction of exocyst subunits with the
COG2 protein (Vukašinović et al., 2017). COG3 (AT1G73430)
and COG8 (AT5G11980) perform a number of functions
including modulating the morphology of the Golgi apparatus and
homeostasis during vesicle trafficking and also being essential
for pollen tube growth (Tan et al., 2016). COG6 (AT1G31780) is
essential for the maintenance of the Golgi structure and pollen

tube growth (Rui et al., 2020). No clear role has been shown for
A. thaliana COG1 (AT5G16300), COG4 (AT4G01400), or COG5
(AT1G67930). For a detailed treatise on the plant COG complex
and the plant vesicle transport system in general, the reviewer
is directed to Vukašinović and Žárský (2016). Consequently, in
contrast to what is understood in S. cerevisiae, very little is known
about the COG complex in plants and even less regarding its
role during pathogenic interactions. Therefore, the interaction
between G. max and H. glycines presents an opportunity to better
understand plant defense responses, especially since α-SNAP and
a COG-interacting protein, syntaxin, function in the resistant
reaction (Cook et al., 2012; Matsye et al., 2012; Pant et al., 2014).

The study presented here is devoted to the characterization
of the entire COG complex gene family of G. max as it
relates to determining a potential role during its resistant
reaction to the parasitic nematode H. glycines. The experiments
presented here began by determining whether the COG complex
gene family members are present in the genome of G. max.
The 16 G. max COG complex genes have been cloned and
genetically engineered for their overexpression in the H. glycines-
susceptible genotype G. max[Williams 82/PI 518671] to see if
that susceptible genotype became resistant to parasitism. In
contrast, the entire COG complex gene family has been cloned
and genetically engineered for its suppressed expression by
RNA interference (RNAi) in the H. glycines-resistant genotype
G. max[Peking/PI 548402] to see if that resistant genotype became
susceptible to parasitism. COG gene expression assays using
reverse transcriptase quantitative PCR (RT-qPCR) demonstrate
the appropriate increased or decreased transcript abundances of
the COG complex genes as a consequence of their transgenically
driven overexpression or RNAi, respectively. The experiments
demonstrate the involvement of specific COG complex gene
family members functioning during the engineered resistance
reaction, while their suppressed transcription by RNAi leads to
engineered susceptibility to H. glycines parasitism. Furthermore,
treatment of G. max with the bacterial elicitor harpin leads to
induced expression of COG genes that function in resistance to
H. glycines. This result indicates that ETI plays a role in activating
the COG gene expression that functions in G. max resistance to
H. glycines. Lastly, in some cases, COG gene expression appears
to regulate the expression of syntaxin 31.

MATERIALS AND METHODS

Experiment Details
Three independent biological replicates have been used for each
experiment with each independent biological replicate having
10–25 experimental replicate plants. For RT-qPCR studies,
three independent biological replicate lines were compared.
For the female index (FI) studies using transgenic COG-
overexpressing (OE), COG-RNAi, and their respective pRAP15-
ccdB and pRAP17-ccdB control lines, the analysis used three
independent biological replicates, each independent biological
replicate having 10–25 experimental replicate plants. For the
harpin effector RT-qPCR analyses, three independent biological
replicates have been used, employing the same RNA that
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had been used in Aljaafri et al. (2017). A total of 10 plants
were studied in each biological replicate and control in the
experiments of Aljaafri et al. (2017). For the syntaxin 31 RT-
qPCR analyses, three independent biological replicates have been
used. Consequently, three independent biological replicates have
been used in these analyses. Furthermore, a minimum of three
independent biological replicates have been used in order to
enable an assessment of significance.

Conserved Oligomeric Golgi Gene
Identification
The G. max genome sequence, assembly, and annotation
are housed at Phytozome1 (Goodstein et al., 2012). The
G. max proteome has been queried with the conceptually
translated A. thaliana COG gene sequences using the Basic
Local Alignment Search Tool (BLAST) (Altschul et al., 1990).
The comparative analyses have been performed in Phytozome
using the default settings, including Target type: Proteome;
Program: BLASTP-protein query to protein database; Expect
(E) threshold: −1; Comparison matrix: BLOSUM62; Word (W)
length: default = 3; number of alignments to show: 100 allowing
for gaps and filter query.

Gene Cloning and Generation of
Transgenic G. max
The more recent Glycine max Wm82.a2.v1 annotation has been
used in the design of PCR primer sequences (Supplementary
Table 1) (Lawaju et al., 2018). COG gene amplicons are
generated by PCR using the Accuprime Taq Polymerase System
(Invitrogen) according to the manufacturer’s instructions. The
PCR reaction contents are run on a 1% agarose gel with
the COG gene amplicons purified using the Wizard SV
Gel and PCR Clean-Up System (Promega) according to the
manufacturer’s instructions. Cloning of the COG amplicons is
accomplished through ligation into the pENTR/D-TOPO entry
vector using the pENTR/D-TOPO Cloning Kit (Invitrogen)
according to the manufacturer’s instructions. Subsequently, the
ligation reaction contents undergo transformation into One
Shot TOP10 Chemically Competent Escherichia coli (TOP 10)
(Invitrogen) cells according to the manufacturer’s instructions.
Chemical selection occurs on Luria–Bertani (LB) agar plates
that contain 50 µg/ml kanamycin. After 14 h, colonies
are picked and grown in 3 ml of liquid LB containing
50 µg/ml kanamycin. After 14 h, the colonies undergo
plasmid isolation using the Wizard Plus SV Minipreps DNA
Purification System (Promega) according to the manufacturer’s
instructions. The confirmed COG gene amplicons are ligated
into the Gateway-compatible overexpression (pRAP15) or
RNAi (pRAP17) destination vectors using the Gateway LR
Clonase Enzyme mix (Invitrogen) according to their instructions
(Curtis and Grossniklaus, 2003; Klink et al., 2009; Matsye
et al., 2012). The promoter driving the expression of the
overexpression and RNAi cassettes is the figwort mosaic virus
(FMV) sub-genomic transcript (Sgt) promoter (Bhattacharyya

1https://phytozome.jgi.doe.gov

et al., 2002). The FMV-Sgt promoter consists of a 301-bp
FMV Sgt promoter fragment [sequence −270 to +31 from
the transcription start site (TSS)] (Bhattacharyya et al., 2002).
The promoter has been used in the design of the pRAP15
and pRAP17 vectors (Klink et al., 2009; Matsye et al., 2012).
The RNAi cassette of pRAP17 is designed to produce a
hairpin RNA having inverted repeats (Curtis and Grossniklaus,
2003; Klink et al., 2009). The experimental controls are the
un-engineered pRAP15 or pRAP17 vectors. However, these
vectors have the ccdB gene that is positioned where, otherwise,
the COG gene amplicon is directionally inserted during the
LR clonase reaction. Consequently, this feature makes the
un-engineered vectors [pRAP15-ccdB (overexpression control)
and pRAP17-ccdB (RNAi control)] suitable as controls for
any non-specific effects from gene overexpression or RNAi
(McNeece et al., 2019). The LR reaction contents undergo
transformation into chemically competent E. coli TOP 10
cells, having been performed according to the manufacturer’s
instructions. Chemical selection occurs on LB agar plates that
contain 5 µg/ml tetracycline. COG gene-specific primers are
used in PCR reactions to confirm the presence of the targeted
gene (Supplementary Table 1). The COG gene-containing
pRAP15/17 destination vectors undergo transformation into
chemically competent Agrobacterium rhizogenes K599 (K599)
using the freeze–thaw transformation procedure (Hofgen and
Willmitzer, 1988; Haas et al., 1995; Collier et al., 2005;
Lawaju et al., 2018).

Production of Transgenic Plants for
Functional Experiments
Transgenic plants have been generated according to Lawaju et al.
(2018). The 250-ml culture of K599 that is transformed with the
COG-containing plasmid is pelleted through centrifugation in
a Sorvall RC6 Plus Superspeed Centrifuge at 4oC for 20 min.
The resulting K599 pellet is resuspended in Murashige and
Skoog medium including vitamins (MS) (Duchefa Biochemie)
containing 3.0% sucrose, pH 5.7 (MS media). The COG
genes have been engineered to undergo overexpression in the
H. glycines-susceptible genotype G. max[Williams 82/PI 518671]. In
contrast, the COG genes have been engineered to undergo RNAi
in the H. glycines-resistant genotype G. max[Peking/PI 548402].
Transgenic G. max plants are made by cutting off the root of
a 1-week-old plant at the hypocotyl using a new, sterile razor
blade. The plants are immersed in the K599 solution in a Petri
dish prior to cutting. This step provides the transformed K599
immediate access into the wound site made by the removal of
the root. Then, 25 rootless plants are placed in a 140-ml glass
beaker containing 25 ml of transformed K599 in MS media
solution. Infiltration of the plant tissue, having the transformed
K599, occurs under a vacuum for 5 min. The pump is turned
off after 5 min, and the plants are left in the vacuum for an
additional 10 min. The vacuum is then slowly released, allowing
the transformed K599 further entry into the plant tissue. After
the vacuum is completely released, the cut ends of G. max
are placed individually into fresh coarse Vermiculite Grade A-
3 (Palmetto Vermiculite) in 50-cell 725602C Propagation Trays
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held in 710245C Standard Flats with holes in the bottom
(T.O. Plastics) at a depth of 3–4 cm deep. The plant trays
are then placed in a Sterilite, 25 Qt/23 L Modular Latch Box
(Sterilite). The container is then covered with its lid. The
covered containers are placed under lights at a distance of
20 cm from standard fluorescent cool white 4,100 K, 32-watt
bulbs. The bulbs, emitting 2,800 lumens (Sylvania), are used to
illuminate the plants for 5 days at ambient lab temperatures
(22◦C) on a 16/8 light/dark cycle. The plants are subsequently
transferred to the greenhouse. The plants are removed from the
container, allowing their recovery for 1 week. Visual selection
of transgenic G. max roots occurs with the enhanced green
fluorescent protein (eGFP) visual reporter (Haseloff et al., 1997).
Visualization occurs using the Dark Reader Spot Lamp (SL10S)
(Clare Chemical Research). Roots exhibiting the eGFP reporter
expression will also possess the COG gene expression cassette.
The eGFP and COG genes each have their own promoter and
terminator sequences. COG gene transfer occurs because K599
shuttles the DNA cassette located between the left and right
borders of the pRAP15 and pRAP17 destination vectors into
the root cell chromosomal DNA. As a consequence, the gene
is stably integrated into the root somatic cell chromosome,
even though the DNA cassette is not incorporated into the
germline (Tepfer, 1984; Haas et al., 1995; Collier et al., 2005).
The resultant root develops from the base of a non-transgenic
shoot stock, leading to the production of a genetically mosaic
plant. Therefore, each individual transgenic root system is an
independent transformant line. Culture of the transgenic plants
occurs in Ray Leach “Cone-tainer” (SC10) pots (Stuewe and
Sons, Inc.). These pots are secured in a Ray Leach Tray (RL98)
(Stuewe and Sons, Inc.). The soil is a sandy (93.00% sand, 5.75%
silt, and 1.25% clay) mixture. The plants are then allowed to
recover for 2 weeks prior to the start of the experiments. The
effect that the genetic constructs have on G. max COG gene
expression is confirmed by RT-qPCR. (Please refer to RT-qPCR-
related section.)

PCR and Reverse Transcriptase
Quantitative PCR of Conserved
Oligomeric Golgi Complex Gene Family
Members
The determination of the extent of COG gene expression in
transgenic G. max is accomplished by RT-qPCR according
to Lawaju et al. (2018). The analysis procedure uses Taqman
6-carboxyfluorescein (6-FAM)-labeled probes and Black
Hole Quencher (BHQ1) (MWG Operon) (Supplementary
Table 1) according to the manufacturer’s instructions. The
control used in the RT-qPCR experiments is designed from a
ribosomal S21 (RPS21) protein coding gene (Glyma.15G147700)
(Supplementary Table 1). The relative change in gene expression
that is caused by the genetic engineering event is calculated
using 2−11CT (Livak and Schmittgen, 2001). The p-values
have been calculated using a Student’s t-test for the replicated
RT-qPCR reactions (Yuan et al., 2006). Experiments and
statistical analyses have been performed from three independent
biological replicates.

Assaying the Effect Altered Conserved
Oligomeric Golgi Gene Expression Has
on Nematode Parasitism
Heterodera glycines infections of transgenic plants are performed
according to the procedures described in Lawaju et al. (2018).
H. glycines[NL1−Rhg/HG−type 7/race 3] eggs are obtained from
cysts, collected from 60-day-old greenhouse-grown G. max stock
plants grown in 500-cm3 polystyrene pots. Extraction of the
H. glycines cysts from the stock G. max plants occurs by
sucrose flotation. The roots containing the H. glycines cysts are
then washed. Washing occurs through nested 850-µm-pore and
250-µm-pore sieves. Collection of the H. glycines cysts occurs
from the 250-µm-pore sieve. A mortar and pestle are used to
grind the H. glycines cysts to release eggs. Gravitational sieving
and subsequent sucrose centrifugation are used to obtain the
H. glycines eggs. Nested 75-µm-pore over 25-µm-pore sieves are
used to recover the H. glycines eggs. Subsequently, H. glycines J2s
are collected from hatched eggs. This occurs using a modified
Baermann funnel that is placed on a Slide Warmer (Model
77) (Marshall Scientific) at 28◦C. Hatching H. glycines egg
occurs after 4–7 days. Subsequently, H. glycines J2s are collected.
Collection occurs on a 25-µm-pore sieve, placed in 1.5-ml tubes.
Centrifugation of the tube and its contents occurs at 10,000 rpm
for 1 min. This step is followed by washing the contents
with sterile distilled water and subsequent centrifugation again.
Concentrating the J2s occurs by centrifugation in an IEC clinical
centrifuge. This step is done for 30 s at 1,720 rpm to obtain a
final optimized concentration of 2,000 pi-J2/ml. Subsequently,
each plant having the transgenic root is inoculated with 1 ml of
H. glycines. The H. glycines concentration is 2,000 J2s/ml per root
system (per plant). Infection of the transgenic root systems by
H. glycines is allowed to proceed for 30 days. At the experiment’s
conclusion, the cysts are collected over nested 20- and 100-
mesh sieves. To ensure collection of all cysts for enumeration of
the female index (FI), the soil is washed several times and the
rinse water sieved.

The community-accepted standard representation of the
obtained data is the FI; FI = (Nx/Ns)× 100 (Golden et al., 1970).
In the experiments presented here, Nx is the pRAP-COG gene-
transformed (experimental) line. Ns is the pRAP-ccdB (control)
line. For the analysis purposes presented here, the FI is calculated
as cysts per whole root system (wr) grown within 100 cc of soil
and also cysts per gram (pg) of root system. Each analysis has
its own purpose. From a historical perspective, the wr system
analysis determines the FI regardless of any differences in G. max
or H. glycines genotype regarding root performance prior to or
during infection. In contrast, the cyst pg of root system analysis
accounts for possible altered root growth that is being caused
by the influence of the overexpression or RNAi of the candidate
G. max COG gene and/or nematode. For every experiment, three
biological replicates are made for each construct. Furthermore,
each biological replicate has 10–25 individual transgenic plants
each that serve as experimental replicates. The pRAP15-ccdB
overexpression control had 943.09± 275.47 cysts per root system
in 100 cc of soil (p < 0.001). The pRAP17-ccdB RNAi had
7.77 ± 2.29 cysts per root system in 100 cc of soil (p < 0.001).
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Statistical analyses have employed the Mann–Whitney–Wilcoxon
(MWW) rank-sum test, which is a non-parametric test of
the null hypothesis not requiring the assumption of normal
distributions (p < 0.05 cutoff) (Mann and Whitney, 1947).
Root mass has been determined from fresh weight and analyzed
using MWW (p < 0.05 cutoff). Experiments and statistical
analyses have been performed from three independent biological
replicates, with each biological replicate having 15–25 individual
transgenic plants.

RESULTS

Identification of G. max Conserved
Oligomeric Golgi Complex Genes and
Expression
The purpose of the analysis presented here is to understand
whether, in G. max, its COG complex functions during the
resistant reaction to H. glycines parasitism. Protein sequences
of the eight COG complex subunits have been identified in
A. thaliana (Table 1). The A. thaliana protein sequences have
been used to query the proteome of G. max using protein BLAST
analyses. The outcome of those analyses is the identification of
the G. max COG complex homologs (Table 1).

Functional Analysis of the Conserved
Oligomeric Golgi Complex Gene Family
The overexpression of the 16 COG genes has been accomplished
in the H. glycines-susceptible G. max[Williams 82/PI 518671], along
with the appropriate pRAP15-ccdB control. In contrast, RNAi
of the 16 COG genes has been accomplished in the H. glycines-
resistant G. max[Peking/PI 548402], along with the appropriate
pRAP17-ccdB control. RNA has been isolated from the transgenic
lines and converted to cDNA for its use in RT-qPCR experiments.

As expected, the overexpression of the COG genes leads to an
increase in their relative transcript abundance as compared to
their pRAP15-ccdB root tissue control when using the RPS21
gene as a gene expression control (p < 0.05, Student’s t-test)
(Figure 2). In contrast, RNAi of the COG genes leads to a
decrease in their relative transcript abundance as compared
to their pRAP17-ccdB root tissue control when using the
RPS21 gene as a gene expression control (p < 0.05, Student’s
t-test) (Figure 2). Consequently, the roots are functioning as
expected regarding the relative transcript abundance of the
COG genes. Therefore, the roots could be used for functional
experiments to determine the effect the gene cassette has on
H. glycines parasitism.

Functional Experiments Examine the
Conserved Oligomeric Golgi Gene Role
During Resistance to H. glycines
Parasitism
The number of experimental replicates (10–25 plants) within
each biological replicate (n = 3) is provided (Supplementary
Table 2). The soil containing the potted transgenic plants has
been infested with 2,000 H. glycines J2s. Infection of the roots
has been permitted to proceed for 30 days with subsequent
extraction of cysts. Enumeration of cysts from the pRAP15-
ccdB control and COG-overexpressing experimental lines has
been performed. The analysis has resulted in the calculation
of the FI from the overexpression lines for both cysts per
wr system and cysts pg of wr system (Figure 3). The results
of the analysis show that the overexpression of 14 of the 16
COG genes suppresses H. glycines parasitism by 50% or greater
in the H. glycines-susceptible G. max[Williams 82/PI 518671] as
compared to the pRAP15-ccdB control (p < 0.05, MWW). The
only COG overexpression lines that did not have a statistically
significant effect on H. glycines parasitism as compared to

TABLE 1 | Conserved oligomeric Golgi (COG) complex gene information.

Arabidopsis thaliana Glycine max

Gene Accession Gene Gene Wm82.a1.v1.1 Wm82.a2.v1 Percent ID

COG1 AT5G16300 COG1-1 Glyma10g34570 Glyma.10G201900 62%

COG1-2 Glyma20g32980 Glyma.20G188500 63%

COG2 AT4G24840 COG2-1 Glyma17g13840 Glyma.17G129100 70%

COG2-2 Glyma05g03260 Glyma.05G047300 68%

COG3 AT1G73430 COG3-1 Glyma13g17521 Glyma.13G114900 80%

COG3-2 Glyma17g04990 Glyma.17G045100 79%

COG4 AT4G01400 COG4-1 Glyma19g44940 Glyma.19G260100 79%

COG4-2 Glyma03g42200 Glyma.03G261100 78%

COG5 AT1G67930 COG5-1 Glyma14g03340 Glyma.14G029500 73%

COG5-2 Glyma02g45580 Glyma.02G286300 73%

COG6 AT1G31780 COG6-1 Glyma01g35820 Glyma.01G154500 66%

COG6-2 Glyma11g09550 Glyma.11G090100 66%

COG7 AIU51104 COG7-1 Glyma09g35790 Glyma.09G224000 78%

COG7-2 Glyma12g01570 Glyma.12G013000 78%

COG8 AT5G11980 COG8-1 Glyma16g22880 Glyma.16G120600 78%

COG8-2 Glyma02g04920 Glyma.02G043400 80%
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FIGURE 2 | Confirmation of conserved oligomeric Golgi (COG)
overexpressing (OE) and RNAi effect by RT-qPCR. In each transgenic line,
gene expression has been altered accordingly with the overexpression lines
increasing transcript abundance by ≥1.5-fold using the (2−11C

T ) method
(Livak and Schmittgen, 2001) (p < 0.05, Student’s t-test) and the RNAi lines
by ≤1.5-fold (p < 0.05, Student’s t-test). The arrows on the y-axis indicate the
level where the experimental outcome is statistically significant [p < 0.05,
Mann–Whitney–Wilcoxon (MWW)]. Experiments and statistical analyses have
been performed from three independent biological replicates. Statistically
significant *p < 0.05.

the pRAP15-ccdB control are COG6-2-OE and COG7-1-OE
(p ≥ 0.05, MWW). These experiments are complimented by
RNAi of each COG gene in the G. max[Peking/PI 548402] genotype,
which is normally H. glycines-resistant. The enumeration of
cysts from pRAP17-ccdB control and COG-RNAi experimental
lines has been made in G. max[Peking/PI 548402], resulting in
the calculation of the FI for both cysts per wr system and
cysts pg of wr system (Figure 3). The results of the analysis
show that the RNAi of nine COG genes, including COG1-
2, COG2-2, COG3-1, COG4-2, COG5-1, COG6-1, COG7-1,
COG7-2, and COG8-1, increases H. glycines parasitism by 1.5-
fold (FI ≥ 150) or greater (p < 0.05, MWW) (Figure 3).
In contrast, RNAi of COG1-1, COG2-1, COG3-2, COG4-1,
COG5-2, COG6-2, and COG8-2 does not increase H. glycines
parasitism in the H. glycines-resistant G. max[Peking/PI 548402] by
our parameters (p ≥ 0.05, MWW). To satisfy our criteria of
a COG gene functioning in resistance, a statistically significant
decrease in H. glycines parasitism as determined by the FI
result must be obtained in each overexpression replicate in
both the cyst per wr system and cyst pg of wr system analyses
and in each RNAi replicate in both the cyst per wr system
and cyst pg of wr system analyses (p < 0.05, MWW). The
results presented here show that those criteria have been met

only for eight of the COG genes including COG1-2, COG2-
2, COG3-1, COG4-2, COG5-1, COG6-1, COG7-2, and COG8-1
(Figure 3). Consequently, at least one paralog of each COG
gene family satisfies our criteria as functioning in resistance to
H. glycines parasitism.

Differences occurring between the wr and pg analyses can
be accounted for by root growth (Figure 4). As part of
our analysis procedure, we enumerate root mass from fresh
wet weight, allowing us to determine whether the expression
of the COG gene cassette is influencing root growth. In
these analyses, for a transgenic line to exhibit a statistically
significant difference in root mass as compared to its respective
control, all three biological replicates, each having between
10 and 25 experimental replicates (Supplementary Table 2),
must be significantly different (p < 0.05, MWW). In the
COG overexpression root mass analyses, COG3-1-OE, COG4-
1-OE, and COG4-2-OE roots have a statistically significant
decrease in root mass as compared to the pRAP15-ccdB
control (p < 0.05, MWW). Conversely, COG5-1-OE root
mass is statistically increased in comparison to the pRAP15-
ccdB control (p < 0.05, MWW). In the RNAi transgenic
lines, the COG3-1-RNAi, COG 4-1-RNAi, COG 5-1-RNAi,
COG 7-1-RNAi, and COG 7-2-RNAi lines have a statistically
significant increase in mass as compared to the pRAP17-
ccdB control (p < 0.05, MWW). Among the studied COG
genes, transgenic COG3-1 and COG4-1 roots are statistically
significantly decreased in mass in the overexpression lines
and increased in the RNAi lines (p < 0.05, MWW). In
contrast, transgenic COG5-1 roots are statistically significantly
increased in mass in both the overexpression and RNAi
lines as compared to their pRAP15-ccdB and pRAP17-ccdB
controls, respectively (p < 0.05, MWW). Consequently, by our
analysis methods, COG3-1 and COG4-1 have an influence on
G. max root growth.

The Harpin Elicitor Influences the
Expression of Conserved Oligomeric
Golgi Genes
Prior RT-qPCR-based experiments demonstrated that G. max
seeds treated with a harpin α/β elicitor, in addition to suppressing
H. glycines parasitism, leads to an increase in the relative
transcript abundance of several resistance genes including α-
SNAP (Aljaafri et al., 2017). The α-SNAP gene, located on
chromosome 18, is a component of the rhg1 locus and generally
believed to be at least among the genes responsible for the
rhg1 phenotype (Matsye et al., 2011, 2012; Cook et al., 2012;
Sharma et al., 2016). The α-SNAP gene has first been identified
in S. cerevisiae as Sec17p (α-SNAP) (Novick et al., 1980). α-
SNAP binds the syntaxin, Sed5p, which is involved in retrograde
trafficking through its interaction with the COG complex
(Shestakova et al., 2007). Therefore, an indirect link exists
between COG and α-SNAP through Sed5p. In experiments
presented here, RT-qPCR of cDNA template synthesized from
RNA isolated from roots growing from harpin α/β-treated
germinating seedlings results in an increase in the relative
transcript abundances of >1.5-fold (p < 0.05, Student’s t-test)
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FIGURE 3 | The female index (FI) of transgenic G. max. (A) Overexpression:
roots engineered to increase the relative transcript abundance of the target
conserved oligomeric Golgi (COG) gene through overexpression. (B) RNAi:
The FI of transgenic G. max engineered to decrease the relative transcript
abundance of the target COG gene; wr, whole root analysis; per gram, per
gram analysis. Statistically significant (p < 0.05, Student’s t-test). The
pRAP15-ccdB overexpression control had 943.09 ± 275.47 cysts per root
system in 100 cc of soil (p < 0.001). The pRAP17-ccdB RNAi had
7.77 ± 2.29 cysts per root system in 100 cc of soil (p < 0.001). (N) Decreases
H. glycines parasitism in the overexpressing (OE) lines or increases parasitism
in the RNAi lines, but not both. Decreases H. glycines parasitism in the OE
lines and increases parasitism in the RNAi lines (N), and therefore, the gene is
considered functioning in defense ( ) because it meets the criteria of
suppressing parasitism by 50% in the overexpression lines and increasing
parasitism in the RNAi lines by 1.5-fold (p < 0.05, MWW). The arrows on the
y-axis indicate the level where the experimental outcome is statistically
significant (p < 0.05, MWW). Experiments and statistical analyses have been
performed from three independent biological replicates each having 10–25
independent transgenic root systems. Statistically significant *p < 0.05.

for 13 COG genes, including COG1-2, COG2-1, COG2-2, COG3-
1, COG3-2, COG4-1, COG4-2, COG5-1, COG5-2, COG6-1,
COG6-2, COG7-2, COG8-1 (Figure 5) (Aljaafri et al., 2017).
The results are consistent with those obtained for other genes

functioning in G. max resistance to H. glycines whose relative
transcript abundances have been examined from harpin α/β-
treated seedlings (Aljaafri et al., 2017; Lawaju et al., 2018;
McNeece et al., 2019).

Altered Conserved Oligomeric Golgi
Gene Expression Influences Syntaxin 31
(SYP38) Transcript Abundance
Prior experiments performed on G. max have shown that
α-SNAP and syntaxin 31 (SYP38) (Glyma.14G064300) gene
expression are co-regulated (Pant et al., 2014; Sharma et al., 2016).

FIGURE 4 | The effect the expression of the conserved oligomeric Golgi
(COG) genetic cassette has on root mass. One-month-old transgenic root
systems were weighed for their wet mass in grams (g) with three biological
replicates with each biological replicate having between 10 and 25 root
systems. Standard error is shown. (∗) Roots having statistically significant
differences occurring between the control and COG-overexpressing (OE) or
RNAi lines are indicated [p < 0.05, Mann–Whitney–Wilcoxon (MWW)]. (N)
Roots having statistically significant differences occurring between the control
and COG-OE and the RNAi lines (p < 0.05, MWW). Experiments and
statistical analyses have been performed from three independent biological
replicates each having 10–25 independent transgenic root systems.
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FIGURE 5 | Treatment of G. max seeds with the bacterial effector harpin α/β
results in the induction of conserved oligomeric Golgi (COG) gene expression.
Gene expression calculated using the (2−11C

T ) method (Livak and
Schmittgen, 2001). (*) The gene is considered induced in expression if the
relative level of expression is induced by 1.5-fold (p ≤ 0.05, Student’s t-test).
(∧) COG genes having a function in resistance by the criteria set and
demonstrated in the genetic engineering studies. RT-qPCR performed as
already described.

Analyses presented here have been performed to determine
whether the relative transcript abundance of the G. max Sed5p
homolog, syntaxin 31, is influenced by COG overexpression or
RNAi. The results of those experiments are presented (Figure 6).
In general, COG overexpression increases the relative transcript
abundance of syntaxin 31 using RPS21 as a gene expression
control (p < 0.05, Student’s t-test). Among these COG transgenic
lines, however, the relative transcript abundance of syntaxin 31 is
increased in the COG overexpression lines while also decreased in
the COG RNAi lines only for COG4-2 and COG5-1 OE and RNAi
transgenic lines (Figure 6). Therefore, COG4-2 and COG5-1
appear to influence the relative transcript abundance of syntaxin
31 at some level.

DISCUSSION

The G. max COG complex has been functionally characterized
as it relates to its involvement in resistance to parasitism by
H. glycines. The experiments have been performed because
components of the vesicle trafficking machinery (myosin XI),
vesicle tethering (Sec4), exocyst, and the membrane fusion
complex (20S particle including SNARE) function in resistance
to H. glycines (Cook et al., 2012; Matsye et al., 2012; Pant
et al., 2014; Sharma et al., 2016, 2020; Klink et al., 2017).
Among these genes is α-SNAP, a component of the “resistance
to Heterodera glycines” (rhg1) major H. glycines resistance locus
(Matsye et al., 2011, 2012; Cook et al., 2012; Sharma et al.,

FIGURE 6 | Syntaxin 31 expression in the transgenic conserved oligomeric
Golgi (COG) lines. The cDNA made from the transgenic COG lines has been
used in RT-qPCR experiments to determine the relative level of expression of
syntaxin 31 (SYP38). (∗) Increased or decreased in its relative level of
expression calculated using (2−11C

T ) (Livak and Schmittgen, 2001). (N)
Syntaxin 31 is increased in its relative transcript abundance in the transgenic
COG-overexpressing (OE) lines and decreased in its relative transcript
abundance in the transgenic COG-RNAi lines. RT-qPCR performed as already
described.

2016). The observations are important from the standpoint that
within these analyses occurred the identification of the G. max
syntaxin 31 (SYP38), also functioning effectively in resistance
(Pant et al., 2014). Syntaxin 31 is homologous to the S. cerevisiae
Sed5p, a component of the SNARE complex functioning at the
Golgi apparatus. In relation to the functional analysis presented
here, Sed5p interacts with COG4 and COG6, which provides
additional support to the hypothesis that the COG complex
functions in the defense response that G. max has to H. glycines
(Shestakova et al., 2007). Furthermore, Sed5p binds another
protein, Sec17p (Hardwick and Pelham, 1992; Lupashin et al.,
1997; Bubeck et al., 2008). Sec17 is the founding member of the
α-SNAP gene family later identified in humans and then other
organisms including plants (Novick et al., 1980; Clary et al., 1990;
Sanderfoot et al., 2000). The α-SNAP gene is generally believed to
be at least among the genes functioning at rhg1 during resistance
to H. glycines parasitism (Matsye et al., 2011, 2012; Cook
et al., 2012, 2014; Bekal et al., 2015; Bayless et al., 2016, 2018;
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Sharma et al., 2016; Lakhssassi et al., 2017; Butler et al., 2019).
However, its role within the complex, expressed rhg1 locus
containing various copies of three genes including α-SNAP, an
amino acid transporter, and a wound inducible protein, copia
retrotransposon, and various other structural elements are under
continued study, which is important due to the nature of the
locus (Melito et al., 2010; Cook et al., 2012, 2014; Bayless et al.,
2016, 2018; Lakhssassi et al., 2017; Butler et al., 2019). Within
this study, the principal findings are that the G. max COG
complex families each has two members, one component of each
gene family functions in defense, the expression of some of the
family members are inducible by the bacterial effector harpin and
some appear to influence the expression of syntaxin 31. These
findings are discussed.

The Conserved Oligomeric Golgi
Complex Function
Original experiments that have been performed in S. cerevisiae
led to the identification of the COG complex (Wuestehube
et al., 1996; VanRheenen et al., 1998; Whyte and Munro,
2001; Ram et al., 2002). These findings were important to the
analysis presented here because it has led to an understanding
of how a number of components acting in vesicle transport may
function in resistance in the G. max–H. glycines pathosystem. The
COG complex functions in endosome-to-trans Golgi network
(TGN) retrograde transport and is present in most eukaryotes
(Koumandou et al., 2007). Therefore, it is expected to be
involved in many cellular physiological processes, including
protein stability, protein folding, protein–protein interactions,
glycan-dependent quality control processes in the ER, among
others (Moremen et al., 2012; Hebert et al., 2014). Consistent with
this idea is the demonstration that, in A. thaliana, more than a
thousand different N-glycosylated proteins have been identified
with high confidence (Zielinska et al., 2010, 2012; Song et al.,
2013; Strasser, 2016). As expected, mutations in COG genes
generally lead to defects in glycosylation (Pokrovskaya et al.,
2011). This defect occurs because of the impairment of recycling
of enzymes functioning in glycosylation that would normally
occur between the Golgi apparatus cisternae (Pokrovskaya et al.,
2011). In S. cerevisiae, the COG complex interacts with the
syntaxin Sed5p through its interactions with COG4 and COG6
(Shestakova et al., 2007). These observations mean that Sed5p
interacts with both COG sub-complexes, indicating an important
interaction that is central to cellular function. Observations also
made in S. cerevisiae show that Sed5p interacts with Sec17p,
the yeast homolog of α-SNAP (Hardwick and Pelham, 1992;
Lupashin et al., 1997). Consequently, it could be expected that the
COG complex would also perform a role in the resistant reaction
that G. max has to H. glycines. The analysis presented here has
been done because no functional analyses have been performed
on COG complex genes as it relates to plant parasitic nematodes.

The G. max Conserved Oligomeric Golgi
Complex
The analysis presented here has identified the G. max COG
complex genes. There are two G. max COG paralogs for each

A. thaliana COG gene. This observation is consistent with the
allotetraploid nature of the G. max genome (Schmutz et al., 2010).
However, no localized gene copy number amplification has been
observed for any of the COG complex gene families like what
has been observed for another vesicle transport complex, the
exocyst (EXOC) (Cvrčková et al., 2012). As already described,
localized gene duplication has been reported to be important
to the resistant reaction that G. max has to H. glycines (Cook
et al., 2012, 2014; Lakhssassi et al., 2017). Like the COG complex,
the plant exocyst is also composed of eight subunits (EXOC1–
8), but the plant EXOC7 gene has experienced an extensive
proliferation into many subtypes that likely have specialized
functions (Cvrčková et al., 2012). The structure of the COG
complex found in G. max, therefore, is also similar to that found
for S. cerevisiae where its COG genes have been identified in
four genetic screens (Wuestehube et al., 1996; VanRheenen et al.,
1998; Whyte and Munro, 2001; Ram et al., 2002). Analyses have
shown that while it is clear that COG components exist in plants,
their level of conservation is low, with comparative analyses to
human COG protein sequences occurring in the range of 20–34%
(Latijnhouwers et al., 2005). The G. max COG complex protein
sequence homology to its homologs in A. thaliana spans from a
low of 62% between A. thaliana COG1 and G. max COG1-1 to a
high of 82% occurring between the A. thaliana COG3 and G. max
COG3-1 and A. thaliana COG8 and G. max COG8-2.

Functional Analysis of G. max Conserved
Oligomeric Golgi Complex Genes Root
Growth
A functional analysis of three biological replicates, each having
10–25 experimental replicates, for the eight COG complex gene
families has been performed for all 16 of its corresponding
genes. The combination of impairing the susceptible reaction
through COG gene overexpression in the otherwise H. glycines-
susceptible G. max[Williams 82/PI 518671] and facilitating parasitism
in the otherwise H. glycines-resistant (G. max[Peking/PI 548402])
is taken as evidence supporting that the COG gene performs
some role in the resistant reaction (Pant et al., 2014). The
functional experiments revealed by RT-qPCR of each targeted
gene demonstrate that it is possible to retrieve transgenic roots for
each COG complex gene. Earlier studies have indicated that, in
some cases, it is not possible to obtain transgenic roots for genes
targeted for overexpression (myosin XI) possibly due to toxic
effects caused by the transgenic cassettes (Austin et al., 2019).
The toxic nature of even specific variant components of the rhg1
locus, itself, and their direct binding partners has been reported
(Bayless et al., 2016, 2018). These observations are consistent with
the observation of the co-regulated nature of genes functioning
in resistance in this pathosystem (Pant et al., 2014; Sharma et al.,
2016; McNeece et al., 2019).

Part of the functional experiments used to determine the effect
that the targeted resistance gene (COG complex component)
has on H. glycines parasitism is to weigh the wet mass of each
root. COG3-1-OE, COG4-1-OE, and COG5-1-OE roots have a
40.96, 23.68, and 46.8% decrease in root mass, respectively. In
contrast, COG5-1 roots have a 1.64-fold increase in root mass.
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Complementary experiments using RNAi have also identified
altered root mass in certain cases. For example, RNAi roots
for COG3-1, COG4-1, COG5-1, COG7-1, and COG7-2 have
increased masses of 2.45-fold, 1.66-fold, 2.09-fold, 2.56–fold,
and 3.26-fold, respectively. The rest of the transgenic lines
show no statistically significant effects in root mass regarding
COG gene overexpression or RNAi. In comparisons of the
transgenic experiments on the COG genes, COG3-1, COG4-1,
and COG5-1 show effects in both the overexpression and RNAi
lines. COG3-1 and COG4-1 show contrasting effects where their
overexpression decreases root mass, while the RNAi increases
root mass. COG5-1 shows an increase in both overexpression and
RNAi lines. As has been reported for the G. max vesicle transport
genes functioning in resistance to H. glycines parasitism, there
appears to be a balance that is important to the function of
the structure, and the balance in some cases appears to be
manifested through co-regulated transcription and in its absence
may be cytotoxic (Pant et al., 2014; Sharma et al., 2016; Bayless
et al., 2016, 2018; Austin et al., 2019). Similar observations have
been made in A. thaliana for COG7 embryo yellow (EYE) gene
that functions in maintenance of the meristem (Ishikawa et al.,
2008). The eye mutants are bushy, have shoot apical meristems
with aberrant organization, and have an altered composition
of their cell walls (Ishikawa et al., 2008). This is an important
observation because the secreted hemicellulose-modifying gene
xyloglucan endotransglycosylase/hydrolase (XTH) of G. max
has been shown to have a significant role in the resistant
reaction to H. glycines (Pant et al., 2014). Even the heterologous
expression of the G. max XTH43 gene in Gossypium hirsutum
(cotton) has led to a high degree of resistance to a different
parasitic nematode, Meloidogyne incognita (Niraula et al., 2020).
XTH is targeted to the Golgi apparatus prior to its secretion
into the apoplast where it functions in cell wall modification
(Fry, 1989; Fry et al., 1992; Nishitani and Tominaga, 1992;
Nishitani, 1998). The Golgi apparatus, thus, serves prominently
in processes involving cell wall modification, requiring the import
of enzymes and glycoproteins from the ER to the Golgi via
transition vesicles (Zhao and Colley, 2008; Handford et al.,
2012). However, the synthesis of xyloglucan and modification
of xyloglucan, itself, occur in the Golgi apparatus, first in the
cisternae then moving to the medial- and trans-Golgi as XyG
matures (Cocuron et al., 2007; Chevalier et al., 2010). Transport
of the matrix polysaccharides and enzymes to the cell membrane
then occurs through secretory vesicles (Kim and Brandizzi, 2016).
The COG complex is also involved in homeostasis, pollen tube
growth, and basic aspects of cell wall metabolism, so impairing
individual components of the structure would be expected to have
observable effects (Oda et al., 2015; Tan et al., 2016; Vukašinović
et al., 2017; Rui et al., 2020).

G. max Conserved Oligomeric Golgi
Genes and a Role in the Resistance to
H. glycines Parasitism
The results of the functional studies demonstrate that COG
complex gene overexpression has the general capability to impair
the ability of H. glycines to parasitize G. max roots, except for

COG6-2 and COG7-2. The overexpression of the remaining
G. max COG complex genes in analyses of H. glycines cysts
in the wr system analyses leads to a low 62.68% decrease
in H. glycines parasitism in the COG4-2-OE transgenic lines
to a high 87.12% decrease in parasitism in the COG1-2-OE
transgenic lines. In contrast, the RNAi of the COG complex
genes has less of a general ability to affect H. glycines parasitism,
occurring for nine of the 16 studied COG genes. The COG
complex genes shown in RNAi experiments to function in
resistance span a low 3-fold increase in H. glycines parasitism
in COG8-1 to a high 22.1-fold in COG7-2. In all, through
the combination of overexpression and RNAi, one member of
each COG gene family has been shown to function in the
resistance. The genes include COG1-2, COG2-2, COG3-1, COG4-
2, COG5-1, COG6-1, COG7-2, and COG8-1. The demonstration
that COG3-1 functions in the resistant reaction is consistent
with the observations that the hvCOG3 functions in resistance
to fungal penetration in wheat (Ostertag et al., 2013). The
conclusion drawn from the analysis presented here is that at
least one gene from each COG complex gene family appears to
function in defense. Furthermore, there appears to be a level
of specificity regarding the genes that do participate in the
resistant reaction since the remaining paralogs do not perform
a role in defense. The results indicate that each component is
important to the process, and it is possible that, by removing
even just one component, the function of the whole structure
is impaired. If this concept is true, the COG complex functions
in a manner that is analogous to the exocyst by requiring
each of its component parts for function. Furthermore, from
the experiments presented here and results presented in other
systems, we expect G. max COG genes to be expressed during the
resistant reaction (TerBush et al., 1996; VanRheenen et al., 1998;
Whyte and Munro, 2001; Ram et al., 2002; Kulich et al., 2010,
2015, 2018; Ostertag et al., 2013).

How the Conserved Oligomeric Golgi
Complex Results Relate to Defense in
the G. max–H. glycines Pathosystem
Prior work in the G. max–H. glycines pathosystem accomplished
the transcriptional mapping of the major resistance locus, rhg1
(Matsye et al., 2011). Subsequent experiments have identified a
number of variants within the locus and complex interactions
occurring with their direct binding partners and even H. glycines
effectors that may impair the function of these proteins (Cook
et al., 2012; Bekal et al., 2015; Bayless et al., 2016, 2018; Lakhssassi
et al., 2017). Subsequent functional studies demonstrated that
the overexpression of α-SNAP in the H. glycines-susceptible
genotype G. max[Williams 82/PI 518671] leads to those susceptible
plants exhibiting an approximately 60% decrease in parasitism
(Matsye et al., 2012; Sharma et al., 2016). The results of those
analyses have implicated that a functional vesicle transport
apparatus plays an important defense role in the G. max–H.
glycines pathosystem (Matsye et al., 2012; Pant et al., 2014;
Sharma et al., 2016).

The α-SNAP gene has been first identified as the Secretion
(Sec) gene (Sec17) in a mutant screen aimed to understand
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secretion (Novick et al., 1980, 1981). The α-SNAP gene name
had been later denoted in studies of human cells and found to
be homologous to Sec17 (Clary et al., 1990). The α-SNAP protein
interacts with syntaxin 31, mediating the delivery of transition
vesicles to the cis face of the Golgi apparatus (Hardwick and
Pelham, 1992; Lupashin et al., 1997; Bubeck et al., 2008; Matsye
et al., 2012; Pant et al., 2014). Subsequent work has demonstrated
the involvement of α-SNAP at all sites where vesicle and target
membrane fusion occur, making it a universal component of
membrane fusion (Zick et al., 2015). The importance of a
functional 20S particle to pathogenesis has been revealed in a
number of studies that have identified microbial neurotoxins
that target SNARE proteins in animal systems and thus inhibit
secretion (Schiavo et al., 1992a,b, 1994; Pellegrini et al., 1995;
Chai et al., 2006; Jin et al., 2006; Strotmeier et al., 2012; Bennett
et al., 2013). The COG complex relates to this structure because
it interacts with a protein known as golgin-84 (Bascom et al.,
1999; Sohda et al., 2010). Golgin-84 is a coiled-coil, integral
membrane protein of the Golgi apparatus (Bascom et al., 1999).
The interaction between the COG complex and golgin-84 is
required for the assembly of a SNARE complex that functions
in intra-Golgi retrograde transport (Sohda et al., 2010). Other
interactions occurring between the COG complex and SNARE
have also been observed, further strengthening the hypothesis
that the COG complex performs an important function in
intramembrane vesicle movement through specific target and
vesicle membrane protein interactions (Suvorova et al., 2002;
Shestakova et al., 2007; Laufman et al., 2011). The specific
interactions include how the COG complex interacts directly
with Syntaxin 6 as it positively regulates the endosome-TGN to
facilitate retrograde transport (Laufman et al., 2011). Another
interaction includes the COG complex and its interactions with
Golgi SNAREs to facilitate intra-Golgi trafficking (Suvorova
et al., 2002). The COG complex also interacts with syntaxin
5a, also known as Sed5p, to enhance intra-Golgi stability of
the SNARE complex (Shestakova et al., 2007). Notably, Sed5p
binds specifically to α-SNAP (Sec17p) at the cis face of the
Golgi apparatus to facilitate vesicle fusion that ultimately leads
to secretion (Hardwick and Pelham, 1992). Furthermore, other
bacterial effectors that target the COG complex directly alter the
movement of membrane to facilitate pathogen biology (Miller
et al., 2017). The results presented here provide more context
for those observations and show that by increasing the amount
of individual COG complex gene expression, it is possible
to facilitate an effective defense response. This process may
happen because the other vesicle transport proteins are already
being induced in their expression to accommodate a resistance
reaction. In contrast, by impairing COG complex transcription,
a normally H. glycines-resistant genotype like G. max[Peking/PI
548402] facilitates parasitism.

Components of the Conserved
Oligomeric Golgi Complex Are Inducible
by the Harpin Elicitor
The expression of the G. max COG genes can be induced by the
bacterial elicitor harpin.

The harpin protein has been first identified from the causative
agent of fire blight disease, Erwinia amylovora, which infects
species of the Rosaceae (Wei et al., 1992). Harpins are heat-
stable, glycine-rich proteins found in several gram-negative
plant pathogenic bacteria and are secreted by the bacterial
type III secretion system (Wei and Beer, 1993; Bogdanove
et al., 1996; Choi et al., 2013). Harpins can function during
the hypersensitive response but may also function through
a systemic defense response (Wei et al., 1992; Dong et al.,
1999; Neyt and Cornelis, 1999; Aljaafri et al., 2017). Harpin
is known to function through ETI (Jones and Dangl, 2006).
These interactions then lead to the transduction of signal through
the mitogen-activated protein kinase (MAPK) cascade to elicit
a defense response (Mindrinos et al., 1994; Grant et al., 1995;
van der Biezen and Jones, 1998; Desikan et al., 1999, 2001;
Lee et al., 2001; Mackey et al., 2002, 2003; Coppinger et al.,
2004). Harpin, NDR1, and MAPKs have all been shown to be
capable of functioning in the resistant reaction that G. max has
to H. glycines and lead to the induced expression of α-SNAP,
among other resistance genes (Aljaafri et al., 2017; McNeece
et al., 2017, 2019). The genes also function to impair the
pathogenicity of other pathogens of G. max (Lawaju et al.,
2018). The results presented here showing the harpin-induced
expression of COG genes functioning in resistance are consistent
with observations that harpin can be effective in eliciting a
resistant reaction (Aljaafri et al., 2017). However, observations
have been made that show harpin can be deactivated through
the activities of other bacterial effectors that specifically target it
(O’Neill et al., 2018).

Syntaxin 31 Transcript Levels Correlate
to Conserved Oligomeric Golgi Gene
Expression
Prior experiments have demonstrated the co-regulated nature
of various G. max vesicle transport components involved in
the resistant reaction to H. glycines (Pant et al., 2014; Sharma
et al., 2016). The demonstration that Sed5p binds to Sec17p,
COG4, and COG6 led to experiments to examine the relative
transcript abundance of syntaxin 31 in the transgenic COG-
overexpressing and RNAi lines (Hardwick and Pelham, 1992;
Lupashin et al., 1997; Shestakova et al., 2007; Bubeck et al.,
2008). The results of those experiments have revealed that
there is an increased transcript level of syntaxin 31 in each
of the transgenic COG-overexpressing lines that have been
shown to impair H. glycines parasitism. These observations
are consistent with experiments showing that several of the
vesicle transport genes are co-regulated or that a balanced
level of expression is important (Pant et al., 2014; Sharma
et al., 2016; Bayless et al., 2016, 2018). However, the reciprocal
experiments determining COG gene expression in syntaxin 31-
overexpressing roots have not been performed. In contrast,
suppressed syntaxin 31 expression is observed only in the
COG4-2-RNAi and COG5-1-RNAi lines. In the other COG-
RNAi lines, there is no observed effect on syntaxin 31
expression. This result, in itself, is interesting since it is these
G. max[Peking/PI 548402] transgenic lines that become susceptible
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TABLE 2 | Summary of the data pertaining to this analysis of the G. max conserved oligomeric Golgi (COG) complex.

Gene OE-R RNAi-S OE-R and RNAi-S COG-OE: SYP38-I COG-R: SYP38-D Harpin-I

COG1-1 Yes No No n/a n/a No

COG1-2* Yes Yes Yes Yes No Yes

COG2-1 Yes No No n/a n/a Yes

COG2-2* Yes Yes Yes Yes No Yes

COG3-1* Yes Yes Yes Yes No Yes

COG3-2 Yes No No n/a n/a Yes

COG4-1 Yes No No n/a n/a Yes

COG4-2* Yes Yes Yes Yes Yes Yes

COG5-1* Yes Yes Yes Yes Yes Yes

COG5-2 Yes No No n/a n/a Yes

COG6-1* Yes Yes Yes Yes No Yes

COG6-2 No No No n/a n/a Yes

COG7-1 No Yes No n/a n/a No

COG7-2 Yes Yes Yes Yes No Yes

COG8-1* Yes Yes Yes Yes No Yes

COG8-2 Yes No No n/a n/a No

OE-R, COG overexpression-resistant outcome; RNAi-S, COG RNAi-susceptible outcome; OE-R and RNAi-S, COG overexpression-resistant outcome and COG RNAi-
susceptible outcome; COG-OE: SYP38-I, COG overexpression leads to syntaxin 38 increased expression; COG-RNAi: SYP38-S, COG RNAi leads to syntaxin 38
decreased expression; Harpin-I, Harpin treatment leads to an increase in targeted COG gene expression. *Functions in resistance.

to H. glycines parasitism. From these experiments, only the
transgenic COG4-2 and COG5-1 are experiencing modulated
syntaxin 31 expression that correlates to the respective COG
overexpression (induced syntaxin 31 transcription) or RNAi
lines (suppressed syntaxin 31 transcription). Notably, COG4
and COG5 occur on each of the two lobes of the COG
complex so signals relating to each lobe of the COG complex
may be important in this regulated transcription. Furthermore,
prior experiments have shown that Sed5p binds COG4p
(Shestakova et al., 2007).

Summary
Genes composing the G. max COG complex have been identified.
Furthermore, transgenic functional analyses, a harpin elicitor
study, and the effect that COG component overexpression/RNAi
have on syntaxin 31 expression have been performed (Table 2).
Furthermore, the combination of COG gene overexpression in
the H. glycines-susceptible G. max[Williams 82/PI 518671] (along
with the appropriate pRAP15-ccdB control) and RNAi in the
H. glycines-resistant G. max[Peking/PI 548402] (along with the
appropriate pRAP17-ccdB control) has led to the identification
of eight COG genes that perform a role in resistance. An
RT-qPCR analysis targeting each of the 16 G. max COG
genes using RNA isolated from harpin α/β-treated seeds has
resulted in the determination that 12 of them are increased
in their relative transcript abundance. Lastly, altered COG
expression affects the transcript abundance of syntaxin 31. The
overall results are consistent with those observed in other
protein complexes that relate to vesicle transport. Specifically,
the exocyst requires each component for the assembly and
function of the structure. Furthermore, the balanced expression,
possibly through regulated co-expression of components relating
to the resistance reaction that G. max has to H. glycines,

is also receiving similar treatment. The further analyses of
these and additional genes that relate to the vesicle transport
process will undoubtedly identify further intricacies regarding
their involvement during the resistant reaction. Some of
these interactions may come from yet unexplored membrane
components. For example, experiments have shown the COG
complex protein COG2 with EXOC70A1 via vesicle tethering 1
(VETH1) and VETH2 to promote xylem vessel differentiation
(Oda et al., 2015). These recent results indicate that the cross-talk
that is occurring between these different components functioning
in vesicle trafficking is more prevalent and more important than
previously understood. Furthermore, the results indicate it is
possible that H. glycines may specifically target other Golgi-
associated proteins for its benefit like what it already does
for a-SNAP.
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