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Genebanks harbor original landraces carrying many original favorable alleles for
mitigating biotic and abiotic stresses. Their genetic diversity remains, however, poorly
characterized due to their large within genetic diversity. We developed a high-
throughput, cheap and labor saving DNA bulk approach based on single-nucleotide
polymorphism (SNP) lllumina Infinium HD array to genotype landraces. Samples were
gathered for each landrace by mixing equal weights from young leaves, from which
DNA was extracted. We then estimated allelic frequencies in each DNA bulk based
on fluorescent intensity ratio (FIR) between two alleles at each SNP using a two
step-approach. We first tested either whether the DNA bulk was monomorphic or
polymorphic according to the two FIR distributions of individuals homozygous for allele
A or B, respectively. If the DNA bulk was polymorphic, we estimated its allelic frequency
by using a predictive equation calibrated on FIR from DNA bulks with known allelic
frequencies. Our approach: (i) gives accurate allelic frequency estimations that are highly
reproducible across laboratories, (i) protects against false detection of allele fixation
within landraces. We estimated allelic frequencies of 23,412 SNPs in 156 landraces
representing American and European maize diversity. Modified Roger’s genetic Distance
between 156 landraces estimated from 23,412 SNPs and 17 simple sequence repeats
using the same DNA bulks were highly correlated, suggesting that the ascertainment
bias is low. Our approach is affordable, easy to implement and does not require
specific bioinformatics support and laboratory equipment, and therefore should be
highly relevant for large-scale characterization of genebanks for a wide range of species.

Keywords: genebank, DNA pooling, Zea mays L., allelotyping, landraces, genetic diversity, SNP array, open-
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INTRODUCTION

Genetic resources maintained in situ or ex situ in genebanks
represent a vast reservoir of traits/alleles for future genetic
progress and an insurance against unforeseen threats to
agricultural production (Tanksley, 1997; Hoisington et al., 1999;
Kilian and Graner, 2012; McCouch et al., 2012). Due to their local
adaptation to various agro-climatic conditions and human uses,
landraces are particularly relevant to address climate change and
the requirements of low input agriculture (Fernie et al., 2006;
McCouch et al., 2012; Mascher et al., 2019). For instance, maize
displays considerable genetic variability, but less than 5% of this
variability has been exploited in elite breeding pools, according
to Hoisington et al. (1999). However, landraces are used to a
very limited extent, if any, in modern plant breeding programs,
because they are poorly characterized, genetically heterogeneous
and exhibit poor agronomic performance compared to elite
material (Kilian and Graner, 2012; Strigens et al., 2013; Brauner
et al., 2019; Holker et al., 2019; Mascher et al., 2019). Use
of molecular techniques for characterizing genetic diversity of
landraces and their relation with the elite germplasm is essential
for a better management and preservation of genetic resources
and for a more efficient use of these germplasms in breeding
programs (Hoisington et al., 1999; Mascher et al., 2019).

The genetic diversity of landraces conserved ex situ or in situ
has been extensively studied using various types of molecular
markers such as restriction fragment length polymorphism
(RFLP) or simple sequence repeat (SSR) in maize (Dubreuil and
Charcosset, 1998; Dubreuil et al., 1999, 2006; Rebourg et al.,
1999, 2001, 2003; Gauthier et al., 2002; Reif et al., 2005a,b;
Vigouroux et al., 2005; Camus-Kulandaivelu et al., 2006; Eschholz
et al., 2010; Mir et al,, 2013), in Pearl Millet (Bhattacharjee
et al., 2002), cabbage (Dias et al., 1991; Mazzeo et al., 2019),
Barley (Parzies et al., 2000; Backes et al., 2003; Hagenblad et al,,
2012), pea (Hagenblad et al., 2012), oat (Hagenblad et al., 2012),
rice (Ford-Lloyd et al, 2001; McCouch et al, 2012), Alfalfa
(Pupilli et al., 2000; Segovia-Lerma et al., 2003), and fonio
millet (Adoukonou-Sagbadja et al., 2007). SSRs have proven to
be markers of choice for analyzing diversity in different plant
species and breeding research, because of their variability, ease
of use, accessibility of detection and reproducibility (Liu et al.,
2003; Reif et al,, 2006; Yang et al, 2011). Nevertheless, the
development of SSR markers requires a substantial investment
of time and money. Allele coding is also difficult to standardize
across genotyping platforms and laboratories, a major drawback
in a genetic resources characterization context. Single nucleotide
polymorphisms (SNPs) have become the marker of choice for
various crop species such as maize (Ganal et al., 2011), rice
(McCouch et al, 2010), barley (Moragues et al., 2010), and
soybean (Lam et al., 2010). They are the most abundant class
of sequence variation in the genome, co-dominantly inherited,
genetically stable and appropriate to high-throughput automated
analysis (Rafalski, 2002). For instance, maize arrays with approx.
50,000 and 600,000 SNP markers are available since 2010
(Ilumina MaizeSNP50 array, Ganal et al., 2011) and 2013 (600K
Affymetrix Axiom, Unterseer et al., 2014), respectively. SNP
arrays may, however, lead to some ascertainment bias notably

when diversity analysis was performed on a plant germplasm
distantly related from those that have been used to discover SNP
put on the array (Nielsen, 2004; Clark et al., 2005; Hamblin
et al., 2007; Inghelandt et al, 2011; Frascaroli et al, 2013).
Properties of SNP array regarding diversity analysis have to
be carefully investigated to evaluate ascertainment biais. For
maize 50K Infinjum SNP array, only “PZE” prefixed SNPs (so
called later PZE SNPs in this study) give consistent results for
diversity analysis as compared with previous studies based on
SSR markers and are therefore suitable for assessing genetic
variability (Ganal et al., 2011; Inghelandt et al., 2011; Bouchet
et al., 2013; Frascaroli et al., 2013). 50K Infinium SNP array has
been used successfully to decipher genetic diversity of inbred lines
(van Heerwaarden et al., 2011; Bouchet et al., 2013; Frascaroli
et al., 2013; Rincent et al., 2014), landraces using either doubled
haploids (Strigens et al., 2013) or a single individual per accession
(van Heerwaarden et al., 2011; Arteaga et al., 2016), or teosinte
with few individuals per accession (Aguirre-Liguori et al., 2017).

Due to high diversity within accessions, characterization of
landraces from allogamous species such as maize or alfalfa
should be performed based on representative sets of individuals
(Dubreuil and Charcosset, 1998; Segovia-Lerma et al., 2003;
Reyes-Valdés et al., 2013; Gouda et al., 2020). Despite the recent
technical advances, genotyping large numbers of individuals
remains very expensive for many research groups. To bring costs
down, estimating allele frequencies from pooled genomic DNA
(also called “allelotyping”) has been suggested as a convenient
alternative to individual genotyping using high-throughput SNP
arrays (Sham et al., 2002; Teumer et al, 2013) or using Next
Generation Sequencing (Schlotterer et al., 2014; Gouda et al,
2020). It was successfully used to decipher global genetic diversity
within maize landraces using RFLPs (Dubreuil and Charcosset,
1998; Dubreuil et al., 1999; Rebourg et al., 2001, 2003; Gauthier
et al., 2002) and SSR markers (Reif et al., 2005a; Camus-
Kulandaivelu et al, 2006; Dubreuil et al, 2006; Yao et al,
2007; Mir et al., 2013). Various methods for estimating gene
frequencies in pooled DNA have been developed for RFLP
(Dubreuil and Charcosset, 1998), SSR (LeDuc et al.,, 1995;
Perlin et al., 1995; Daniels et al, 1998; Lipkin et al., 1998;
Breen et al, 1999) and SNP marker arrays in human and
animal species (Hoogendoorn et al., 2000; Brohede et al., 2005;
Craig et al., 2005; Gautier et al., 2013; Teumer et al., 2013).
These methods have been successfully used to detect QTL
(Lipkin et al., 1998), to decipher genetic diversity (Segovia-
Lerma et al., 2003; Dubreuil et al., 2006; Pervaiz et al., 2010;
Johnston et al., 2013; Ozerov et al., 2013), to perform genome
wide association studies (Barcellos et al., 1997; Sham et al.,
2002; Baum et al,, 2007), to identify selective sweep (Elferink
et al, 2012) or to identify causal mutation in tilling bank
(Abe et al.,, 2012). Genotyping DNA bulks of individuals from
landraces with SNP arrays could therefore be interesting to
characterize and manage genetic diversity in plant germplasm.
SNP arrays could be notably a valuable tool to identify selective
sweep between landraces depending on their origin, to manage
plant germplasm collection at worldwide level (e.g., identify
duplicate), to identify landraces poorly used so far in breeding
programs or to identify genomic regions where diversity has
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been lost during the transition from landraces to inbred lines
(Arca et al., 2020).

In this study, we developed a new DNA bulk method
to estimate allelic frequencies at SNPs based on Fluorescent
Intensity data produced by the maize 50K Illumina SNP array
(Ganal et al., 2011). Contrary to previous methods that have been
mostly developed for QTL detection purposes, our approach is
dedicated to genome-wide diversity analysis in plant germplasm
since it protects against false detection of alleles. Additionally,
calibration of equations for predicting allelic frequencies of DNA
bulks for each SNP is based on controlled pools with variable
allelic frequencies rather than only heterozygous genotypes as
in previous methods (Hoogendoorn et al., 2000; Brohede et al,,
2005; Peiris et al.,, 2011; Teumer et al., 2013). As a proof of
concept, we applied our new approach to maize by estimating
allelic frequencies of 23,412 SNPs in 156 maize landraces
representative of European and American diversity present in
genebanks (Arca et al.,, 2020). To our knowledge, it is the first
time that a DNA bulk approach was used on 50K maize high-
throughput SNP array to study genetic diversity within maize
landraces germplasm.

RESULTS

We developed a new method to estimate allelic frequencies
of SNPs within pools of individuals using the fluorescent
intensity ratio (FIR) between A and B alleles from Illumina
MaizeSNP50 array. Briefly, allelic frequencies at SNPs belonging
to MaizeSNP50 array were estimated within 156 maize
landraces by pooling randomly 15 individuals per population
and by calibrating a predictive two-step model (Figure 1).

We considered only the subsample of 32,788 prefixed PZE
markers (so called PZE SNPs) that have proven suitable for
diversity analyses (Ganal et al., 2011). Among these SNPs,
we selected 23,412 SNPs that passed weighted deviation (wd)
quality criteria (wd > 50). This removed SNPs for which
estimated allelic frequency deviated strongly from expected allelic
frequency (Supplementary Figure 1A-G for the threshold choice
and validation).

Accuracy of Allelic Frequency Prediction
and Detection of Allele Fixation

In order to prevent erroneous detection of alleles within
landraces, we first tested for each landrace whether allele A or
allele B was fixed at a given SNP locus (Figure 1). We tested
for each SNP whether the FIR of the landrace was included
within one the two Gaussian distributions drawn from mean
and variance of FIR of genotypes AA and BB within the
inbred line panel (Figure 1). For landraces that were considered
polymorphic after this first step (allele fixation rejected for both
alleles), we estimated allelic frequency based on FIR by using a
unique logistic regression model for the 23,412 SNPs, calibrated
with a sample of 1,000 SNPs (Figure 1). Parameters of the
logistic model were adjusted on these 1,000 SNPs using FIR
of two series of controlled pools whose allelic frequencies were
known (Supplementary Figure 2). We obtained these pools by
mixing various proportion of two series of three inbred lines
with known genotypes (Table 1). The 1,000 SNPs were selected
to maximize the allelic frequency range within controlled pools
(Table 1). The logistic regression was calibrated on 1,000 SNPs
taken together rather than for each SNP individually to avoid
the ascertainment bias that would be generated by selecting
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FIGURE 1 | Two-step approach for estimating allelic frequency in DNA pools, exemplified by marker PZE-101005765. Red and green histograms correspond to the
fluorescent intensity ratio (FIR) distribution for inbred lines homozygote for allele A (AA) and B (BB), respectively. Red and green curves indicate the corresponding
Gaussian distributions. Red, Blue, and Green areas correspond to the FIR for which landraces are declared homozygous for allele A, polymorphic and homozygous
for allele B after testing for fixation of alleles A and B. Dotted blue line corresponds to the curve of the logistic regression adjusted on 1,000 SNPs and two series of
controlled pools. Blue crosses correspond to four different landraces represented by a DNA bulk of 15 individuals, with their observed FIR on X axis and predicted

frequency on 'Y axis.
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TABLE 1 | Expected frequencies of allele B for the nine controlled pools obtained by varying the proportions of leaf weights of three inbred lines (L1, L2, L3) according to

their genotypes at a bi-allelic SNP coded A/B.

Proportion of leaf weights

Genotypes of parental lines L1, L2, L3 in controlled pools

Pools L1 L1 L3 AA,AAAA (%) BB,AA,AA (%) AA,AA,BB or BB,AA,BB or AA,BB,BB (%) BB,BB,BB (%)
AA,BB,AA (%) BB,BB,AA (%)

#1 0.01 0.495 0.495 0 1 50 51 99 100

#2 0.02 0.49 0.49 0 2 49 51 98 100

#3 0.03 0.485 0.485 0 3 49 52 97 100

#4 0.05 0.475 0.475 0 5 48 53 95 100

#5 0.07 0.465 0.465 0 7 47 54 93 100

#6 0.1 0.45 0.45 0 10 45 55 90 100

#7 0.15 0.425 0.425 0 15 43 58 85 100

#38 0.2 0.4 0.4 0 20 40 60 80 100

#9 0.333 0.333 0.333 0 33 33 67 67 100
Configuration of controlled pools Monomorphic R1 R2 R3 R4 Monomorphic

Heterozygous genotypes for inbred lines were not considered in this table.

only SNPs polymorphic in the controlled pools (Supplementary
Figure 3) and to reduce loss of accuracy in prediction for SNPs
displaying limited allelic frequency range in two controlled pools
(Supplementary Figure 4). To investigate the loss of accuracy
of the prediction curve due to a reduction in allelic frequency
ranges in controlled pool, we progressively removed at random
from one to 15 samples from the calibration set of the 1000 above
described SNPs. The mean absolute error (MAE) between 1,000
replications increased significantly from 4.14 to 8.54% when
removing more samples (Table 2). For comparison, MAE was
7.19% using a cross-validation approach in which the predictive
equation was calibrated with a random subsample of 800 out of
1000 SNPs, and then applied to estimate allelic frequencies for the
remaining 200 SNPs (Supplementary Table 1). Calibrating the
logistic regression between FIR and allelic frequency in controlled
pool based on 1,000 SNPs therefore appears well adapted to
prevent ascertainment bias while increasing globally prediction
accuracy (Supplementary Figure 4). Finally, we observed that
MAE was higher for balanced allelic frequencies than for almost
fixed allelic frequencies (Figure 2 and Supplementary Table 2).
Accordingly, the dispersion of predicted frequencies were larger
for expected allelic frequencies near 0.5 than for fixed alleles
(Supplementary Table 2).

Reproducibility of Frequency Across

Laboratories and Samples

We evaluated the reproducibility of the method across
laboratories by comparing FIR of one series of controlled pools
from two different laboratories using all PZE SNPs or 23,412
SNPs selected using wd criterion (Figure 3). The coefficient
of determination between the two different laboratories for
controlled pools was very high (r* > 0.99) whether we selected
the SNPs based on wd criterion or not. Beyond reproducibility
across laboratories, the precision of frequency estimation
depends on the sampling of individuals within landraces
(Table 3). The precision of frequency estimation was addressed
both by numerical calculation and by the independent sampling

TABLE 2 | Mean absolute error (MAE) in frequency estimation for 1,000 SNPs
used to calibrate logistic regression equations.

# of removed samples # of repetitions Mean absolute error (MAE)

Mean SD
1 1000 0.0414 0.0219
3 1000 0.0428 0.0226
5 1000 0.0447 0.0232
8 1000 0.0484 0.0245
10 1000 0.0522 0.0257
12 1000 0.0582 0.0274
15 1000 0.0854 0.0309

MAE is estimated by a cross-validation procedure in which a number of pools
comprised between 1 and 15 among 18 is removed at random from the calibration
set. This procedure was repeated 1,000 times for each SNR SD, standard
deviation.
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FIGURE 2 | Mean absolute error (MAE) according to the known allelic
frequency in two series of controlled pools. MAE measured the absolute
difference between allelic frequencies predicted by the two-step approach
and those expected from the genotypes of parental lines in two series of
controlled pools for 23,412 SNPs. MAE is averaged for each interval of
expected allelic frequency across all SNPs.

of 15 different individuals (30 different gametes) within 10
landraces (biological replicate). For both numerical calculations
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and biological replicates, the sampling error was higher for loci
with balanced allelic frequencies than for loci that are close to
fixation (Table 3 and Figure 4). Sampling error also decreased
as the number of sampled individuals increased (Table 3).
Considering a true frequency of 50% within landraces, we

FIR for CNG

FIR for consortium

FIGURE 3 | Relationship between fluorescent intensity ratio of European Flint
controlled pools genotyped in two different laboratories: CNG and
Consortium. Each dot represents the combination of one out 9 controlled
pools and one out of 23,412 PZE SNPs. Coefficient of determination (r2)
between FIR of two laboratories is 0.992.

expect that 95% of frequency estimates lie between 31.30 and
68.70% when sampling 15 individuals per landrace and 42.9-
57.13% when sampling 100 individuals per landrace (Table 3).
Considering biological replicates, allelic frequencies of the two
biological replicates over 23,412 SNPs were highly correlated
except for population Pol3 (Supplementary Table 3). When
excluding Pol3, 94.5% of points were located within the 95%
confidence limits accounting for the effect of sampling alone,
suggesting that the error inherent to the frequency estimation
for DNA pools was very low compared to the sampling error
(Figure 4). Over nine populations with replicates (excluding
Pol3), we observed only four situations among 23,412 loci
where two different alleles were fixed in the two replicates
(Figure 4). Loci for which an allele was fixed in one replicate
was either fixed or displayed a high frequency (above 88%) for
the same allele in the other replicate in 98% of cases. Moreover,
we estimated pairwise Roger’s genetic distance (Modified
Roger’s Distance, MRD) based on 23,412 SNPs between the
two independent pools from the same landraces. Excluding
population Pol3 (MRD = 0.208), this distance ranged from
0.087 to 0.120 (Supplementary Table 3). These values provide a
reference to decide whether two populations can be considered
different or not.

Effect of SNP Number and wd on the
Relationship of Genetic Distance
Estimated With SNP and SSR

Finally, we evaluated the possible ascertainment bias due to
SNP selection with our filtering based on wd criterion. MRD
obtained with 17 SSR markers (MRDgsr) and MRD based on
different set of SNP markers (MRDgnp) were highly correlated
(Figure 5), indicating a low ascertainment bias. The selection
of SNPs based on wd quality criterion strongly increased the

TABLE 3 | Sampling error estimated by numerical calculation for one or two biological replicates with independent sampling of 15 or 100 individuals within landraces.

15 Individuals

100 Individuals

One biological replicate

Two biological replicates

One biological replicate Two biological replicates

Allelic Lower Upper Lower Upper Lower Upper Lower Upper
Frequency bound bound bound bound bound bound bound bound
0 0 0.116 0 0.06 0 0.018 0 0.009
0.03 0.001 0.172 0.004 0.115 0.011 0.064 0.017 0.055
0.1 0.021 0.265 0.038 0.205 0.062 0.15 0.072 0.134
0.2 0.077 0.386 0.108 0.323 0.147 0.262 0.162 0.243
0.3 0.147 0.494 0.189 0.432 0.237 0.369 0.256 0.348
0.4 0.227 0.594 0.276 0.535 0.332 0.472 0.352 0.45
0.5 0.313 0.687 0.368 0.632 0.429 0.571 0.45 0.55
0.6 0.406 0.773 0.465 0.724 0.529 0.669 0.55 0.648
0.7 0.506 0.853 0.568 0.812 0.631 0.763 0.653 0.745
0.8 0.614 0.923 0.677 0.892 0.738 0.853 0.757 0.838
0.9 0.735 0.979 0.795 0.962 0.85 0.938 0.866 0.928
1 0.884 1 0.94 0.982 1 0.991 1

Lower and upper bounds indicate the 95% confidence interval for the allelic frequency in the population, based on the binomial probability of the frequency estimated

with the corresponding sample size.
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FIGURE 4 | Relationship between allele frequencies predicted for two
biological replicates of 9 landraces over 23,412 selected SNPs. Each dot
represents one landrace and one SNP, with allele frequency of replicates 1 and
2 on Xand Y axes, respectively. Blue line indicates linear regression. 94.5% of
points are included in the red ellipse that represents the 95% confidence limit
accounting for the effect of sampling alone. r? between replicates is 0.93.

coefficient of determination (r?) between MRDgynp and MRDgsr,
from 0.587 to 0.639 (Supplementary Figure 6). We attempted to
define the minimal SNP number required to correctly describe
the relationship between maize landraces. While increasing the
number of SNPs from 500 to 2500 slightly increased 7> between
MRDgnp and MRDgsg from 0.606 to 0.638 (Supplementary
Figures 6D-F), we observed no further increase beyond 2500
SNPs (Supplementary Figure 6A-C) suggesting that 2,500 SNPs
are enough to obtain a correct picture of landrace relationships.

DISCUSSION

A molecular approach for diversity analysis of landraces needs
to answer several criteria (i) an accurate estimation of allelic
frequency in each population, (ii) a robust and reproducible
measurement of allelic frequency across laboratories in order
to facilitate comparison of genetic diversity of accessions
across genebanks, (iii) a reliable estimate of genetic distance
between landraces with no or little ascertainment bias, and
(iv) an affordable, high-throughput and labor efficient method,
due to both strong financial and human constraints in plant
genebanks. Four main sources of errors affect the accuracy of
allelic frequency estimation of a locus in a population using
a DNA pooling approach: (i) the sampling of individuals (so
called “sampling” errors), (ii) the procedure to mix DNA from
individuals (so called “DNA mixing” errors) (iii) the imprecision
of quantitative measurement used by the model for the prediction
(so called “experimental” errors), and (iv) the predictive equation

used to predict allelic frequency in a population (so called
“approximation” errors).

A Two-Step Model to Protect Against
Erroneous Detection of Polymorphism
and Predict Accurately Allelic
Frequencies in DNA Bulk

Approximation errors due to predictive equation depend on (i)
the model used to predict allelic frequencies and (ii) the set of
individuals and SNPs used to calibrate the predictive equation. In
this study, we used a two-step modeling using inbred lines and
controlled pools as sets of calibration to test for polymorphism
and then predict allelic frequency for polymorphic markers.
Detection of allele fixation in a population is an important issue
for deciphering and managing genetic diversity within plant and
animal germplasm. We used two Student tests based on FIR
distribution of lines homozygous for allele A and B to determine
polymorphism of a SNP in a given landrace (Figure 1). In this
first step, we preferred a method based on FIR distribution rather
than the clustering approach implemented in genome studio
because it is possible to control the type I risk of false allele
detection (at 5% in our study). Using this two-step approach
reduces strongly the erroneous detection of polymorphisms in
a population compared to previous methods: MAE for fixed
locus <0.1% in our approach (Supplementary Table 2) vs ~2-
3% using PPC method (Brohede et al., 2005) or ~2-8% using
different k correction from Peiris et al. (2011). This is not
surprising as previous methods focused on an accurate estimation
of the difference in allele frequencies between DNA bulks of
individuals contrasted for a quantitative trait of interest (Sham
et al., 2002; Craig et al., 2005; Kirov et al., 2006; Teumer et al.,
2013) and did not focus specifically on protecting again false
detection of alleles.

Frontiers in Plant Science | www.frontiersin.org

January 2021 | Volume 11 | Article 568699


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Arca et al.

High-Troughput Genotyping of DNA Bulks

For loci that were detected as polymorphic, we predicted allelic
frequencies from FIR in landrace DNA pools by using a unique
logistic regression for 23,412 SNPs passing wd quality criterion.
The relationship between FIR and allelic frequency was modeled
using a quasi-logistic regression for different reasons. First, the
logistic function ensures that the predicted frequencies take value
in (0,1), a property that is not satisfied by polynomial regression
(PPC) or tan transformation (Brohede et al., 2005; Teumer et al.,
2013). Second, one could observe that the relationship between
the FIR and allelic frequencies within controlled pools was not
linear (Supplementary Figure 2).

This two-step approach led to a low global error rate
in allelic frequency prediction (MAE = 3% for polymorphic
and monomorphic loci considered jointly; Figure 2 and
Supplementary Table 2). It is comparable to the most accurate
previous pooling DNA methods for SNP array that used a
specific model for each SNP: (i) MAE ranging from 3 to 8%
(Peiris et al., 2011) or 5-8% (Brohede et al., 2005) depending of
k-correction applied (ii) MAE ~ 3% for PPC correction (Brohede
et al,, 2005; Teumer et al., 2013) (iii) MAE ~ 1% for tan-
correction (Teumer et al., 2013). Several factors can explain this
relative good global accuracy of our approach. First, almost half of
the loci were fixed on average in each landrace, which contributed
positively to global accuracy since our method over-performed
previous methods for fixed locus (see above). Second, wd quality
criterion removed SNPs for which allelic frequencies were poorly
predicted using FIR. We observed indeed that increasing the
threshold for wd quality criterion led to a global increase in
accuracy at both steps (Supplementary Figure 1). While 90%
of SNPs have a MAE <2% for wd criterion >10, only 50% of
SNPs have a MAE <2% for wd criterion <10. Taking into account
differential hybridization by using a specific logistic regression
for each SNP could be a promising way to further improve the
accuracy of allelic frequencies prediction, notably for balanced
allelic frequencies (Brohede et al., 2005; Peiris et al., 2011; Teumer
et al., 2013). To limit possible ascertainment bias and errors in
allelic frequency estimation, it requires, however, to genotype
additional series of controlled pools for SNPs for which current
controlled pools were monomorphic or have a limited range of
allelic frequency (Supplementary Figures 3, 4).

To estimate the parameters of the logistic regression, we
used two series of controlled pools rather than heterozygous
individuals for both technical and practical reasons. Controlled
pools cover more homogenously the frequency variation range
than heterozygous and homozygous individuals only, which
therefore limits the risk of inaccurate estimation of logistic
model parameters. Different studies showed that accuracy of
allelic frequency estimation strongly depends on accuracy of FIR
estimation for heterozygous individual and therefore the number
of heterozygous individuals (Le Hellard et al., 2002; Simpson,
2005; Jawaid and Sham, 2009). Between 8 and 16 heterozygous
individuals are recommended to correctly estimate FIR mean for
heterozygous individuals, depending on FIR variance (Le Hellard
et al., 2002). In maize, we can obtain heterozygote genotypes
either by crossing inbred lines to produce F1 hybrids, by planting
seeds from maize landraces, or by using residual heterozygosity
of inbred lines. Using residual heterozygosity to calibrate model

is not possible since half SNPs show no heterozygous genotype
in the 327 inbred lines of our study. Obtaining at least 16
heterozygous individuals for each SNP therefore requires to
genotype a few dozens of F1 hybrids or individuals from
landraces considering that expected heterozygosity in a landrace
is comprised between 3 and 28% (Arca et al, 2020). This
represents additional costs since maize researchers and breeders
genotyped preferentially inbred lines to access directly haplotypes
without phasing and because genotypes of F1 hybrids can be
deduced of that of their parental inbred lines. Beyond allogamous
species as maize, genotyping heterozygous individuals could be
time demanding and very costly in autogamous cultivated plant
species for which genotyped individuals are mostly homozygotes
(wheat, tomato, rapeseed). On the contrary, one can easily
produce controlled pools whatever the reproductive system,
either by mixing DNA or equal mass of plant materials, which
allows producing a wide range of allelic frequencies.

Effect of DNA Mixing Procedure on

Accuracy Allelic Frequency Estimation

There are two main errors coming from DNA mixing procedure:
(i) the “sampling error” that is directly connected to the number
of individuals sampled in each population (Table 3), and (ii) the
“bulking error” associated with the laboratory procedure to mix
equal DNA amounts of sampled individuals.

We evaluated sampling and bulking errors by comparing 10
independent biological replicates from 10 different landraces
obtained by independently sampling and mixing equal leaf
areas of young leaves of 15 individuals. Allelic frequencies
estimated for both biological replicates from a same landrace
were highly correlated. Excluding Pol3, 94.5% of difference of
allelic frequencies between replicates was of included within 95%
confidence limits originated from sampling effect only Figure 4).
This suggests that the “bulking error” is low compared to the
“sampling error”. Consistently, Dubreuil et al. (1999) observed
a low “bulking error” for RFLP markers using the same DNA
pooling method, with a coefficient of determination of 0.99
between allelic frequencies based on individual genotyping of
plants and those predicted using DNA bulks. Several studies also
showed that the effect of bulking errors on allelic frequencies
measured by comparing DNA pool and individual genotyping
of plant of this DNA pool is very low compared with other
sources of errors (Le Hellard et al., 2002; Jawaid and Sham, 2009).
Additionally, the mixing procedure starting from leaf samples
strongly reduced the number of DNA extractions for each DNA
bulk as compared to first extracting DNA from each individual,
and then mixing by pipetting each DNA samples to obtain an
equimolar DNA mix (“post-extraction” approach). Since the cost
of DNA extraction becomes non-negligible when the number of
individual increases, mixing plant material based on their mass
before extraction is highly relevant to save time and money. This
can be done without losing accuracy as shown in this study for
SNP array and previously for RFLP by Dubreuil et al. (1999).

We highlighted the critical importance of the number
of individuals sampled per landrace on allelic frequency
estimation (Table 3). By using DNA pooling, accuracy can be
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gained with very little additional cost by increasing number
of sampled individuals. Whereas a high accuracy of allelic
frequency estimation within landraces is required to scan genome
for selective sweeps, it is less important to estimate global
genetic distance, due to the large number of SNPs analyzed.
Sampling fifteen plants per population (30 gametes) appears
convenient to obtain an accurate estimation of frequencies in
a population and analyze genetic diversity (Reyes-Valdés et al,,
2013; Gouda et al., 2020).

A Low Ascertainment Bias to Estimate

Genetic Distance Between Landraces

There are two possible sources of ascertainment bias using a
DNA pooling approach on a SNP array. The first one relates
to the design of array because the set of lines to discover SNPs
may not well represent genetic diversity and a threshold in
allelic frequency was possibly applied to select SNPs. The second
one relates to the selection of a subset of SNPs from the array
regarding the genetic diversity of samples in calibration set used
to predict allelic frequencies.

To avoid risk of ascertainment bias due to selection of
markers genotyped by the array, the logistic regression model
was adjusted on 1,000 SNPs with the largest allelic frequency
range rather than for each of the 23,412 PZE SNPs individually.
Using a specific model for each SNP would indeed conduct
to discard markers monomorphic in controlled pools and
therefore select only markers polymorphic between parents of
controlled pool. Note that the same issue would be raised
by using heterozygous individuals since 8-16 heterozygotes
were recommended to adjust a logistic regression. Using
heterozygous individuals and SNP specific equations could lead
to systematically counter-select SNPs with low diversity. It could
also lead to systematically remove SNPs that are differentially
fixed between isolated genetic groups, because no or very few
heterozygote individuals are available.

We also evaluated ascertainment bias by comparing
Modified Roger’s Distance (MRD) between the 156 landraces
obtained using SNPs (MRDgnp) and SSRs (MRDggr) (Camus-
Kulandaivelu et al., 2006; Mir et al., 2013), which display no
or limited ascertainment bias. MRDgnp was highly correlated
with MRDgsg (2 = 0.64; Figure 5). This correlation is high
considering that SSR and SNP markers evolve very differently
(mutation rate higher for SSRs than SNPs, multiallelic vs
biallelic), that the number of SSR markers used to estimate
genetic distance is low and that errors in allelic frequency
prediction occur for both SNPs and SSRs. For comparison,
correlation was lower than between Identity By State estimated
with 94 SSRs and 30K SNPs in a diversity panel of 337 inbred lines
(r? = 0.41), although very few genotyping errors are expected
in inbred lines (Bouchet et al., 2013). Using the wd criterion
significantly increased the correlation between MRDgyp and
MRDygsg markers for 156 landraces (Supplementary Figure 5). It
suggests that the wd criterion removes SNP markers that blurred
the relationships between landraces. We can therefore define
a subset of 23,412 SNPs to analyze global genetic diversity in
landraces. This is in agreement with previous studies in inbred

lines showing that PZE SNPs are suitable to analyze the genetic
diversity in inbred lines (Ganal et al., 2011; Inghelandt et al,,
2011; Bouchet et al., 2013; Frascaroli et al., 2013). These studies
showed that diversity analysis based on PZE SNPs give consistent
results with previous studies based on SSR markers (Inghelandt
etal, 2011; Bouchet et al., 2013; Frascaroli et al., 2013).

The DNA pooled-sampling approach therefore provides a
reliable picture of the genetic relatedness among populations that
display a large range of genetic divergence and opens a way to
explore genome-wide diversity along the genome.

An Affordable, High-Throughput,
Labor-Efficient and Robust Method
Compared to SSR/RFLP Markers and

Sequencing Approaches

Using SNP arrays instead of SSR/RFLP marker systems or
sequencing approaches has several advantages. First, SNP
genotyping using arrays is very affordable compared to SSR/RFLP
or resequencing approaches because it is highly automatable,
high-throughput, labor-efficient and cost effective (currently
30-80€/individual depending of array). Obtaining accurate
estimations of allelic frequencies using a whole genome
sequencing (WGS) approach requires high depth and coverage
for each individual because of the need of counting reads
(Schlotterer et al., 2014; Rode et al., 2018). To estimate allelic
frequency in DNA bulks, WGS remains costly compared to
SNP arrays for large and complex genomes of plant species
as maize. Different sequencing approaches based either on
restriction enzyme or sequence capture make it possible to target
some genomic regions and multiplex individuals, reducing the
cost of library preparation and sequencing while increasing the
depth for the selected regions (Glaubitz et al., 2014; Gouda
etal., 2020). However, these sequencing approaches remain more
expensive than SNP arrays and require laboratory equipment
to prepare DNA libraries and strong bioinformatics skills to
analyze sequencing data. These skills are not always available
in genebanks. With the maize 50K array, FIR measurement
used to predict allelic frequencies were highly reproducible
both across laboratories and batches (12 = 0.99; Figure 3).
We can therefore consistently predict allelic frequencies using
50K array in new DNA pools genotyped in other laboratories,
by applying the same parameters of presence/absence test and
logistic regression as in this study. This will greatly facilitate
the comparison of accessions across collections and laboratories.
This is a strong advantage over SSRs for which a strong
laboratory effect has been observed for the definition of alleles,
leading to difficulties for comparing genetic diversity across
seedbanks and laboratories (Mir et al., 2013). Similarly, one can
expect some laboratory effect for sequencing approaches due
to preparation of library and bioinformatics analysis. However,
there is some disadvantage to use SNP arrays instead of SSR
markers or sequencing approach. First, SNP marker are bi-
allelic whereas SSRs are multi-allelic. At a constant number
of markers, using SNPs rather than SSRs therefore leads to
less discriminative power (Laval et al., 2002; Hamblin et al.,
2007). This disadvantage is largely compensated by the higher
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number of SNPs and the fact that SNPs are more frequent
and more regularly spread along the genome than SSR/RFLP,
allowing genome wide diversity analyses. Second, contrary to
SSR/RFLP markers and sequencing approach, SNP array does
not allow one to discover new polymorphisms, which may
lead to ascertainment bias for diversity analysis of new genetic
groups (Nielsen, 2004; Clark et al., 2005; Hamblin et al., 2007;
Inghelandt et al., 2011; Frascaroli et al., 2013). Comparison with
SSRs results showed that PZE SNPs provide reliable genetic
distances between landraces, suggesting a low ascertainment
bias for a global portrayal of genetic diversity (see above).
Sequencing techniques may be interesting in a second step to
identify, among preselected accessions, those which show an
enrichment in new alleles.

The number of SNPs affects the estimates of relationship
between landraces and population structure (Moragues et al.,
2010). In our study, the correlation coefficient between MRDgyp
and MRDggr increased with increasing number of SNPs and
reached a plateau for 2,500 SNPs (Supplementary Figure 6).
This suggests that increasing the number of SNPs above 2,500
does not provide further improvement in precision to estimate
relationships between landraces as compared to 17 SSRs. Our
approach could therefore be made further cost efficient by
selecting less loci for studying global genetic relationships
and genetic diversity. For maize, a customizable 15K Illumina
genotyping array has been developed that includes 3,000 PZE
SNPs selected for studying essential derivation (Rousselle et al.,
2015) and 12,000 others selected for genetic applications such
as genomic selection. Alternatively, the same approach could be
applied to other genotyping arrays with higher density as the
600K Affymetrix Axiom Array (Unterseer et al., 2014) to gain
precision in detection of selective footprints.

CONCLUSION

The DNA pooling approach we propose overcomes specific
issues for genetic diversity analysis and plant germplasm
management purposes that were not or partially addressed
by previous methods which were mostly focused on QTL
analysis and genome wide association studies (Hoogendoorn
et al,, 2000; Brohede et al., 2005; Craig et al., 2005; Teumer
et al.,, 2013). As proof of concept, we used the DNA pooling
approach to estimate allelic frequencies in maize landraces
in order to identify original maize landraces in germplasm
for pre-breeding purposes and selective footprints between
geographic and/or admixture groups of landraces cultivated
in contrasted agro-climatic conditions (Arca et al, 2020).
Our approach could be very interesting for studying plant
germplasm since time, money and molecular skills can be
limiting factors to study and compare large collections of
landraces maintained in seedbank (Mir et al., 2013; Diaw et al,,
2020). Applications could be expanded to QTL identification
in pools (Gallais et al., 2007), detecting signatures of selection
in multi-generation experiments, or detection of illegitimate
seed-lots during multiplication in genebanks. The DNA pooling
approach could be easily applied to decipher organization

of genetic diversity in other plant germplasm since Infinium
Mumina HD array have been developed for several cultivated
plant species, including soybean, grapevine, potato, sweet
cherry, tomato, sunflower, wheat, oat, brassica crops and
also animal species.

MATERIALS AND METHODS

Plant Material

Landraces

A total of 156 landrace populations (Supplementary Table 4)
were sampled among a panel of 413 landraces capturing a large
proportion of European and American diversity and analyzed
in previous studies using RFLP (Dubreuil and Charcosset, 1998;
Rebourg et al., 1999, 2001, 2003; Gauthier et al., 2002) and SSR
markers (Camus-Kulandaivelu et al., 2006; Dubreuil et al., 2006;
Mir et al., 2013).

Each population were represented by a bulk of DNA from 15
individual plants, mixed in equal amounts as described in Reif
et al. (2005a) and Dubreuil et al. (2006). In order to analyze the
effect of individual sampling on allelic frequency estimation (see
below), ten populations were represented by two DNA bulks of
15 plants sampled independently (Table 3).

Controlled DNA Pools

To calibrate a prediction model for SNP allelic frequencies in
populations, we considered two series of nine controlled pools
derived from the mixing of two sets of three parental inbred
lines: EP1 - F2 - LO3 (European Flint inbred lines) and NYS302-
EA1433 - M37W (Tropical inbred lines).

For each set of three parental lines, we prepared nine
controlled pools by varying the proportion of each line in the
mix (Table 1), measured as the number of leaf disks with equal
size according to Dubreuil et al. (1999). The proportion of lines
2 and 3 (EA1433 and M37W or F2 and LO3) varies similarly
whereas line 1 (EP1 or NYS302) varies inversely. The genotype
of the inbred lines and the proportion of each inbred line in
each pool give the expected allelic frequencies as shown in
Table 1. Combination of genotypes in parental lines can conduct
either to monomorphic or polymorphic controlled pools if the
genotypes of 3 parental lines are the same or not, respectively.
If we exclude monomorphic controlled pools and heterozygote
SNPs in parental lines, these different combinations conduct to
four different polymorphic configurations in the nine controlled
pools, corresponding to four ranges of allelic frequencies: 1-
33% (R1), 33-50% (R2), 51-67% (R3), 67-99% (R4), (Table 1).
Combination of R1 and R4 configurations in two series of
controlled pools displayed the largest allelic frequencies range (1-
99%) while combination of R2 and R3 displayed a more reduced
allelic frequency range (33-67%).

Inbred Lines

To test for allele fixation within landraces, we used a panel
of 333 inbred maize lines representing the worldwide diversity
well characterized in previous studies (Camus-Kulandaivelu
et al., 2006; Bouchet et al., 2013; Supplementary Table 5). This
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panel includes the six inbred lines used to build two series of
controlled pools.

Genotyping
We used the 50K Illumina Infinium HD array (Ganal et al., 2011)
to genotype (i) 166 DNA bulks representing 156 landraces, (ii) 18
DNA bulks representing 2 series of controlled DNA pools, and
(iii) 333 inbred lines. 50K genotyping was performed according
to the manufacturer’s instructions using the MaizeSNP50 array
(Illuminalnc, San Diego, CA, United States). The genotype results
were produced with GenomeStudio Genotyping Module software
(v2010.2, Illuminalnc) using the cluster file MaizeSNP50_B.egt
available from Illumina. The array contains 49,585 SNPs passing
quality criteria defined in Ganal et al. (2011).

We also used 17 SSRs genotyping data from 145 and 11
landraces analyzed by Camus-Kulandaivelu et al. (2006) and Mir
etal. (2013), respectively.

Measurement Variable: Fluorescence Intensities Ratio
The MaizeSNP50 array has been developed into allele-specific
single base extension using two colors labeling with the Cy3
and Cy5 fluorescent dyes. The fluorescent signal on each spot
is digitized using GenomeStudio software. Data consist of two
normalized intensity values (x, y) for each SNP, with one intensity
for each of the fluorescent dyes associated with the two alleles of
the SNP. The alleles measured by the x intensity value (Cy5 dye)
are arbitrary, with respect to haplotypes, are called the A alleles,
whereas the alleles measured by the y intensity value (Cy3 dye)
are called the B alleles.

We assumed that the strength of the fluorescent signal of each
spot is representative of the amount of labeled probe associated
with that spot. The amount of labeled probes at each spot relies
upon the frequency of the corresponding alleles of PCR product
immobilized on it. Based on this assumption, the FIR of each
spot (y/(x+y)) can be employed to estimate the allele frequency
of DNA bulk immobilized on it.

To test the reproducibility of the measurement the controlled
pool of European lines was genotyped twice in two platforms,
at CNG Genotyping National Center, Evry 91, France, and
at Trait Genetics.

SNP Filtering and Quality Control
For the purpose of this study, we used only the subset of 32,788
markers contributed by the Panzea project,' so called PZE SNPs,
developed on the basis of US NAM founders (Zhao et al,
2006). These SNPs represent a comprehensive sample of the
maize germplasm and are therefore suitable for diversity analysis
(Ganal et al., 2011).

The following Eq (1) was then used to create a rank score
(weighted deviation, wd) for each SNP in order to identify and
remove those of poor quality,

[Laa — wasl

/Naa-0,,2+NBB-pp2
Naa +Npp

wd = (1)

Uhttp://www.panzea.org/

where was and oa4 and wpp and opp are the mean and the
standard deviation for the fluorescence intensity ratios of AA
and BB genotypes for the 327 inbred lines panel and Ny
and Npp is the number of inbred lines with genotype AA or
genotype BB, respectively. To avoid selection bias, loci which
were monomorphic within the reference inbred lines population
were selected using the wd Eq (1), assuming paa =0and o44 =0
for monomorphic BB SNPs or assuming ppg = 1 and ogp = 0 for
monomorphic AA SNPs.

This criterion removes from analysis those SNPs for which
distributions of fluorescence signal ratios for AA and BB
genotypes of 327 inbred lines panel overlap or have large
variances. To analyze genetic diversity, we first selected 23,656
with wd above 50 among 32,788 PZE SNPs. This threshold
removed SNPs displaying high error rate in allelic frequency
prediction (Supplementary Figure 1). In addition, we removed
244 SNPs that were heterozygous in one of parental lines of
controlled pools and that displayed high error rate in allelic
frequency prediction (data not shown).

Alleles Detection and Allele Frequency Estimation
Allele frequency estimation within DNA pools was implemented
as a two-step process. We first determined the fixation of alleles
A and/or B by comparing the fluorescent ratio of DNA pools
at a given SNP locus with the distribution of the fluorescent
signal of inbred lines (see above) which have AA or BB genotypes
at the same locus. We assumed Gaussian distributions for the
fluorescent intensities and tested for fixation using a Student’s
t-tests with a 5% type I nominal level.

In second step, for each SNP for which alleles A and B were
both declared present, the allelic frequency of allele B (fB) was
inferred using the following generalized linear model:

g(fB) = o + B$ @)

where x and y are the fluorescent intensities at SNP for alleles
A and B respectively, o and f are the parameters of a logistic
curve, calibrated on fluorescent ratio data from controlled pools
for 1,000 SNPs. As allele B frequency is a binomial variable, GLM
was set with a logit link function (R, version 3.0.3).

The calibration sample of 1,000 SNPs consists in 250 randomly
selected SNPs for each possible configuration (R1, R2, R3, R4
defined in Table 1). It was preferred to a calibration sample
of all SNPs or to a specific prediction curve for each SNPs, in
order to have a homogeneous distribution of observations into
each class of expected frequency. Calibrating the model for each
SNP would lead to high error in allelic frequency prediction,
notably for monomorphic controlled pools as exemplified by
Supplementary Figure 3, 4. Calibrating model for all SNPs would
give strong weight to fixed allele in calibration due to large
number of monomorphic controlled pools that are homozygous
either for allele A or B.

Accuracy of Allelic Frequency Estimation
We assessed the accuracy of allele frequency estimates from
pooled DNA samples by calculating the absolute difference
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between allelic frequencies of the B allele predicted by our two-
step model and those expected for controlled pools from the
genotype of their six parental lines. We obtained expected allelic
frequencies for two series of controlled pools by weighting the
allelic frequency of each parental line (0 or 1) by their relative
mass in the mix (Table 1). We obtained genotypes of inbred lines
from clustering by genome studio. This absolute difference was
averaged over SNPs and samples in order to obtain MAE.

We first evaluated the MAE for 23,412 SNPs in the two series
of controlled pools (Supplementary Table 2 and Figure 2). In
order to estimate the effect of the calibration set of individuals
and SNPs on the accuracy of allelic frequency prediction, we
applied two cross-validation approaches on the 1000 SNPs and
the two series of controlled pools and six parental inbred lines
(24 samples) used to calibrate parameters of the common logistic
regression. In order to evaluate the effect of SNP calibration
set (Supplementary Table 1), we repeated five time a K-fold
approach in which 1000 SNPs were split randomly in a training
set of 800 SNPs on which we calibrated our two-step model
and a validation set of 200 SNPs on which we predicted allelic
frequency using this model in same two series controlled pools
and estimated MAE. In order to evaluate the effect calibration
samples (Table 2), we repeated 1000 times a K-fold approach on
1,000 SNPs in which 1, 3, 5, 8, 10, 15 samples among 18 from
controlled pools were randomly removed from the calibration
set. We used the remaining samples to estimate parameters of the
logistic regression, and then predicted allelic frequencies using
this predictive equation in these K removed samples (Table 2).

To estimate sampling error (Table 3), we estimated the 95%
confidence interval of the allelic frequency in the population
considering various observed allelic frequency obtained by
sampling either 15, 30, 100, or 200 individuals from this
population. To obtain the lower and upper bound of the 95%
confidence interval for allelic frequency in the population, we
considered the binomial probability to obtain various number
of allele B in 15, 30, 100, 200 individuals (estimated allelic
frequencies) from a population (true allelic frequencies) by using
binom.confint function implemented in R package “binom.” We
used the following parameters: binom.confint(x = number of
alleles observed, n = 2*number of individuals, conf.level = 95%,
methods = exact) with x = number of successes and n = number
of trial in the binomial experiment.

Comparison of Genetic Distance

Between SNP and SSR Markers

We calculated the MRD (Rogers, 1972) based on allelic frequency
data between landraces using different sets of markers to analyze
the effect of the wd criterion (Supplementary Figure 5) and
of the number of markers (Supplementary Figure 6) on the
estimation of relatedness. To analyze the effect of wd criterion,
we selected four random sets of 2,000 SNPs with different wd
ranges (0-20, 20-40, 40-60, 60-80) among 32,788 PZE SNPs. To
analyze the effect of SNP number, we selected six random sets
of SNPs with various number of SNPs (15,000, 10,000, 5,000,
2,500, 1,000, 500) among 23,412 SNPs with wd above 50. In
order to test if the genetic distance is robust when changing

the type and the number of markers, we compared MRD
between landraces estimated with different SNP datasets with that
estimated with 17 SSR markers (Figure 5 and Supplementary
Figures 5, 6). Missing allele frequencies within accession were
replaced by corresponding average frequencies within the whole
set of accessions before running this analysis. Allelic frequencies
of two samples for replicated landraces were averaged before
estimating MRD distance except for Pol3 for which one of two
samples was removed (WG0109808-DNAHO04).

Coeflicient of determination between the distance matrices
based on different subsets of SNP (MRDgynp) and 17 SSR markers
(MRDgsr) was determined by using linear regression.
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