
fpls-11-570436 October 12, 2020 Time: 15:55 # 1

ORIGINAL RESEARCH
published: 16 October 2020

doi: 10.3389/fpls.2020.570436

Edited by:
Martha Ludwig,

University of Western Australia,
Australia

Reviewed by:
Nelson J. M. Saibo,

New University of Lisbon, Portugal
Thomas D. Sharkey,

Michigan State University,
United States

*Correspondence:
Chidi Afamefule

chidi.afamefule@essex.ac.uk
Christine A. Raines
rainc@essex.ac.uk

Specialty section:
This article was submitted to

Plant Physiology,
a section of the journal

Frontiers in Plant Science

Received: 07 June 2020
Accepted: 23 September 2020

Published: 16 October 2020

Citation:
Afamefule C and Raines CA

(2020) Insights Into the Regulation
of the Expression Pattern

of Calvin-Benson-Bassham Cycle
Enzymes in C3 and C4 Grasses.

Front. Plant Sci. 11:570436.
doi: 10.3389/fpls.2020.570436

Insights Into the Regulation of the
Expression Pattern of
Calvin-Benson-Bassham Cycle
Enzymes in C3 and C4 Grasses
Chidi Afamefule* and Christine A. Raines*

School of Life Sciences, University of Essex, Colchester, United Kingdom

C4 photosynthesis is characterized by the compartmentalization of the processes of
atmospheric uptake of CO2 and its conversion into carbohydrate between mesophyll
and bundle-sheath cells. As a result, most of the enzymes participating in the Calvin-
Benson-Bassham (CBB) cycle, including RubisCO, are highly expressed in bundle-
sheath cells. There is evidence that changes in the regulatory sequences of RubisCO
contribute to its bundle-sheath-specific expression, however, little is known about how
the spatial-expression pattern of other CBB cycle enzymes is regulated. In this study,
we use a computational approach to scan for transcription factor binding sites in the
regulatory regions of the genes encoding CBB cycle enzymes, SBPase, FBPase, PRK,
and GAPDH-B, of C3 and C4 grasses. We identified potential cis-regulatory elements
present in each of the genes studied here, regardless of the photosynthetic path used
by the plant. The trans-acting factors that bind these elements have been validated
in A. thaliana and might regulate the expression of the genes encoding CBB cycle
enzymes. In addition, we also found C4-specific transcription factor binding sites in the
genes encoding CBB cycle enzymes that could potentially contribute to the pathway-
specific regulation of gene expression. These results provide a foundation for the
functional analysis of the differences in regulation of genes encoding CBB cycle enzymes
between C3 and C4 grasses.

Keywords: C4 photosynthesis, gene expression regulation, cis-regulatory elements, transcription factor binding
sites, Calvin-Benson-Bassham cycle

INTRODUCTION

C4 plants achieve higher photosynthetic efficiency by concentrating CO2 around RubisCO. In
contrast with enzymes participating in C3 photosynthesis, C4-enzymes are compartmentalized to
specific cell types, namely mesophyll (M) and bundle-sheath (BS) cells. Enzymes enriched in M cells
include phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (Ppdk),
whereas decarboxylating malic enzymes (NAD or NADP-Me) and RubisCO are enriched in the BS
cells (Sheen and Bogorad, 1987; Hibberd and Covshoff, 2010; Berry et al., 2011).

During C4 evolution a change in localization of the enzymes involved in CO2 assimilation
resulted in the compartmentalization of these reactions in either the M or BS cell types. A number
of regulatory elements conferring a M or BS specific expression pattern have been identified in the
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regulatory sequences of the genes encoding PEPC, Ppdk; or
NADP-ME, NAD-ME, and RubisCO (Nomura et al., 2000; Berry
et al., 2011; Williams et al., 2016; Reyna-Llorens et al., 2018). To
further interrogate those regulatory elements, a combination of
comparative transcriptomics to identify differential expression
of genes (Bräutigam et al., 2011; Aubry et al., 2014; Xu et al.,
2016) and DNAse-seq to map differences in open chromatin
regions between M and BS cells (Burgess et al., 2019) have been
used. These studies have led to the identification of putative cis-
regulatory elements and the trans-acting transcription factors
binding to those elements, and have shown that the motifs
conferring differences in expression in the C4 species have been
recruited from pre-existing sequences in C3 species, rather than
being generated de novo during the evolution of the C4 condition
(Niklaus and Kelly, 2019).

Calvin Benson-Bassham (CBB) cycle enzymes, including
RubisCO, are expressed in both C3 and C4 species. Similar
to RubisCO, most of the CBB cycle enzymes are enriched
in BS cells in C4 species (Sheen and Bogorad, 1987; John
et al., 2014; Rao et al., 2016). Unlike RubisCO, little is
known about the changes in the regulatory sequences
of the other 10 genes encoding CCB cycle enzymes that
enable such compartmentalization, limiting our ability to
develop strategies to manipulate this pathway to improve
photosynthetic efficiency. Here, we present a bioinformatics
analysis of the regulatory sequences of genes encoding
CBB cycle enzymes with the aim of identifying regulatory
elements that are common to C3 and C4 species, or C4-
specific regulatory elements that control photosynthesis and
contribute to C4 compartmentalization. We selected four
of the CBB cycle enzymes known to be redox-regulated by
the ferredoxin/thioredoxin (Fd/TRX) system (Michelet et al.,
2013) and that function exclusively in the CBB cycle: SBPase,
FBPase (chloroplastic variant), PRK and GAPDH-B. Given the
numerous independent origins of C4 photosynthesis that might
have led to parallel evolution of cis-regulatory elements (Sage
et al., 2012), in this paper we focus on a small subset of eight
grasses from the Poaceae family whose genomes have been
sequenced and annotated.

In this study we have identified putative regulatory elements
that are common in both C3 and C4 species as well as C4-
specific elements. We have also used existing data to explore
the expression patterns of the trans-acting factors that have
been shown or proposed to bind to these elements, suggesting a
possible role in the compartmentalization of CBB cycle enzymes
in C4 plants. The results presented here provide the basis for
future functional studies.

MATERIALS AND METHODS

DNA Sequences
Genomic sequences encoding CBB cycle enzymes of Oryza sativa
(Ouyang et al., 2007), Hordeum vulgare (Beier et al., 2017;
Mascher et al., 2017), Brachypodium distachyon (International
Brachypodium Initiative, 2010), Zea mays (Schnable et al.,
2009; Hirsch et al., 2016), Sorghum bicolor (McCormick

et al., 2018), Setaria viridis (v2.1, DOE-JGI)1 and Panicum
virgatum (v1.0, DOE-JGI, see footnote) were obtained from
Phytozome12 (Goodstein et al., 2011). Arabidopsis thaliana genes
(AT3G55800—SBPase, AT3G54050—chlFBPase, AT1G32060—
PRK, and AT1G42970—GAPDHB) were used to identify
orthologs in every species. For the genomic sequences encoding
CBB cycle enzymes of Dichanthelium oligosanthes (Studer et al.,
2016), the A. thaliana coding sequences were aligned against
the D. oligosanthes genome using BLAST (Altschul et al., 1990)
to find orthologous genes. Sequences used are included in
Supplementary Material.

Motif Prediction in Conserved
Non-coding Sequences (CNS)
Genomic sequences were aligned using mVISTA (Frazer et al.,
2004) and aligned CNSs were used as input for motif prediction
using MEME (v5.1.1; Bailey et al., 2009). Motif site distribution
was set to zoops and maximum motif width to the size of the
shorter CNS. Predicted motifs were used as input in FIMO (Grant
et al., 2011) to scan the regulatory sequences of orthologous genes
in other species.

Motif Scanning of Genomic Sequences
A collection of 529 plant transcription factor motifs validated in
A. thaliana (O’Malley et al., 2016) were used to scan for motifs
using FIMO (Grant et al., 2011) with default parameters.

Data Processing and Visualization
Data processing and visualization were performed using R 3.6.0
(R Core Team, 2019). The dplyr package (Wickham et al., 2019)
was used to filter the identified motifs by q < 0.05, genomic
feature, and by species. The UpSetR package (Gehlenborg, 2019)
was used to generate Figure 2A showing all possible interactions;
and the ggplot2 (Wickham, 2016) and the gggenes packages
(Wilkins, 2019) were used to generate Figure 2B.

Transcriptomics Analysis
Transcriptomic data from RNAseq experiments in which
mesophyll and bundle sheath cells were separated in P. virgatum
(Rao et al., 2016), S. viridis (John et al., 2014), Panicum hallii
(Washburn et al., 2017), and Setaria italica (Washburn et al.,
2017) were obtained from NCBI (BioProject accession numbers:
PRJNA293441, PRJEB5074, PRJNA475365). A classification-
based quantification was performed using kallisto (Bray et al.,
2016) with the transcriptomes and genome annotation obtained
from Phytozome 12 (Goodstein et al., 2011; Bennetzen et al.,
2012). In short, a kallisto index was built with the reference
transcriptome of each species, and kallisto quant was used to
quantify abundance of pair-end reads with default parameters.
Differential expression analysis was performed with R packages
DESeq (Anders and Huber, 2010) using estimateSizeFactors,
estimateispersions and nbinomTest functions; DESeq2 (Love
et al., 2014) using DESeq function, and edgeR (Robinson
et al., 2009; McCarthy et al., 2012) using estimateCommonDisp,

1http://phytozome.jgi.doe.gov/
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estimateTagwiseDisp and exactTest functions. P-values were
adjusted with the Hochberg method in the three analyses, and
only genes with adjusted p < 0.05 in at least one of the analyses
were included in Table 1. Parallel (Tange, 2018) was used at every
step to run jobs in parallel.

To construct Supplementary Table 1, we used the 57
A. thaliana transcription factors that have been shown to bind
the identified transcription factor binding sites (TFBS, 50 shared
by different orthologous genes, Figure 2; plus 7 absent from
C3 or C4 species, Supplementary Figure S5). We identify the
orthologous genes in grass species and evaluate their enrichment
in M or BS cells using publicly available transcriptomic data for
S. viridis (John et al., 2014), S. italica (Washburn et al., 2017),
P. virgatum (Rao et al., 2016), P. halli (Washburn et al., 2017),
Z. mays (Chang et al., 2012), and S. bicolor (Döring et al., 2016).
All these databases separate M and BS cells from whole leaves.
We identified 10 orthologous genes significantly enriched (adj.
p < 0.05) in P. virgatum, which corresponded to 8 genes in
A. thaliana. For P. halli we identified 21 orthologs corresponding
to 11 A. thaliana genes. For S. viridis we identified 53 orthologs
corresponding to 26 A. thaliana genes. For S. italica we identified
46 orthologs corresponding to 22 A. thaliana genes. For Z. mays
we identified 10 orthologs corresponding to 4 A. thaliana genes.
For S. bicolor we identified 2 orthologs corresponding to 2
A. thaliana genes. In Table 1, we only included the A. thaliana
genes for which the log2 fold was at least 1, and with consistent
data from at least two species. We also removed Z. mays and
S. bicolor orthologous genes as their transcriptomic data did
not add any information on the A. thaliana genes included
on Table 1.

RESULTS

To account for the numerous independent origins of C4
photosynthesis, we focus on a small subset of eight grasses:
Oryza sativa, Hordeum vulgare, Brachypodium distachyon,
Dichanthelium oligosanthes, Zea mays, Sorghum bicolor, Panicum
virgatum, and Setaria viridis. All of these plant species belong
to the Poaceae family and shared a common ancestor around
50 million years ago. O. sativa, H. vulgare, B. distachyon, and
D. oligosanthes perform C3 photosynthesis, whereas Z. mays, S.
bicolor, P. virgatum, and S. viridis perform C4 photosynthesis.
Notably, D. oligosanthes belongs to the PACMAD clade
(Figure 1), to which all selected C4 species belong, and
shares a common ancestor with them around 15 million years
ago (Studer et al., 2016). To identify conserved regulatory
regions in genes encoding CBB cycle enzymes of C3 and
C4 grasses, we aligned each gene against its orthologous
gene in a representative C3 species (B. distachyon; Figure 1A
and Supplementary Figures S1A, S2A, S3A) and against its
orthologous gene in a representative C4 species (S. bicolor;
Figure 1C and Supplementary Figures S1C, S2C, S3B). The
genomic sequence including potential promoters [2000 base
pair (bp)] upstream from the annotated transcription start site
(or start codon otherwise) and potential terminators (1,000 bp
downstream from the end of 3′UTR or stop codon) was

used to allow for the identification of putative regulatory
regions outside coding sequences. Regions showing between 50
and 100% identity were plotted and conserved regions with
over 70% identity were colored depending on the genomic
feature (Figures 1A,C; coding sequences in purple, untranslated
regions [UTRs] in cyan, and intergenic regions and introns
in pink) As expected, most of the coding sequences were
conserved among all orthologous genes, whereas only parts of
the introns and intergenic sequences showed over 70% identity.
We defined those regions as conserved non-coding sequences
(CNS). For SBPase, we identified one CNS located at the last
intron of most orthologs (Figures 1A,C), and two CNSs found
only in SBPase orthologous genes from PACMAD species (C4
species + D. oligosanthes; Figure 1C). In addition, we found
one CNS located at the 5′ intergenic region of all PRK genes
(Supplementary Figure S1), and two CNSs located at the
5′ intergenic region of FBPase genes from PACMAD species
(Supplementary Figure S2). To further characterize these CNSs,
they were subjected to motif prediction using MEME (Bailey
et al., 2009), which generated a position weight matrix for the
predicted motifs (Figure 1B and Supplementary Figures S1B,
S2B). We used these motifs to scan the orthologous genes of
other species, and identified the PRK CNS in the intergenic
regions of PRK orthologs in non-grasses species (Supplementary
Dataset 1). These results indicate that there are conserved
potential cis-regulatory sequences shared between C3 and C4
species. However, this alignment approach is based on sequence
identity over at least 50 bp; so it was possible that smaller motifs,
such as transcription factor binding sites (TFBS) could have
been disregarded.

To evaluate the presence of TFBS in the regulatory regions
of genes encoding CBB cycle enzymes, a dataset containing
validated TFBS in Arabidopsis thaliana (O’Malley et al., 2016)
was used to scan the putative regulatory sequences (intergenic
regions, untranslated regions, and introns) of orthologous genes,
i.e., SBPase orthologs across the subset of eight grass species were
scanned at the same time. We first determined the A. thaliana
TFBS shared between orthologous genes, and used those to
compare between the genes encoding the selected four CBB cycle
enzymes (Figure 2A). This way, we identified one TFBS present
in all of the potential regulatory sequences (common_CBB, in
Figure 2A) that was bound by VRN1 in A. thaliana. This TFBS
was also identified it in the putative regulatory regions of genes
encoding photorespiratory (GDCH) and housekeeping proteins
(CBP20) (Supplementary Dataset 2), suggesting that it might
play a regulatory role not limited to photosynthetic genes. We
also identified 13 putative TFBS shared between SBPase, FBPase,
and GAPDHB orthologous genes (common_SFG), 9 TFBS shared
betweenGAPDHB and SBPase orthologous genes (common_GS),
one shared between GAPDHB and PRK orthologous genes
(common_GP), and one TFBS shared between GAPDHB and
FBPase orthologous genes (common_GF). In addition, 17, 2,
and 6 putative TFBS were shared between GAPDHB orthologs
(common_GAPDHB), FBPase orthologs (common_FBP), and
PRK orthologs (common_PRK); but not between any other
group of orthologous genes. Notably, these common sequences
can be found in potential regulatory sequences of other
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TABLE 1 | Differential expression of trans-acting factors binding putative TFBS in bundle sheath and mesophyll cells of C4 species.

Transcription factor A. thaliana name Panicum virgatum name log2 FC Setaria viridis name log2 FC Panicum hallii name log2 FC Setaria italica name log2 FC Group

VRN1 AT3G18990 Pavir.8NG077400.2 3.6 Sevir.8G068300.1 1.4 cCBB

LOB AT5G63090 Pahal.5G488600.2 3.2 Seita.5G119400.1 4.6 c34G

OBP3 AT3G55370 Sevir.3G064900.1 6.4 Pahal.3G092800.1 3.5 Seita.3G064100.1 5.4 c34P

Sevir.3G064900.2 6.6 Pahal.3G092800.2 7.9 Seita.9G033400.1 5.8

Sevir.3G064900.3 4.9 Pahal.3G092800.3 3.6 Seita.9G452000.1 7.2

Sevir.9G032600.1 6.5 Pahal.9G030900.1 5.4

Sevir.9G455900.1 7.9 Pahal.9G513900.1 3.1

Sevir.9G455900.2 7.0 Pahal.9G513900.2 9.8

At5g66940 At5g66940 Sevir.3G015900.1 2.2 Pahal.7G338900.1 2.8 Seita.3G014900.1 5.1 C3AS

AREB3 AT3G56850 Pavir.5KG593700.1 3.3 Sevir.9G425100.2 5.1 C4AP

AT3G12130 AT3G12130 Sevir.4G224600.1 –0.3 Pahal.1G071400.1 –0.9 Seita.3G029300.2 –0.9 C3AP

Sevir.4G224600.2 –1.7 Pahal.1G071400.3 –7.3 Seita.4G214800.1 –0.5

ERF5 AT5G47230 Sevir.1G261900.1 –1.1 Pahal.9G383200.1 –3.0 Seita.1G257600.1 –1.7 cSFG

AS2 AT1G65620 Sevir.3G246200.2 –5.4 Seita.5G408700.1 –3.4 c34G

–3.4

ERF1 AT3G23240 Sevir.8G100900.1 –5.3 Pahal.2G139200.1 –3.4 Seita.2G138400.1 –2.9 c34G

Sevir.9G504700.1 –3.7 Pahal.8G262800.1 1.9 Seita.9G500100.1 –1.8

ERF9 AT5G44210 Pavir.5NG539500.1 –2.4 Sevir.3G196300.1 1.2 Seita.5G348000.1 –1.4 c34G

Sevir.5G352700.1 –2.5

ERF15 AT2G31230 Sevir.2G118100.1 –4.5 Pahal.8G107700.1 –1.5 Seita.2G112200.1 –2.1 c34G

Sevir.8G182200.1 5.7 Seita.8G173100.1 7.6

Seita.8G237900.1 4.3

TCX2 AT4G14770 Sevir.2G055300.3 –6.2 Pahal.3G490800.1 0.7 Seita.2G050700.1 –3.6 C3AF

Sevir.3G398500.1 0.7 Pahal.9G158300.1 7.0 Seita.3G382000.1 –0.7

Sevir.9G159400.4 5.0 Seita.9G161100.3 5.1

Sevir.9G159400.6 4.8 Seita.9G161100.2 7.5

Sevir.9G159400.1 2.7

Sevir.9G159400.7 4.1

ERF73 AT1G72360 Pavir.9NG798900.1 5.5 Sevir.2G400300.5 2.9 Pahal.2G447100.1 1.8 Seita.2G390000.1 3.6 cSFG

Sevir.9G520900.1 –1.4 Pahal.2G447100.2 2.2 Seita.2G390000.3 1.2
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orthologous genes from some but not in all of the species in
the study. The fact that all the A. thaliana TFBS found in
SBPase orthologs are shared with other genes (common_SFG,
common_GS) whereas most of the TFBS found in PRK orthologs
are not shared (common_PRK) suggests different mechanisms
for the regulation of the expression of the genes encoding
CBB cycle enzymes. Most of the trans-acting factors binding to
the identified TFBS belong to the Apetala2/Ethylene-Response-
Factor (AP2/ERF) family, and often recognize similar binding
sites. A comparison between the location of the A. thaliana TFBS
at the putative regulatory regions of the orthologs in the selected
species (Figure 2B and Supplementary Figure S4) revealed that
the TFBS tend to cluster together in discrete regions of the
putative regulatory sequences, although the genomic coordinates
of these clusters change between species.

We used a similar approach to identify C4-specific TFBS
contributing to the difference in expression pattern between
C3 and C4 species. After scanning together orthologous genes
(i.e., all SBPase orthologous genes with the A. thaliana validated
TFBS), we selected TFBS absent from the putative regulatory
regions of genes encoding C3-enzymes (Supplementary
Figure S5). Using this approach (choosing absent motifs from
genes encoding C3 enzymes rather than present motifs in all
genes encoding C4 enzymes), it was possible to account for the
multiple independent origins of C4 photosynthesis. Three TFBS
were found absent from SBPase C3-genes, bound by At5g66940,
BZR1, and CEJ1 in A. thaliana; one absent from FBPase C3-
genes (bound by TCX2) and one absent from PRK C3-genes
(bound by At3g12130). In addition, using the same approach
to identify TFBS absent from genes encoding C4 enzymes
revealed two C3-specific motifs in the 5′ intergenic region of
PRK (bound by AREB3 and bZIP16). These results suggest that
there are C3- and C4-specific TFBS that might contribute to the
compartmentalization of C4 CBB cycle enzymes.

To further understand how the identified TFBS might regulate
the expression pattern of CBB cycle enzymes, we obtained the
transcriptomic data from a collection of RNA-seq experiments on
C4 species where samples were taken separately from mesophyll
and bundle sheath cells (John et al., 2014; Rao et al., 2016;
Washburn et al., 2017), and assessed the expression pattern
of the trans-acting factors. Despite the complexities of using
data from different experiments, and the limited validation of
the interaction between trans-acting factors and the identified
TFBS (i.e., only validated in the C3 species A. thaliana), we
identified ten trans-acting factors differentially enriched in M
and BS cell types (Table 1). These trans-acting factors were the
orthologs of the validated trans-acting factors in A. thaliana,
and could be classified into three categories in regard to BS-
specific enrichment (Table 1): (1) putative activators, if all the
orthologs were consistently enriched in BS over M cells, such
as the orthologs of At5g66940, whose TFBS are only found in
SBPase orthologs of C4 species; (2) putative repressors, if all
the orthologs were consistently enriched in M over BS cells,
for example the orthologs of At3g12130, whose TFBS are only
found in PRK orthologs of C4 species; (3) broad regulators,
if enrichment of orthologous genes was inconsistent within
species (some were enriched in BS over M cells while others
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FIGURE 1 | SBPase coding sequence is highly conserved among C3 and C4 grasses in comparison to putative regulatory regions. (A,C) mVISTA plots of
Brachypodium distachyon (A) and Sorghum bicolor (C) SBPase aligned to SBPase orthologs in C3 and C4 grasses. Genomic region includes approximately 2 kb
upstream from the transcription start site and 1 kb after the end of the 3′ untranslated region (UTR). UTRs, exons, and introns are annotated. The vertical line with a
small perpendicular arrow indicates the transcription start site and the arrowhead the orientation of the gene. The graph shows sequences with 50–100% identity
and regions with > 70% identity within 50 base pairs are highlighted in purple if they are located in exons, in cyan if they are located in UTRs, or in pink if they are
located outside exons or UTRs. Boxes highlight conserved non-coding sequences (CNSs), and the predicted position weight matrix for each conserved sequence is
included (B). On the left side, the phylogenetic relationship between C3 (in green) and C4 (in brown) grasses is shown. Common ancestor of BOP clade and
PACMAD clade species are shown as a red and as a blue dot, respectively. Note that Dichanthelium oligosanthes is a C3 species within the PACMAD.
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FIGURE 2 | Arabidopsis thaliana transcription factor binding sites (TFBS) identified in the potential regulatory sequences of genes encoding C3 and C4

Calvin-Benson-Bassham (CBB) cycle enzymes. (A) Upset plot showing the identified A. thaliana TFBS and in which orthologous genes they are found. Horizontal
bars represent the number of common motifs identified within orthologs, vertical bars represent the motifs shared between different orthologous genes, as indicated
by the dots below. The name of the A. thaliana TFBS is included inside the vertical bars, and the number of motifs as well as the name of the gene group are
indicated above. There is only one common motif shared across all orthologs (common_CBB: VRN1, gray bar), and most of the common motifs identified in
GAPDHB are not common in the genes encoding other enzymes (common_GADPHB). In addition, many motifs are shared between GAPDHB, FBPase, and
SBPase (common_SFG), whereas most PRK motifs are not shared with the genes encoding other enzymes (common_PRK). (B) Localization of each gene group in
the genomic region around genes encoding CBB cycle enzymes in Brachypodium distachyon and Sorghum bicolor. The x-axis corresponds to the genomic
coordinates with the start codon corresponding to the + 1 position. The colored arrow represents the gene structure with UTRs in blue, exons in red, and potential
promoter and terminator as a black line. The dots represent the genomic coordinates of each of the motifs within each gene group. Different gene groups are
separated along the y-axis. Despite being comprise by the same TFBS, the distribution of the dots changes between species. Notably, TFBS can be found at
multiple coordinates in the same gene. Most of the trans-acting factors binding to the identified A. thaliana TFBS belong to the same family, and often bind to similar
sequences. In fact, TFBS tend to cluster in discrete regions that might play a role in the regulation of the expression of the corresponding gene.

were enriched in M over BS cells), such as the orthologs of
TCX2, which are found enriched in both M and BS cells,
and whose TFBS are only found in FBPase orthologs of
C4 species.

DISCUSSION

In this study, we have used publicly available data to analyze
putative regulatory regions of genes encoding a selected subset

of CBB cycle enzymes (SBPase, FBPase, PRK, and GAPDHB)
in C3 and C4 species. We used two different approaches to
identify potential regulatory elements that might contribute to
the compartmentalization of CBB enzymes in C4 species. The
alignment of the genomic regions of the orthologs encoding the
selected CBB cycle enzymes allowed us to identify conserved
non-coding sequences (CNSs) shared by C3 and C4 orthologous
genes, whereas the scanning of putative regulatory regions with
TFBS validated in A. thaliana, allowed us to identify putative C4-
specific regulatory elements. The results presented here provide

Frontiers in Plant Science | www.frontiersin.org 7 October 2020 | Volume 11 | Article 570436

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-570436 October 12, 2020 Time: 15:55 # 8

Afamefule and Raines CBB Genes in CC4 Grasses

new information on putative regulatory elements of the genes
encoding SBPase, FBPase, PRK, and GAPDHB in both C3
and C4 species and although we do not provide experimental
evidence in this paper the results form the basis for future
functional studies.

The alignment of the genomic regions of orthologous CBB
genes revealed a number of CNSs shared between C3 and C4
species. We identified a highly conserved sequence in the 5′

intergenic region of every PRK gene (Supplementary Figure S1).
This CNS stands out because of its length (113 bp) and
the level of conservation, as it can be found in C3 species
even outside of Poaceae (Supplementary Dataset S1). These
attributes suggest that this region could have contributed to
the regulation of PRK expression throughout evolutionary
history. In contrast, the CNS identified in the last intron of
SBPase orthologous genes (Figure 1) was only found in species
belonging to Poaceae, suggesting that the possible contribution
to the regulation of SBPase genes is limited to Poaceae species
(Supplementary Dataset S1). Nevertheless, the location of
this conserved region highlights the relevance of searching
for regulatory elements outside of the up- and down-stream
non-coding sequences of genes (Rose, 2019). Additionally, we
also identified CNSs conserved only within the more closely
related species of the PACMAD clade (D. oligosanthes, Z. mays,
S. bicolor, P. virgatum, and S. viridis) but not within the
more distant related species of the BOP clade (O. sativa,
H. vulgare, and B. distachyon; Figure 1 and Supplementary
Figure S2). The fact that these CNSs are only shared between
the species of the PACMAD clade, including D. oligosanthes
which performs C3 photosynthesis, suggests that these CNSs
do not play a role in C4 compartmentalization and instead
they are a result of shared evolutionary history. However, the
significance of the contribution of these conserved regions to
the levels or patterns of expression of these genes remains to be
elucidated experimentally.

Using a different approach based on validated TFBS and their
trans-acting factors in A. thaliana, we identified putative (i.e.,
non-validated in grasses) TFBS shared by the genes encoding
CBB cycle enzymes in both C3 and C4 species (Figure 2A), as
well as C4-specific (C3-absent) putative TFBS (Supplementary
Figure S5). We found three putative TFBS absent from SBPase
C3-genes, one absent from FBPase C3-genes, and one absent from
PRK C3-genes. The identification of A. thaliana TFBS in genes
encoding C4 CBB cycle enzymes supports the hypothesis that
C4 genes co-opted regulatory elements of C3 genes to establish
their restricted expression pattern (Brown et al., 2011; Xu et al.,
2016; Borba et al., 2018; Reyna-Llorens et al., 2018). Notably,
we did not identify any C3- or C4-specific putative TFBS in
the regulatory regions of GAPDHB orthologs (Supplementary
Figure S5) but found more shared TFBS between C3 and C4
GAPDHB orthologs (Figure 2A). Despite being expressed in
BS cells, which should allow for CBB cycle function in those
cells, GAPDHB is enriched in M cells (Majeran et al., 2005; Rao
et al., 2016). The lack of C4-specific putative TFBS in GAPDHB
regulatory regions suggests that its expression might be regulated
similarly in both C3 and C4 plants. Most of the identified TFBS
are recognized by members of the AP2/ERF family in A. thaliana,

which supports the results of a recent study in which this family of
TFBS was enriched in the regulatory regions of C4 photosynthetic
genes (Burgess et al., 2019). We realized that these putative
TFBS were often quite similar and cluster together at specific
locations in the genome and this warrants further investigation
to explore the functional significance. Despite the similarities, we
only identified one TFBS, bound by VRN1 in A. thaliana, in the
putative regulatory regions of every gene selected for this study,
but its presence in other non-photosynthetic genes indicates
that VRN1 is unlikely to be exclusive to the regulation of the
expression of genes encoding CBB cycle enzymes. Furthermore,
the variety in the putative TFBS identified in different sets
of orthologous genes indicates differences in the regulatory
networks controlling their expression. These results suggest
that there is no “master” transcriptional regulator coordinating
the expression of the genes encoding CBB cycle enzymes, in
contrast to what has been reported in other metabolic pathways
(Okada et al., 2009; Nützmann et al., 2018). In addition, the
lack of a unique, “master” regulator would emphasize the
importance of the simultaneous manipulation of multiple targets
to increase CBB cycle efficiency (Simkin et al., 2015, 2017;
López-Calcagno et al., 2020).

Based on data validated in the model plant A. thaliana,
we used a computational approach to identify cis-regulatory
elements whose putative trans-acting factors might play a role
in C4 compartmentalization. These data have been used to
investigate the putative role of orthologous genes in other
crops (Capote et al., 2018; Moon et al., 2018; Burgess et al.,
2019; Zeng et al., 2019; DeMers et al., 2020; Elzanati et al.,
2020; Gray et al., 2020; Zhou et al., 2020), and allow us
to generate a compelling hypothesis, as it is expected that
similar DNA-binding domains of trans-acting factors would
have similar DNA sequence preferences (Lambert et al., 2019).
However, several complementary experimental approaches will
be needed to provide evidence of functional significance in C4
plants. To confirm the TFBS in different species, transcription
factor binding assays such as DAP-seq (O’Malley et al., 2016)
could be developed in some of the grass species examined in
this study. To assess the chromatin accessibility of potential
regulatory regions, experiments such as DNAse-seq (Zhang
and Jiang, 2015) or ATAC-seq (Buenrostro et al., 2015; Bajic
et al., 2018; Maher et al., 2018), could be implemented. To
enhance our ability to detect regulatory elements within coding
sequences (Reyna-Llorens et al., 2018), functional assays that
discriminate between conserved sites with a regulatory role
and conserved sites with a coding sequence role could be
developed. Finally, the generation of transcriptomic data from
different species using a comparable sampling process, should
allow us to unveil consistent pattern of expression among
different species.

Taking all of our results together, we propose that the
compartmentalization of the CBB cycle enzymes investigated in
this study has occurred through the recruitment of TFBS whose
trans-acting factors are enriched in either one of the C4 cell
types. The expression pattern of any gene is determined by a
combination of the TFBS present and the corresponding trans-
acting factors binding to these regulatory regions at any given
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time. It then follows that the expression pattern of any
gene can be changed either by recruiting new TFBS or by
altering the expression pattern of the trans-acting factors.
Thus, to enrich the expression of C4 enzymes in BS cells,
new TFBS could be recruited into gene regulatory regions
of C4 species to confer BS-specific expression. Alternatively,
trans-acting factors could become enriched in BS cells to
promote the expression of C4 enzymes in BS cells (as
the predicted putative activators), or these factors could
become enriched in M cells to repress the expression of
C4 enzymes in M cells (predicted putative repressors). This
transcriptional regulation would likely be complemented by
regulation at post-transcriptional and/or post-translational level
to achieve a precise regulation of the expression pattern of CBB
cycle enzymes.

To our knowledge, and excluding the extensive work on
RubisCO (discussed in Hibberd and Covshoff, 2010; Berry et al.,
2011; Schlüter and Weber, 2020), this is the first study to focus
specifically on the differences in the regulatory sequences of
CBB cycle genes between C3 and C4 species. These results
provide a hypothetical foundation for future functional analysis.
Future experiments should include the in vivo validation of the
trans-acting factors binding to cis-regulatory elements, and the
resultant regulation of CBB cycle genes; the transfer of C4-
specific transcription factors into C3 species to establish a C4-like
expression pattern; or the precise genome editing of the cis-
elements to evaluate their contribution to compartmentalization
in C4 plants.
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