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Early detection of plant diseases is a crucial factor to prevent or limit the spread of
a rising infection that could cause significant economic loss. Detection test on plant
diseases in the laboratory can be laborious, time consuming, expensive, and normally
requires specific technical expertise. Moreover, in the developing countries, it is often
difficult to find laboratories equipped for this kind of analysis. Therefore, in the past
years, a high effort has been made for the development of fast, specific, sensitive,
and cost-effective tests that can be successfully used in plant pathology directly in
the field by low-specialized personnel using minimal equipment. Nucleic acid-based
methods have proven to be a good choice for the development of detection tools
in several fields, such as human/animal health, food safety, and water analysis, and
their application in plant pathogen detection is becoming more and more common.
In the present review, the more recent nucleic acid-based protocols for point-of-care
(POC) plant pathogen detection and identification are described and analyzed. All these
methods have a high potential for early detection of destructive diseases in agriculture
and forestry, they should help make molecular detection for plant pathogens accessible
to anyone, anywhere, and at any time. We do not suggest that on-site methods should
replace lab testing completely, which remains crucial for more complex researches,
such as identification and classification of new pathogens or the study of plant defense
mechanisms. Instead, POC analysis can provide a useful, fast, and efficient preliminary
on-site screening that is crucial in the struggle against plant pathogens.

Keywords: biosensor portable devices, in field detection, qPCR, LAMP, RPA, RCA, SDA, MinION nanopore
sequencing

INTRODUCTION

Plant pathogens represent one of the major threats for agriculture worldwide (Narayanasamy,
2011; Aslam et al., 2017; Pallas et al., 2018). In the last centuries, in parallel with the continuing
growth of the human population, the percentage of the land surface covered by crops has increased
constantly, with ca. 50% of the current habitable world land dedicated to agriculture1. In 2016, it
was estimated that approximately 540 million hectares were planted worldwide to only three major

1https://ourworldindata.org/land-use
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crop species: maize, rice, and wheat (McDonald and Stukenbrock,
2016). Plant pathogens can cause substantial reduction of crop
productivity. Considering five of the major crops (maize, rice,
wheat, potatoes, and soybean), it was shown that the losses,
associated with pathogens and pests at a global level, ranged
between 17 and 30% annually (Ramakrishnan et al., 2019; Savary
et al., 2019). In agriculture and forestry, most of the damage
is due to the accidental introduction of invasive alien pathogen
species into new areas, as a consequence of global trade and
transport (Ghelardini et al., 2017). Moreover, the extension of
the distribution range of the pathogens due to human-mediated
activities facilitates hybridization and horizontal gene transfer,
leading to the emergence of new pathogens (Gluck-Thaler and
Slot, 2015). Also, the introduction of arthropod vectors into
new areas can bring the establishment of novel association with
introduced or native pathogen species (Wingfield et al., 2016).
Well known examples of introduction of invasive pathogens
exist both in agriculture and forestry. The wheat blast pathogen
Pyricularia graminis-tritici appeared recently in Asia for the first
time, maybe coming from South America, and devastated more
than 15,000 ha of crops in Bangladesh (Callaway, 2016). In Italy,
since 2013, Xylella fastidiosa is causing a severe loss of olive
trees in the southern part of the country. Genetic analysis of
the Italian strains showed similarity to isolates from Central
America (Marcelletti and Scortichini, 2016; Giampetruzzi et al.,
2017). Cronartium ribicola, the causal agent of white pine blister
rust migrated from Europe to North America along with plant
material, while the subspecies americana of the Dutch elm disease
fungus Ophiostoma novo-ulmi arrived in Europe from North
America with rock elm logs (Ghelardini et al., 2017).

Another factor that influences plant–pathogen interaction is
climate change. Increased temperature, climate extremes, as well
as differences in quantity and pattern of annual precipitation, can
support the spread of plant diseases in agriculture (Schmidhuber
and Tubiello, 2007) and forests (La Porta et al., 2008). Finally, the
great majority of the cultivated soil is planted to monocultures
or even to only one genotype (fruit trees, grape, and potato),
thus creating a homogeneous genetic environment that can easily
select host-specialized crop pathogens.

In order to control, and when possible to prevent, plant
diseases and the spread of plant pathogens into new areas, it is
mandatory to develop fast, efficient, and inexpensive methods
for early detection of pathogens. Traditional methods for fungi
and bacteria identification rely on symptom observation and
culture-based methods (Alahi and Mukhopadhyay, 2017). This
implies the necessity of growing the pathogen on specific media
in controlled conditions, a process that usually takes days or
even weeks. Moreover, the morphological identification of the
pathogen by microscopy requires specifically trained personnel.

Other widely used phyto-diagnostic methods are based
on immunological techniques such as enzyme-linked
immunosorbent assay (ELISA) (Cho and Irudayaraj, 2013),
immunofluorescent staining (Khater et al., 2017), immunoblot
(Novakova et al., 2006), and lateral flow immunoassays
(LFIA) (Burnham-Marusich et al., 2018; Cassedy et al., 2020).
Nonetheless, the production of monoclonal antibodies may
be expensive, and in some cases, problems of low specificity

have been reported (Gorris et al., 1994; Martinelli et al., 2015).
Since the nineties, more laboratories started to adopt DNA-
based methods for pathogen detection and identification, using
polymerase chain reaction (PCR) and its variants, such as
quantitative PCR (qPCR), nested PCR, multiplex PCR, and
digital PCR (ddPCR) (Martinelli et al., 2015). Such methods are
usually very specific, relatively fast, and cheap but still present
some disadvantages, as in most cases, specific equipment is
required as well as trained personnel. Since the first few years of
this century, new technologies are emerging based on isothermal
amplification of DNA, such as the loop-mediated isothermal
amplification (LAMP), recombinase polymerase amplification
(RPA), helicase-dependent amplification (HDA), and others
(Lau and Botella, 2017), capable of overcoming some of the
drawbacks of PCR-based methods (Zhong and Zhao, 2018). All
these approaches, even if based on different principles, share
the main characteristic of amplifying target DNA at constant
temperature, therefore eliminating the need of a thermal cycler.

Due to the rapid evolution of methods for pathogen detection,
in many fields such as human health and food safety, it is
dawning the possibility to develop new tools that can be
taken directly to the desired analysis site, also called point-
of-care (POC) (Chen et al., 2019; Vidic et al., 2019). Ideally,
such tools should consist of robust, portable, user-friendly,
and inexpensive equipment capable of performing all the steps
required for a complete analysis in a short time and with a
minimal number of steps, in order to be used also by low-
trained personnel. All these requirements have been summarized
for the first time by the World Health Organization (WHO)
in the ASSURED (Affordable, Sensitive, Specific, User-friendly,
Robust and rapid, Equipment-free, Deliverable) guidelines for
POC testing (Peeling et al., 2006). The potential advantages of
POC analysis are numerous (Table 1), going from the speed
of the analysis to the lower risk of sample contamination and
pathogen dispersion. As a matter of fact, the possibility to detect a
pathogen (Radhakrishnan et al., 2019) directly in the field would
be of great interest in agriculture and forestry. It would allow
extensive and fast screening of plants in order to prevent disease
spreading. Moreover, imported plants and products could be
analyzed directly on-site before they can even enter a country.
Two important applications of POC analysis are the study of
emergent non-native introduced pathogens (Tomlinson et al.,
2010; Buhlmann et al., 2013; Blaser et al., 2018; Aglietti et al.,
2019; Rani et al., 2019) and chronic disease monitoring (De Boer
and Lopez, 2012; Zheng et al., 2013).

The DNA-based analysis methods are proving to be
good candidates for the development of POC analysis
protocols, especially since the advent of the new isothermal
technologies. Nevertheless, providing a portable tool capable
of performing a complete test in the field is not an easy
task as there are at least three main steps that should be
performed: (a) sample preparation/DNA extraction; (b)
DNA amplification; (c) signal detection (Figure 1). In the
following sections, we analyze the progress made in the
recent years in order to exploit DNA-based technologies
for the development of portable tools suitable for plant
pathogen detection, considering all the main steps of the
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TABLE 1 | Main advantages of point-of-care (POC) analysis when compared to
standard laboratory testing.

Low price

Faster diagnosis and crop decision-making

Low number of steps for the analysis

No storage needed

Low chance of sample deterioration or contamination

Implementable for Citizen Science

No laboratory facilities needed

Low chance of spreading diseases outside contained areas

No samples lost in transit

Very efficient for the analysis of imported plant material

Allows early detection and surveillance activity in epidemiological studies

Low-trained personnel needed

Easy remodeling of the sampling design by results in real time

Allows easy planning of pesticide treatments in the field

analysis and with a particular focus on their application in
agriculture and forestry.

NUCLEIC ACID EXTRACTION

Despite the significant progress made to adapt the DNA
amplification technologies to the needs of POC analysis of plant
pathogens (Lau and Botella, 2017; Donoso and Valenzuela, 2018;
Dairawan and Shetty, 2020), one of the main obstacles is plant
sample preparation and nucleic acid extraction. As a matter
of fact, a high-quality DNA or RNA is always necessary in
order to obtain reliable and reproducible results, irrespective of
the method used for nucleic acid amplification. Even if several
methods have been developed for the fast extraction of nucleic
acids from bacteria, animal cells, and food (Cheng and Jiang,
2006; Kim et al., 2009; Cawthorn et al., 2011; Abdalhai, 2016),
such technologies are often difficult to apply to plant tissues.
If we consider a leaf, the most common plant tissue used for
nucleic acid extraction, cells are surrounded by several protective
structures, such as cell wall and waxy cuticle layers. All these
structures must be degraded in order to extract the genetic
material inside, therefore adding a level of complexity to the
protocol. Moreover, depending on the different plant species
and tissues, a lot of plant contaminant products can be present,
such as proteins, polysaccharides, polyphenolics, and a great
number of secondary metabolites (Varma et al., 2007). All these
contaminants should be removed from the genetic material in
order to obtain a high-quality template suitable for amplification.
Several strategies can be applied, such as the removal of cellular
proteins by organic solvents (typically phenol and chloroform),
but all these steps are quite difficult to include in a completely
portable device.

Many different solutions have been proposed (Table 2), the
simpler of which is the use of plant crude extract (ground plant
material with an extraction buffer) directly for amplification.
Munawar et al. (2019) used strawberry crude crown tissue
macerated with a standard ELISA grinding buffer coupled
with RPA for the detection of Phytophthora cactorum infecting

strawberry. Successful detection of the pathogen was achieved,
after testing several concentrations of the grinding buffer, in order
to optimize amplification also in plants showing early or no
symptoms. Several works showed comparison in amplification
efficiency between purified templates and crude extracts. For
the detection of Xanthomonas fragariae, the causal agent of
angular leaf spot of strawberry, a test was carried out using two
types of templates: pure bacterial DNA and crude extract (Getaz
et al., 2017). LAMP DNA amplification was successful with crude
tissue extract as well as with the pure bacterial DNA control,
after optimization of the protocol. The optimized protocol with
phenol inhibitors was also successfully tested in naturally infected
strawberry leaves, even those with weak symptoms, therefore
suggesting that this method could be a suitable POC analysis.
In another work, different plant sample preparation methods
were compared, using sap obtained after grinding apricot (Prunus
armeniaca) plant tissues as a starting material for the detection
of Candidatus phytoplasma prunorum (Minguzzi et al., 2016).
Similarly, several grinding buffers were compared for Fragaria
ananassa crude sample preparation for the rapid detection of
Phytophthora spp. (Miles et al., 2015). All the above reported
results seem to indicate that the use of plant crude extract for
the direct detection of pathogens with nucleic acid amplification
technologies can be effective and therefore used for in-field
application. The advantage of crude extracts is essentially due
to the very simple and fast extraction protocols, while the
main drawback is the possible lack of sensitivity. Therefore, a
preliminary testing of the method is always necessary, together
with an appropriate optimization according to the plant species,
tissue used as starting material, and specific primers designed for
the amplification step.

Sensitivity and specificity of pathogen detection protocols
can be improved by purifying target DNA. There are a lot of
commercial kits available for this purpose, but most of them
require to be used in a laboratory with dedicated equipment.
Nonetheless, several commercial kits have been tested, and some
of them showed characteristics that could be suitable for POC
analysis, especially those based on the use of magnetic beads for
nucleic acid purification (DeShields et al., 2018). Several works
can be found in literature exploiting this extraction principle
on various plant species and pathogens, such as detection of
the fungus Leptosphaeria maculans, causing Phoma stem canker
(black leg) of Brassica napus (Lei et al., 2019). Other examples
include detection of soil-borne pathogens of potatoes (DeShields
et al., 2018); Alternaria panax Whetz infecting ginseng (Wei
et al., 2018); Puccinia striiformis f.sp. tritici (wheat yellow
rust) infecting wheat (Radhakrishnan et al., 2019); Phytophthora
kernoviae infecting Rhododendron ponticum (Schwenkbier et al.,
2015b) and several other species of Phytophthora (Julich et al.,
2011; Schwenkbier et al., 2014). It must be noted that in
some of the above reported cases, nucleic acid extraction was
performed from cultivated pathogens and not directly from
infected plants, therefore suggesting that optimization of the
protocol could be necessary before its routine application in
the field. A magnetic bead-based RNA extraction method was
used to develop a microfluidic chip for the detection of viruses
infecting Phalaenopsis orchid (Chang et al., 2013; Lin et al., 2015).
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FIGURE 1 | Schematic representation of the main steps needed for the development of a reliable protocol suitable for point-of-care (POC) analysis.
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TABLE 2 | List of nucleic acid extraction methods suitable for POC analysis.

Extraction
method

Advantages Disadvantages Applied for plant
pathogens

References

Crude extract Fast, inexpensive, no need of
trained personnel

Presence of contaminants, lack of
sensitivity and reproducibility

Yes Miles et al. (2015); Minguzzi et al.
(2016); Getaz et al. (2017); Munawar
et al. (2019)

Magnetic beads Reliable, high-quality genetic
material, no need of centrifugation

Expensive, not completely user
friendly

Yes Chang et al. (2013); Schwenkbier et al.
(2015b); Lin et al. (2015); DeShields
et al. (2018); Wei et al. (2018); Lei et al.
(2019)

Piercing methods Fast, inexpensive, no need of
trained personnel

Lack of sensitivity, necessity of
optimization

Yes Fukuta et al. (2005); Suzuki et al.
(2016); Paul et al. (2019, 2020);
Wilisiani et al. (2019)

Cellulose filter
paper

Fast, inexpensive, no need of
trained personnel

Possible absorption of inhibitors,
necessity of optimization

Yes Lu et al. (2016); Zou et al. (2017)

The main advantage of the magnetic bead-based extraction
method is reliability, as most of the more commonly used
protocols exploit robust commercial kits already available on
the market. Moreover, it is possible to extract genetic material
without the need of centrifugation steps, but simply using a
magnet that can be easily transported and used on site even
when electricity supply is not available. One possible drawback
is that most of the commercial kits are not 100% user friendly,
and some training is still necessary to use them properly
and avoid contamination. In order to overcome this problem,
some authors tried to simplify the extraction protocol, still
using commercial kits but introducing some modifications. The
first report describing a complete protocol for plant pathogen
detection that could be performed directly in the field dates back
to 2005, and the DNA was extracted modifying a commercial
kit in order to avoid the use of liquid nitrogen and laboratory
equipment, such as centrifuge and vortex (Tomlinson et al.,
2005). Similarly, other authors proposed a modification to
standard protocols to simplify the extraction of genetic material
suitable for amplification with various techniques (Li et al., 2011;
Koo et al., 2013).

A very simple method proposed for DNA or RNA extraction
is the so-called “toothpick method,” in which a sterile toothpick
is used to pierce the sample tissue several times. The tip of the
toothpick is then dipped directly in the amplification reaction
mix, releasing target genetic material (Fukuta et al., 2005; Suzuki
et al., 2016; Wilisiani et al., 2019). Despite the extreme simplicity,
this method needs to be tested and optimized for each specific
need; an example is provided in the next lines. A modern
version of the “toothpick method” was recently proposed using
disposable polymeric microneedle patches (MP) to pierce plant
leaves. These patches are made of polyvinyl alcohol (PVA), a
water-absorbing polymer that showed a good combination of
mechanical strength, chemical resistance, and biocompatibility
(Paul et al., 2019, 2020). The use of MP to detect Phytophthora
infestans from tomato leaves showed a slightly lower sensitivity in
comparison to the standard CTAB extraction method, especially
during the very early stages of infection. On the other hand,
the extraction time was reduced to 1 min, instead of 3–4 h of
the CTAB method, suggesting that MP could be easily used for
in-field applications.

In the last few years, the development of new nucleic acid
extraction methods for POC analysis has increased, exploring
different approaches. Zou et al. (2017) tested a variety of
materials for their ability to capture nucleic acids and found
that Whatman No. 1 cellulose-based filter paper can efficiently
entrap and retain DNA without the need of any chemical
treatment. Filter paper-based extraction methods were positively
tested on different plant species, such as wheat, rice, tomato,
soybean, tobacco, mandarin, and lemon, showing good sensitivity
and reproducibility. Similarly, Flinders Technology Associates
(FTA R© Card, WhatmanTM, catalog number: WB120205, Merck
KGaA, Darmstadt, Germany) cards were used for extraction
of DNA or RNA from different starting materials, including
plants, to provide a versatile POC pathogen analysis method (Lu
et al., 2016). Paper-based microfluidics device has emerged as a
multiplexable POC platform, which might be useful in resource-
limited settings (Yetisen et al., 2013). This device was applied in
health care, veterinary medicine, food safety, and environmental
and crop monitoring.

A rapid technique for the extraction of viral RNA from rose
plants was also proposed, based on the direct virus absorption
onto PCR tubes at 4◦C (Babu et al., 2017). This extraction method
provided viral RNA suitable for molecular analysis in as few as
5 min. This method is very fast and simple, but more studies are
still necessary to understand if it could be applicable routinely to
different pathogens and plant species.

Another option for the rapid extraction of nucleic acids
from plant tissue is the use of lateral-flow devices (LFDs).
A method was developed allowing the extraction of amplifiable
DNA from plant tissue using LFD in as few as 5 min without
the use of any equipment (Danks and Barker, 2000). A simplified
version of this method was described and applied to the
detection of Phytophthora ramorum and Phytophthora kernoviae
(Tomlinson et al., 2010).

PCR-BASED NUCLEIC ACID
AMPLIFICATION

Once that the DNA or RNA is extracted, the next step is
the amplification of the genetic material using specific primers
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designed to recognize target sequences of the pathogen. Several
approaches can be used and are listed in Table 3. The most
popular methods for laboratory nucleic acid amplification
are still PCR-based ones, including many variants such as
quantitative real-time PCR (qPCR), nested PCR, and digital
PCR. Nevertheless, when rapid and simple POC amplification is
required, PCR may present some drawbacks, as it usually requires
a thermal cycler, a device that is not easy to miniaturize and
integrate in a portable tool. Still, some attempts in this direction
have been made for POC application in agriculture. Julich
et al. (2011) developed a lab-on-a-chip device for rapid nucleic
acid-based detection of Phytophthora species. Temperature
management in the PCR and hybridization zones relies on
two independent Peltier elements. The system is completed
by a compact portable pump and power supply for use on
site. A similar approach was proposed by Schwenkbier et al.
(2014) who described a lab-on-a-chip device for on-site detection
of Phytophthora species, exploiting linear-after-the-exponential
PCR (LATE-PCR) as amplification method.

Also, qPCR was often proposed as suitable for POC analysis.
One of the first reports dates back to 2002 (Schaad et al.,
2002) when a protocol for 1-h on-site diagnosis of Xylella
fastidiosa was described using a portable Smart Cycler. Other
examples of qPCR-based methods for POC pathogen detection
include a system for the detection of Phymatotrichopsis omnivora,
in alfalfa and other dicot plants (Arif et al., 2013) and a
protocol for the detection of Phytophthora ramorum, an invasive
plant pathogen listed under quarantine in many countries and
capable of infecting over 180 forest trees species (Tomlinson
et al., 2005). Papers describing fast protocols for plant pathogen
detection via qPCR that could be potentially used for in-field
applications have been published for several species such as
Plum pox virus (Fotiou et al., 2019), Spongospora subterranea
(DeShields et al., 2018), Austropuccinia psidii (Bini et al., 2018),
and Pratylenchus penetrans (Baidoo et al., 2017). In some cases,
real-time-based protocols were proposed for multiplex detection
of plant pathogens (Papayiannis, 2014; Khan et al., 2015; Yang
et al., 2015; Osman et al., 2017; Nikitin et al., 2018). A recent study
proposed an In Situ Processing and Efficient Environmental
Detection (iSPEED) kit to detect pests and pathogens of forest
trees using POC qPCR (Capron et al., 2020). Targeted diseases
included the poplar canker pathogen Sphaerulina musiva, the
white pine blister rust Cronartium ribicola, the comandra blister
rust of pines C. comandrae, the Port Orford cedar pathogen
Phytophthora lateralis, and the agent responsible for sudden oak
and sudden larch death P. ramorum. The iSPEED kit could
be carried in a small backpack and showed results comparable
to those obtained with standard laboratory equipment. The
advantages of the iSPEED kit are the existence of a great amount
of published and validated real-time PCR assays, multiple
enzymes and chemistry for qPCR, as well as a growing range
of portable instruments, cost effectiveness, and flexibility of
design. Another variant of conventional PCR that can be used
to increase specificity and sensitivity is nested-PCR. The use
of two pairs of specific primers usually make this approach
more time consuming and expensive than conventional PCR.
Nevertheless, some researchers have developed a single-tube

nested-PCR approach that potentially eliminates the drawbacks
of this technique, such as contamination of the sample (Costa
et al., 2012; Wei et al., 2018).

Finally, droplet digital PCR (ddPCR) is a new technology
allowing absolute quantification of target DNA, which
is partitioned into approximately 20,000 droplets. The
amplification reaction is carried out independently within
each droplet, and a reader can estimate the amount of amplified
DNA in each droplet by fluorescence measurement (Hindson
et al., 2011). ddPCR offers many advantages when compared to
conventional PCR and even qPCR, as multiple target genes can be
detected in a single reaction using different fluorescence signals.
Moreover, no standard curve is required for quantification,
and the sensitivity of ddPCR was shown to be higher than
quantitative PCR when measuring low copy-number genes
(Hayden et al., 2013). Another advantage is the high resilience
of ddPCR to contaminants, that can present a major problem
when plant samples are analyzed (Racki et al., 2014; Blaya et al.,
2016). Although ddPCR has not been used for POC analysis in
agriculture yet, some approaches using this method have been
described (Selvaraj et al., 2018; Zhong et al., 2018; Liu et al.,
2019), and in one case, the ddPCR protocol was proposed to be
applied for use in national clean plant programs to prevent the
import of infected nursery stock (Voegel and Nelson, 2018).

ISOTHERMAL NUCLEIC ACID
AMPLIFICATION

In recent years, new technologies for isothermal amplification
of nucleic acids have been developed, and their use is rapidly
spreading (Table 4). The first and most commonly used is
loop-mediated isothermal amplification (LAMP) (Notomi et al.,
2000). The main advantages of LAMP when compared to PCR-
based approaches are the possibility to perform the amplification
reaction at constant temperature, the short reaction time, high
amplification efficiency, and sensitivity, combined to a relatively
low cost, as LAMP requires very simple equipment to be
performed (Zhao et al., 2015; Lai et al., 2018). Several portable
devices for POC detection of plant pathogen have been described
exploiting LAMP technology. A rapid and simple method
to identify three different species of begomovirus infecting
Cucurbitaceae and Solanaceae plants was recently published,
using a commercial portable device that is battery powered,
user friendly, handheld, and waterproof (Wilisiani et al., 2019).
Another example of portable device suitable for agriculture and
forestry application is a micropipette tip-based nucleic acid test
(MTNT) capable of detecting both DNA and RNA from different
plant crude extracts (Lu et al., 2016). An increasing number
of fast LAMP protocols for POC detection of plant pathogens
are being developed for several species including forest trees
(Tomlinson et al., 2010; Yaseen et al., 2015; Aglietti et al.,
2019) as well as herbaceous plants (Chang et al., 2013; Lin
et al., 2015; Ammour et al., 2017). All these protocols combined
fast nucleic acid extraction methods and signal detection to
LAMP in order to perform all the required steps directly in the
field. It must be noted that, although LAMP is actually a very
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TABLE 3 | List of the main polymerase chain reaction (PCR)-based amplification methods applied for POC plant pathogen detection.

Method Target Advantages Disadvantages References

Conventional PCR DNA/RNA Reliable, relatively cheap Time consuming, requires a thermocycler Julich et al. (2011); Schwenkbier et al.
(2014)

Nested-PCR DNA/RNA Very specific Expensive, time consuming, requires a
thermocycler

Costa et al. (2012); Wei et al. (2018)

Real-time PCR DNA/RNA Allows absolute quantification of DNA;
no need of post-amplification detection

Time consuming, requires highly purified
genetic material, requires a thermocycler

Tomlinson et al. (2005); Arif et al. (2013);
Koo et al. (2013); Baidoo et al. (2017);
Bini et al. (2018); DeShields et al. (2018);
Fotiou et al. (2019)

Digital PCR
(ddPCR)

DNA/RNA High sensitivity, resilient to
contaminants, allows absolute
quantification of DNA

Expensive, requires specific equipment Selvaraj et al. (2018); Voegel and Nelson
(2018); Zhong et al. (2018); Liu et al.
(2019)

promising technique for POC analysis (Notomi et al., 2015), it
still presents some limitations, such as the design of the specific
primers, that sometimes can be difficult. Several authors have
developed fast LAMP protocols that, even if not yet incorporated
in a specific portable device, were evaluated to be simpler,
faster, cheaper, and with higher sensitivity when compared with
traditional methods (Kikuchi et al., 2009; Tomlinson et al., 2010;
Villari et al., 2013). By the optimization of RT-LAMP assay, a
protocol was developed for the detection of B. xylophilus, a pine
nematode. Such protocol can distinguish between living and dead
nematodes, by detecting the presence of mRNA encoding an
expansin gene as a viability marker (Leal et al., 2014). Other
examples of optimized LAMP-based protocols include a tool
for the early detection of Heterobasidion irregulare (Sillo et al.,
2018); a fast, easy, and in-field deployable method for detection
of Pepino mosaic virus and Potato spindle tuber viroid (Mehle
et al., 2017); a LAMP protocol starting from crude plant materials
for the detection of Xanthomonas fragariae (Getaz et al., 2017);
a protocol for the detection of three different phytoplasmas
infecting fruit trees (De Jonghe et al., 2017); and an assay for the
rapid detection of Pectobacterium atrosepticum (Li et al., 2011).
Similar to PCR-based approaches, multiplexing of the samples is
possible with LAMP (Denschlag et al., 2014; Yasuhara-Bell et al.,
2018; Feng et al., 2019).

Another recently developed isothermal amplification
technique is the so-called recombinase polymerase amplification
(RPA) (Piepenburg et al., 2006). RPA is becoming a common
choice when POC analysis is required for application in
agriculture (Ahmed et al., 2018; Burkhardt et al., 2019; Strayer-
Scherer et al., 2019) and forestry (Cha et al., 2020), as it presents
several advantages when compared to PCR and even to LAMP.
In fact, RPA does not require an initial heating step for DNA
denaturation, as it exploits enzymatic activity to separate the
double strand. Moreover, the reaction temperature is quite
low (37 to 42◦C), and the reaction time is usually very short
(Kappagantu et al., 2017; Munawar et al., 2019). When RPA
was compared to RT-LAMP as a detection method using a
small (150 mm × 200 mm × 35 mm) and light (400 g) battery-
mounted portable optical isothermal device (Cha et al., 2020),
the detection limit of RPA was shown to be 10 times lower than
RT-LAMP. All these characteristics make RPA a very easy-to-use
approach, especially in developing countries when fast analysis

in low resource environments is needed (Wambua et al., 2017;
Ghosh et al., 2018; Silva et al., 2018). The possibility to multiplex
the reaction can further increase the speed and reduce the costs
of RPA (Lau et al., 2016; Lei et al., 2019). Several RPA-based
portable devices are already available for POC detection of
human pathogens (Ereku et al., 2018; Tsaloglou et al., 2018),
and assays for plant pathogen detection are rapidly developing
(Zhang et al., 2014; Hammond and Zhang, 2016; Gaige et al.,
2018). An integrated cheap prototype platform termed POCKET
(Point-Of-Care Kit for the Entire Test) was recently developed
demonstrating that combining 3D printing, microfluidics, RPA,
and a smartphone, it is possible to create an ultraportable,
inexpensive, and versatile device for analyzing multiple types
of DNA from clinics to environment to food to agriculture in a
sample-to-answer manner (Xu et al., 2020). The POCKET device
is less than 100 g and smaller than 25 cm in length.

However, RPA still presents some limitations: it allows
amplification of only small DNA fragments (<500 bp) with
long primers (30–35 nt), resulting sometimes in non-specific
amplification (Lau and Botella, 2017) and a highly variable
sensitivity (Miles et al., 2015; Babu et al., 2017; Rojas et al., 2017).

Several other techniques for the isothermal amplification of
nucleic acid exist such as rolling circle amplification (RCA),
strand displacement amplification (SDA), helicase-dependent
amplification (HDA), and nucleic acid sequence-based
amplification (NASBA). All such techniques have characteristics
that can be suitable for POC analysis in agriculture, and even
if at present only a few examples of their use in field conditions
exist, they are evolving rapidly. RCA was recently proposed for
rapid diagnostic use in human health (Cao et al., 2019; Soares
et al., 2019; Zhang et al., 2019), and some portable devices have
been developed (Yao et al., 2018). Several examples of the use of
RCA for plant pathogen detection exist (Davari et al., 2012; Rezk
et al., 2019), but no portable devices have been described yet
for application in agriculture. For SDA, some portable devices
have been recently developed for human health care (Song et al.,
2018; Venzac et al., 2018), so it is more than conceivable that in
the next few years, this technique will be applied also for POC
analysis in plant pathogen detection.

Another promising isothermal technique for amplification
of genetic material is HDA, which was used in agriculture
for the detection of tomato spotted wilt virus (Wu et al.,
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TABLE 4 | List of the main isothermal amplification methods applied for POC plant pathogen detection.

Method Target Advantages Disadvantages References

Loop-mediated isothermal
amplification (LAMP)

DNA/RNA Fast, isothermal, high sensitivity,
relatively cheap

Primer design can be difficult Tomlinson et al. (2010); Chang et al. (2013);
Lin et al. (2015); Yaseen et al. (2015); Lu
et al. (2016); Ammour et al. (2017); Aglietti
et al. (2019); Wilisiani et al. (2019)

Recombinase polymerase
amplification (RPA)

DNA/RNA Fast, isothermal, does not require
an initial denaturation step

Long primers needed, specificity and
sensitivity may vary

Zhang et al. (2014); Hammond and Zhang
(2016); Ahmed et al. (2018); Gaige et al.
(2018); Burkhardt et al. (2019);
Strayer-Scherer et al. (2019)

Rolling circle amplification
(RCA)

DNA/RNA Isothermal, high sensitivity and
specificity

Expensive, the detection may be tricky Davari et al. (2012); Rezk et al. (2019)

Displacement amplification
(SDA)

DNA/RNA Fast, isothermal Inefficient for amplification of long
transcript

Song et al. (2018); Venzac et al. (2018)

Helicase-dependent
amplification (HDA)

DNA Fast, isothermal, does not require
an initial denaturation step

High optimization needed Schwenkbier et al. (2015a,b); Wu et al.
(2016)

Nucleic acid
sequence-based
amplification (NASBA)

RNA Fast, isothermal Expensive Olmos et al. (2007); Smith et al. (2007);
Scuderi et al. (2010); Tsaloglou et al. (2011);
Dobnik et al. (2014)

2016) and Phytophthora species (Schwenkbier et al., 2015a,b).
Finally, NASBA has already found application in plant pathogen
detection (Olmos et al., 2007; Scuderi et al., 2010; Dobnik et al.,
2014), but it has not yet become a standard method for this kind
of analysis, especially when POC pathogen detection is required,
even though several portable devices have been developed and
described (Smith et al., 2007; Tsaloglou et al., 2011). Some of
the possible reasons could be that NASBA is not yet a widely
known technique and the relatively high cost of the reactions
(Honsvall and Robertson, 2017).

DETECTION METHODS

In order to detect the amplification products efficiently, various
methods can be employed (Table 5). In particular, for POC tests,
the detection systems should require as few equipment as possible
to facilitate the analysis in the field. Most of the devices proposed
for POC analysis use optical or visual tools (Zhang et al., 2019).
Different principles can be exploited for the optical detection
of amplicons, such as fluorescence, chemiluminescence, and
colorimetric visualization among others. The signal can be read
by the naked eye or by the use of standard optical instruments
including CCD cameras, smartphones, and light detectors.

The fluorescence-based detection methods have been widely
employed for many years for the visualization of qPCR
amplification products, using SYBR green or TaqMan probes
to generate the signal (Holland et al., 1991). Simplicity and
high sensitivity are the main advantages of fluorescence-based
detection methods, together with the possibility of coupling
fluorescence detection tools to microfluidic devices (Neethirajan
et al., 2011). Several examples of portable devices exploiting
fluorescence detectors for POC plant pathogen analysis can be
found. Such devices combine fluorescence detectors with several
amplification methods, such as qPCR (Koo et al., 2013; DeShields
et al., 2018; Fotiou et al., 2019), LAMP (Larrea-Sarmiento et al.,
2018; Tahzima et al., 2019; Xia et al., 2019), RCA (Zhang et al.,

2019), and RPA (Lei et al., 2019). A possible alternative to the
classical fluorescence-based detection methods is the so-called
surface-enhanced Raman scattering (SERS), a technique that
exploits the signal enhancement given by metal nanoparticles
surfaces upon laser excitation (Kneipp et al., 1997). SERS has
the potential to guarantee higher performance than fluorescence-
based approaches, especially for multiplex analysis, due to its
narrow and distinct spectral peaks and the possibility to use
different labeled Raman reporters (Laing et al., 2016). Indeed
SERS has been proposed as a technique of choice for the
realization of a POC tool for multiplex plant pathogen detection
(Lau et al., 2016). SERS was used in combination with RPA for the
early detection of several plant pathogens infecting Arabidopsis
thaliana before any visible symptom or at early stages of infection
(Lau et al., 2016).

The colorimetric methods represent an interesting alternative
to the fluorescence-based detection. Colorimetric sensing can
be exploited for a number of applications as it presents many
advantages, such as low costs, low equipment requirements,
possibility of multiplexing, and easy integration with microfluidic
devices. Moreover, it is possible to detect the signal by the
naked eye or using very common tools as smartphones and
cameras (Ong and Poljak, 2020). The change in color, brightness,
or intensity can be obtained using different methods that
generally include a reaction triggered by the presence of the
target amplification product. In agriculture, the application of
colorimetric testing has been proposed for POC analysis in
several species and using different methods. In some cases,
amplification products are labeled using biotinylated primers and
specifically detected by simple devices as lateral flow dipsticks
(Tomlinson et al., 2010; Zhang et al., 2013; Rigano et al., 2014;
Kolm et al., 2015; Wei et al., 2018). Another colorimetric method
proposed for application in POC plant pathogen detection
exploits the formation of a large amount of pyrophosphate
ions as a byproduct of LAMP reactions (Chang et al., 2013;
Lin et al., 2015). Several other methods have been exploited
to perform POC colorimetric detection of nucleic acids for
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TABLE 5 | List of nucleic acid detection methods suitable for POC analysis.

Detection method Advantages Disadvantages Applied for plant
pathogens

References

Fluorescence-
based

Reliable, high sensitivity, easy to
integrate into microfluidic
devices

Expensive, cannot be detected
by naked eye

Yes Koo et al. (2013); DeShields
et al. (2018); Larrea-Sarmiento
et al. (2018); Fotiou et al.
(2019); Lei et al. (2019);
Tahzima et al. (2019); Xia et al.
(2019); Zhang et al. (2019)

Surface-enhanced
Raman scattering
(SERS)

High sensitivity, easy to
multiplex

Expensive, needs optimization,
cannot be detected by naked
eye

Yes Lau et al. (2016)

Colorimetric Low cost, low equipment
requirement, easy to integrate
into microfluidic devices

Lack of sensitivity and
selectivity

Yes Chang et al. (2013); Rigano
et al. (2014); Kolm et al. (2015);
Lin et al. (2015); Wei et al.
(2018)

Bioluminescence
assay in real-time
(BART)

Real-time reading, easy data
interpretation, good tolerance
to inhibitors

Expensive, cannot be detected
by naked eye, needs
optimization

No Kiddle et al. (2012) (GMO)

Electrochemical High sensitivity, simple
instrumentation requirement,
easy to miniaturize

Sensitivity to electrochemically
active samples

Yes Julich et al. (2011);
Schwenkbier et al. (2014,
2015b); Liu et al. (2020)

Magnetic Fast, high sensitivity, easy to
integrate into portable devices

Not yet developed for plant
analysis

No Lee et al. (2014); Orlov et al.
(2016); Khater et al. (2017)

MinION High-throughput results, easy
detection of multiple pathogens

Not completely user friendly Yes Liau et al. (2019); Shaffer (2019)

plant or human pathogen detection, as for example, the use
of hydroxyl naphthol blue (HNB) (Harper et al., 2010), the
activation of peroxidase-like deoxyribozyme (PDz) (Reed et al.,
2019), pH-sensitive dyes (Hamidi and Perreault, 2019), and
silver enhancement (Dharanivasan et al., 2019). Despite many
advantages, the colorimetric detection methods still present some
drawbacks, mainly the lack of sensitivity and specificity.

Another principle that can be applied for nucleic acid
detection is bioluminescence. In particular, a recently
described bioluminescence assay in real time (BART) can
detect continuously the exponential increase in inorganic
pyrophosphate (PPi) produced during an isothermal
amplification reaction such as LAMP (Gandelman et al.,
2010). The big advantage of BART is that it allows to simplify
greatly data interpretation and hardware requirements. This
characteristic make BART a good candidate for POC detection
of amplified nucleic acids. A combination of LAMP and BART
reactions was used for GMO detection, showing a high sensitivity
level and good tolerance to inhibitors, proving to be suitable for
field application (Kiddle et al., 2012).

A less developed, but still interesting, method for nucleic
acid detection is based on electrochemistry (Hnaiein et al.,
2008; Deiss et al., 2011). This approach showed high sensitivity
and the possibility of miniaturizing all the components of the
device very easily, making the electrochemical detection method
a good candidate for the development of portable tools for
POC analysis of plant pathogens. Another advantage of the
electrochemical approach is the independence from background
light or sample color, even though electrochemically active
samples may influence the readout. Examples of portable devices

for the electrochemical detection of amplified DNA from plant
pathogens are already available (Julich et al., 2011; Schwenkbier
et al., 2014, 2015a). The method exploits the enzymatic-triggered
silver deposition on the electrode to read the signal both visually
and electrochemically.

It is worth to mention magnetic sensing as a promising
technique that could be potentially applied to POC analysis
of amplified genetic material. This technique requires the
labeling of the target sequence with magnetic nanoparticles
and the detection of their stray field by the use of highly
sensitive magnetic sensors (Lee et al., 2014; Orlov et al., 2016;
Khater et al., 2017). The main advantages of magnetic sensing
techniques are the high sensitivity, fast analysis time, and
the possibility to be integrated onto handheld, portable on-
chip systems and microfluidic devices (Devkota et al., 2015;
Giouroudi and Kokkinis, 2017).

POC SEQUENCING

When the etiological agent is not known, the pathogen
identification must rely on the use of an untargeted screening
method by extracting, preparing, and sequencing all of the
genomic material in a particular sample at once (Yeh et al., 2019).
Even though POC sequencing is not routinely applied for plant
pathogens yet, in the last few years, some portable sequencers
have been developed that allow to perform amplicon sequencing
directly in the field. The application value of portable sequencers
was illustrated for the first time during emergent outbreaks of the
Ebola and Zika virus in West Africa (Quick et al., 2016, 2017).
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Genome sequencing of the virus was carried out in situ by the first
portable MinION sequencer [Oxford Nanopore Technologies
(ONT) Ltd., Didcot, United Kingdom]. MinION is a portable,
real-time device for DNA and RNA sequencing. Each consumable
flow cell can generate as much as 30 Gb of DNA sequence data
or 7–12 million reads when analyzing RNA. Ultra-long reads
(hundreds of kb) are possible. Data are streamed in real time
so that analysis can be performed during the experiment, and
workflows are fully versatile. The MinION weighs under 100 g
and plugs into a PC or laptop using a high-speed USB 3.0 cable,
or used alongside the MinIT device for real-time analyses. The
MinION sequencer is commercially available on the market2

with a price that is lower than 1,000 USD (Solares et al., 2018).
Using DNA barcodes, useful for species discovery and species
identification, it was estimated that up to 1,000 barcodes can
be generated in one flow cell and that the cost per barcode
can be <2 USD (Srivathsan et al., 2018). Speed is an important
characteristic of MinION, as it is possible to perform the entire
workflow from sample preparation, through DNA extraction,
sequencing, bioinformatics, and interpretation in 2.5 h (Loit et al.,
2019). Another advantage of MinION is that it can be easily
coupled with different techniques to perform both targeted and
untargeted analysis. For targeted analysis, both PCR-based and
isothermal amplification can be used (Yamagishi et al., 2017;
Radhakrishnan et al., 2019). Whole-genome amplification can
be obtained by multiple displacement amplification (MDA), a
technique that uses the high-fidelity phi29 polymerase combined
with random hexamer primers to amplify DNA in isothermal
reaction (Spits et al., 2006). Due to its portability, affordability,
and speed in data production, the MinION sequencer found
many applications, and it was used on a mountain, in a jungle, in
the arctic, and on the International Space Station (Castro-Wallace
et al., 2017). Recently, it was successfully applied for sequencing
and assembly of a human genome with ultralong reads (Jain et al.,
2018). It was shown to be suitable for COVID-19 fast diagnosis,
and this platform is going to be further extended for diagnosing
other viruses and pathogens (Wang et al., 2020).

In plants, an open- source workflow for long-read sequences
was established in Eucalyptus. It was able to reliably and
repeatedly obtain >6.5 Gb of long−read sequencing data with a
mean read length of 13 kb and an N50 of 26 kb (Schalamun et al.,
2019). Other examples of MinION application in agriculture and
forestry include detection of pathogenic fungi (Cui et al., 2019;
Hu et al., 2019; Rajarammohan et al., 2019; Srivastava et al.,
2019; Purushotham et al., 2020), bacteria (Badial et al., 2018;
Krehenwinkel et al., 2019; Zervas et al., 2019; Fujiyoshi et al.,
2020), viruses (van der Merwe et al., 2017; Filloux et al., 2018;
Boykin et al., 2019; Della Bartola et al., 2020), and nematodes
(Eccles et al., 2018; Knot et al., 2020).

Despite the great success, the MinION technique still presents
some drawbacks. In fact, the portability of MinION comes at
the expense of sequencing accuracy, as sequencing errors often
range between 5 and 15% (Rang et al., 2018). Nevertheless,
recent improvements in chemistry, as well as the use of
consensus calling using bioinformatics tools, allowed to increase
sequencing accuracy up to 97%, comparable with standard lab

2https://nanoporetech.com/products/minion

equipment (Vaser et al., 2017; van Dijk et al., 2018). A recently
developed base caller, DeepNano-blitz (Boza et al., 2020), enables
real-time data analysis without requirement of a powerful IT
facility, increasing the possibility to deploy MinION sequencing
in the field. However, the optimization, establishment, and
standardization of methods for the quantitative evaluation of
microbial composition in the environment are inevitable. PCR-
based 16S rRNA analysis of bacterial community structure was
shown to be subject to biases from the PCR-related conditions.
These include the template concentration, DNA polymerase
choice, number of cycles used, amplification reaction time, and
the reaction temperature. When MinION sequencing was used
after an accurate optimization of PCR condition, it was able to
obtain bacterial community structures that were comparable in
quality with MiSeq (Fujiyoshi et al., 2020).

Point-of-care sequencing is a still evolving technology that
has shown a very fast development in portability, sequencing
accuracy, and ease of operation. All these characteristics could
make POC sequencing the gold standard of pathogen diagnosis
in the next few years.

CONCLUSION AND FUTURE
PERSPECTIVES

The development of affordable and reliable methods for POC
detection and identification of plant pathogens is not an easy task.
There is an increasing demand for portable devices requiring
minimal instrumentation that could perform a complete analysis
directly in the field, even when used by personnel with only
minimal training. This could bring great benefits to agriculture
worldwide, as it would be possible to efficiently monitor wide
cultivated areas for the presence of dangerous pathogens and
detect them even before any symptom is actually visible. In
the same way, it would be relatively easy to analyze imported
plants and crops in order to prevent the spreading of pests
and pathogens to new areas, where they could cause enormous
damage to the local agriculture. There is also the need of
pathogen monitoring in forestry and environmental applications,
which often requires sampling in remote areas far away from
laboratory facilities.

The nucleic acid-based methods are proving to be good
candidates for POC pathogen detection, especially since new
isothermal amplification protocols have been developed. These
methods are not widely used for field screening or for the analysis
of imported plant material, probably because technical difficulties
still exist, especially when trying to develop a protocol that can
be routinely used for the detection of different pathogens in
different plant species. Also, the relatively high cost of some of the
methods, especially when applied to large-scale analysis, can be
a problem. Nevertheless, PCR-based and isothermal nucleic acid
amplification protocols coupled with fast extraction methods and
simple detection devices are being adopted for some pathogens
and crops. The development of new portable and sensitive nucleic
acid detection methods is still a growing field of research that,
in the next years, will provide exciting possibilities to both
researchers and farmers. In many cases, POC analysis can provide
a fast disease detection, have minimal risk, low cost, and provide
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a high-quality diagnostic experience for the operator. However,
traditional laboratory testing is generally more advanced and
allows a more accurate analysis, validation, and recording of
the results. There are clearly situations where each methodology
excels. Therefore, the two methodologies are going to merge and
integrate by the development of new technologies. The main
challenges that need to be addressed for POC testing are the
optimization of reliable methods for all the main pathogens
threatening agriculture worldwide, the adaptation of the existing
methods to the specific conditions that a given plant or pathogen
requires, a robust comparison to traditional technologies, and
encouraging the final users to replace the traditional detection
methods with novel ones offering significant benefits.
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