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Halotropism is a sodium specific tropic movement of roots in order to obtain the optimal
salt concentration for proper growth and development. Numerous results suggest that
halotropic events are under the control and regulation of complex plant hormone pathway.
This minireview collects some recent evidences about sodium sensing during halotropism
and the hormonal regulation of halotropic responses in glycophytes. The precise
hormonal mechanisms by which halophytes plant roots perceive salt stress and
translate this perception into adaptive, directional growth forward increased salt
concentrations are not well understood. This minireview aims to gather recently
deciphered information about halotropism focusing potential hormonal aspects both in
glycophytes and halophytes. Advances in our understanding of halotropic responses in
different plant species could help these plants to be used for sustainable agriculture and
other future applications.
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INTRODUCTION

Halotropism
Halotropism a relatively new discovered type of tropism in plants, allowing them to escape from
high salt by bending. Plant roots have ability to move from high salinity to avoid growth retardation
or cell death. However, recently new findings show that some halophyte plant species require to
obtain optimal salt concentration for their optimal growth (Shelef et al., 2016). Continuous sensing
and searching for optimal salt concentration in soil or water needs different mechanisms.
Halotropism is a sodium specific tropic movement of roots (Galvan-Ampudia et al., 2013) and
not overlap with hydrotropism (Feng et al., 2016). The perception of sodium is supposed to be in the
root as this is the first organ meet with salt containing soil. Root system architecture (RSA) can be
remodeled during salinity (Koevoets et al., 2016). Recently, the genetic components of root
architecture remodeling after salt stress were described by Julkowska et al. (2017).

Plants differently respond to higher salt concentrations in the soil (Lamers et al., 2020). For salt
sensitive glycophyte plants, higher salt concentrations can be harmful for their normal development
and growth (Yang and Guo, 2018; van Zelm et al., 2020), while some halophytes developed some
efficient strategies to survive high salinity in the soil and maintain salt concentration for their
optimal growth (Fan, 2020). There is a hypothesis that glycophyte plant species show negative
halotropism (Li and Zhang, 2008; Galvan-Ampudia et al., 2013) orientating their roots from
supraoptimal salt concentration in the soil, however, some halophytes depending from their
halophyte features can respond by positive halotropism for reaching optimal salt concentration
.org September 2020 | Volume 11 | Article 5710251
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to their normal development (Shelef et al., 2016). Positive
halotropic movements discovered in some halophytes, in
Bassia indica or Limonium bicolor (Sun et al., 2008; Shelef
et al., 2016; Leng et al., 2019). It should be keep in mind
features of halotropism focusing the different salt exclusion
strategies of halophytes remain to be elucidated. There are very
scarce studies on halotropic movements of other halophytes,
euhalophytes or recretohalophytes. It will be of significant
interest to look on the effect of non-homogenous salt soil
conditions and understand the features of positive halotropism,
as suboptimal soil conditions (e.g., poor nutrient supply) can
affect salt driven mechanisms (Shelef et al., 2016). During
halotropism, the gravitropic responses of roots should be
repressed, so this mechanism may help roots to modify and
fine tune their movement to optimal growth and survive high salt
conditions (Galvan-Ampudia et al., 2013) (Figure 1). NASA
plant life based solutions root tropisms are important in space
conditions (Muthert et al., 2020).
SENSING AND PERCEPTION OF SODIUM
DURING HALOTROPISM

In spite of sodium sensor is unknown (Rosquete and Kleine-Vehn,
2013), there are some evidence that plants can selectively perceive
and allocate the cation Na+ during halotropism (Dietrich et al.,
2017; Deolu-Ajayi et al., 2019). It is likely that for halotropic
reaction the action region of root could be in the elongation zone
(Yokawa et al., 2014; van den Berg et al., 2016). The proper level of
sodium which can trigger halotropic movements are different in
halophytes (Figure 1). The exact sodium concentration range of
halotropism is different in glycophytes and halophytes. In case of
glycophyte Arabidopsis thaliana, 50–100 mM NaCl treatment
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provoked remarkable root bending as a feature of halotropism
(Sun et al., 2008), and showed negative halotropism after 150 mM
NaCl to avoid salt injury (Galvan-Ampudia et al., 2013).
Halophytes may tune their halotropism at higher sodium level,
but these investigations are needed to be investigated multiple and
combined approaches. Some evidence suggests that relative high
200 mM NaCl could induce halotropic bending in some
halophytes. SOS (salt overly sensitive) signal pathway plays a
crucial role in halotropism. SOS1 is a Na+/H+-antiporter (Shi et al.,
2000). The unknown sodium-specific sensor responsible for
halotropic response is expected to sense the intracellular Na+

concentration, because the sos1 mutant, which contains higher
intracellular Na+ (Shi et al., 2002) showed an enhanced halotropic
response (Galvan-Ampudia et al., 2013). New findings suggest that
14-3-3 proteins and other candidates could affect the transport
activity of SOS1 forming protein-protein interactions with its
cytosolic C-terminal end, enhancing our knowledge of this
protein involved in salt avoidance mechanisms of roots (Duscha
et al., 2020). Comparing the transcript levels of SOS1 in Eutrema
(Thellungiella) species, the halophyte relatives of Arabidopsis
revealed that the basal and salt stressed induced expression of
SOS1 was higher compared to the glycophytes (Oh et al., 2009),
suggesting that different magnitude of Na+ sensing and regulation
of halotropic events in halophytes.
COMPONENTS OF CELLULAR AND
PHYSIOLOGICAL FEATURES OF ROOT
HALOTROPISM

Phospholipid signaling is also critical in inducing halotropic
movement of roots. Phospholipase Dz1 can modulate the
cellular polarity of auxin transport carriers (Korver et al., 2020).
FIGURE 1 | Model summarizing two types of halotropism in glycophytes and halophytes.
September 2020 | Volume 11 | Article 571025
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Another issue to be answered is the contribution of tissue-specific
accumulation of pH-sensing phosphatidic acid to the halotropism
(Li et al., 2019). Phophatidic acid is able to directly regulate the
PINOID-dependent phosphorylation and activation of the PIN-
FORMED2 auxin efflux transporter during salt stress (Wang P.
et al., 2019).

Salt can induce remodeling of spatially restricted clathrin-
independent endocytic pathways in Arabidopsis root (Baral et al.,
2015). Endomembrane trafficking has a significant role in plant
abiotic stresses (Wang et al., 2020). For example, Golgi-localized
cation/proton exchangers regulate ionic homeostasis and
skotomorphogenesis in Arabidopsis (Wang et al., 2018). Root
bending is affected by auxin metabolism, protein phosphatase 2A
and ABCB transporters activity (Han et al., 2017). Root apex
proton fluxes show an important role in soil-stress acclimation
(Siao et al., 2020).

Deolu-Ajayi et al. (2019) recently identified those genetic loci
in natural accessions of Arabidopsis thaliana by genome-wide
association study (GWAS) which could be involved in early salt
stress responses of roots. Three candidate genes specific for
halotropic movements were determined: CHX13, WRKY25
and DOB1. Arabidopsis thaliana WRKY25 is coding a salt-
inducible transcription factor which can mediate oxidative
stress tolerance and senescence in a redox-dependent manner
and also required for halotropic events (Jiang and Deyholos,
2009; Doll et al., 2020).

Proper K+ level has to be maintained during halotropic
responses. AtCHX13, a cation proton exchanger is belonging
to potassium transporter family. It is a plasma membrane K+

transporter (Zhao et al., 2008). Shabala (2017) supposed
the probability of potassium to be involved in signaling as
second messenger. CHX13 contributes the proper halotropic
movements only under limiting potassium conditions, such
as insufficient fertilizer application. It is important to note
that maintaining plant intracellular K+ homeostasis during
adverse saline conditions coexist with energy cost requirement
(Rubio et al., 2020). Maybe AtDOB1 (Double Bending 1)
could be specific for Brassicaceae and localized in cytosol with
unexplored function (Lama et al., 2019), however, recent findings
suggest that DOB1 might play a role in Na+/K+ accumulation
during halotropism.
POTENTIAL SECONDARY MESSENGERS
INVOLVED IN HALOTROPISM

Secondary Messengers
Flavonoids are good candidate to be positional signals in
root growth responses as regulators in halotropism. The
accumulation of flavonols induced by light could promote cell
elongation and asymmetric growth in the root transition zone, so
flavonols could serve as positional signals (Silva-Navas et al.,
2016). Rough bluegrass (Poa trivialis L.), a flavonoid hyper-
accumulating turfgrass species showed halotropic movements
exposed to NaCl concentration gradients (Petrella et al., 2018).
Light also can act as stress factor in the halotropic movements
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(Yokawa et al., 2014). Halotropism was enhanced in plants
treated with blue light (BL) however red light or darkness did
not induce halotropic growth. Flavonoids increased only in BL
treated roots providing new evidence that BL and flavonoids are
involved in regulating halotropism (Figure 2).

Some reactive oxygen and nitrogenous species are also
suggested to be a part of signaling pathways of halotropic
movements. Nitric oxide (NO), a gaseous molecule can be a
good candidate for regulating multiple signal pathways during
halotropism. It is accepted that NO has basic and essential role in
root development and also under stress conditions (Corpas and
Barroso, 2015). NO can interact with other signal compounds,
like hydrogen peroxide or hydrogen sulfide, which are also able
to produce endogenously (Corpas et al., 2019; Gohari et al., 2020;
Singh et al., 2020). NO could mediate auxin accumulation and
signaling in Arabidopsis and decrease the size of root meristem
size during salt stress (Liu et al., 2015). Recently, Horváth et al.
(2019) identified that two genes coding glutathione transferase
enzymes, AtGSTF8 and AtGSTU19, GSTs from Arabidopsis can
maintain the root redox homeostasis by affecting meristem
size and salt stress sensitivity. NADPH oxidases generating
superoxide anions in plant cells are center hubs during plant
growth and signaling emphasizing the necessity to analyze its
contribution to initiation or modulation of halotropism (Hu
et al., 2020). Zwiewka et al. (2019) discovered the background of
root adaptation to hydrogen peroxide-induced oxidative stress
and the involvement of ARF-GEF BEN1- and cytoskeleton-
mediated PIN2 trafficking in this process reflecting the possible
implication of hydrogen peroxide in halotropism.
PHYTOHORMONES ORCHESTRATING
HALOTROPIC EVENTS

Auxin
This hormone is the most studied hormonal compound in
halotropism. Auxin, a plant hormone is involved in a plethora
of plant mechanisms not just in plant development but also in
stress induced alterations (Korver et al., 2018). Auxin has critical
role in the regulation of root cell elongation and tropic growth
(Vanneste and Friml, 2009). Auxin transport regulation at
posttranscriptional level by multiple hormonal pathways
highlights the overlapping central role of auxin in development
and stress processes (Semeradova et al., 2020). Auxin levels
are different in plant species, e.g., low indole-acetic-acid
(IAA) contents were measured in roots of some halophytes,
e.g., Prosopis strombulifera (Llanes et al., 2019), indicating that
different auxin levels might be responsible for different direction
of halotropic bending. In Limonium bicolor, a recretohalophyte
species, the root IAA levels enhanced under halotropic
movements, however the exact mechanism needs to be
deciphered. Detailed overview of factors which can include the
bending model of halotropism is provided in the review of Han
et al. (2017). Besides lipid signaling and protein phosphorylation
cascades, auxin metabolism and transport also has a crucial part
of halotropic signaling. The most studied factor involved in
September 2020 | Volume 11 | Article 571025
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halotropic movements is the PIN2 auxin transporter internalization
(Figure 2). Emenecker and Strader (2020) provided evidence about
auxin-abscisic acid interactions suggesting a new regulation of
halotropism. Also, it has been emerged an auxin-ethylene crosstalk
at a systems level (Zemlyanskaya et al., 2018). Interestingly, newly
discovered the antagonistic interactions between cytokinin signaling
and auxin transport in shaping RSA for plant adaptation (Xiao and
Zhang, 2020). Strengthening the importance of auxin and its
metabolism in halotropism, further study of other plant species
is needed.

Abscisic Acid
Abscisic acid (ABA) is a sesquiterpene plant hormone involved
in halotropism. It has many functions in plant development
and abiotic stress tolerance as a general inhibitor of growth
mechanisms, like primary root growth (Sun et al., 2018). ABA is
a crucial in RSA modulation during environmental stress
conditions (Harris, 2015), however evidence of ABA-mediated
halotropic events in halophytes is missing. ABA can affect the
lipid signal pathways activating PLD activities and adjusting
auxin redistribution by PIN2 (Figure 2). However, PA binding to
ABI1 (ABA Insensitive 1) can inhibit this protein phosphatase C
(Ma et al., 2009). ABA regulates root elongation through the
activities of auxin and ethylene in Arabidopsis thaliana and the
Frontiers in Plant Science | www.frontiersin.org 4
biphasic root growth response to ABA require interaction with
ethylene and auxin signaling pathways (Thole et al., 2014;
Li et al., 2017). GWAS study revealed the importance of ABA
and ethylene in the halotropic movements (Deolu-Ajayi et al.,
2019). The halophytes specific mechanisms of ABA-regulated
halotropism is unknown.

Ethylene
Ethylene play a central role in an orchestrated process cooperating
with other hormones in case of primary root growth and
development (Qin et al., 2019). GWAS of natural Arabidopsis
thaliana accessions studied by Deolu-Ajayi et al. (2019) revealed a
cooperation between ABA and ethylene in regulating halotropism
in roots to achieve a sustainable growth under adverse conditions.
Also, PA can affect the ethylene response as binding to CTR1
(constitutive triple response 1), which step can further block the
interaction between CTR1 and ETR1, ethylene receptor (Testerink
et al., 2007).

Strigolactones
Strigolactones (SLs) are new players in signaling pathways of
plants (Al-Babili and Bouwmeester, 2015). Their participation
was proved in root development and in abiotic stress related
processes, or in interactions with the biotic soil microbiome
FIGURE 2 | Proposed mechanism of halotropism in glycophytes. During halotropism, elevated Na+ triggers activation of phospholipid signal pathway by interacting
PLDs through Ca2+ levels. The released phosphatidic acid (PA) could induce MAPKs which directly activate SOS1. Other factors such as 14-3-3 proteins also can
activate SOS1 in order to fine tune and maintain the intracellular sodium content. PA can indirectly modulate the activity of PDK1 kinase (phosphoinositide-
dependent kinase 1), the PID (PINOID) protein serine/threonine kinase, and the protein phosphatase 2A (PP2A) phosphatase complex, all three compounds involving
in halotropism. PA also activates auxin transporter activities contributing to auxin redistribution and finally root bending. SLs can modulate the ABA and ethylene
levels, indirectly affect the halotropic regulations. Auxin and ABA have crucial role in proper auxin redistribution during halotropism through PIN2. New evidences
support that halotropism is differently affected by light conditions and secondary metabolites, however their exact mechanisms need to be deciphered. Question
marks and dotted lines show us connections needed to be investigated in halotropism.
September 2020 | Volume 11 | Article 571025
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(Kapulnik and Koltai, 2014; Koltai, 2014; Saeed et al., 2017; Jia
et al., 2019a; Jia et al., 2019b). By using synthetic SL analog GR24
the SL-triggered alterations in RSA in Arabidopsis thaliana was
stated (Ruyter-Spira et al., 2011). Wang J. Y. et al. (2019)
investigated zaxinone induced growth and SL biosynthesis in
rice. Metabolome analysis of SL-mutants and GR24 treated
plants revealed that biosynthesis of flavonols are SL-dependent.
In addition, flavonols function is also dependent from IAA and
ABA, emerging new aspects for potential SL involvement in
halotropism (Figure 2).
OTHER COMPOUNDS WITH POTENTIAL
FUNCTIONS IN ROOT HALOTROPISM

Salicylic acid (SA) is a plant hormone belonging to plant phenolic
secondary metabolites (Enyedi et al., 1992) could improve
acclimation to salt stress by stimulating ABA accumulation and
increasing Na+ content in leaves without any toxicity in tomato
(Szepesi et al., 2009). SA induces different manner the ethylene and
polyamine synthesis in proved evidence that SA differently impacts
ethylene and polyamine synthesis in the glycophyte Solanum
lycopersicum and the wild-related halophyte Solanum chilense
exposed to mild salt stress (Gharbi et al., 2016). New evidence
shows that this hormone can affect root meristem patterning via
auxin distribution is a concentration dependent process (Pasternak
et al., 2019). Also, SA can target protein phosphatase 2A to
attenuate growth in plants (Tan et al., 2020), providing new
potential signal component related in root tropisms.

By the newest technical and analytical approaches numerous
new compounds are discovered nowadays suggesting their
potential efficiency to modulate RSA. Apocarotenoids can be
good candidate for halotropism induced components in
plants, as they are involved in plant development and stress
responses (Felemban et al., 2019). Anchorene is a carotenoid-
derived regulatory metabolite which is required for anchor root
formation in Arabidopsis (Jia et al., 2019). Also, b-cyclocitral is a
newly discovered and characterized compound, which is a
conserved root growth regulator, supposing its role in root
tropisms (Dickinson et al., 2019). Yet, metabolites coordinating
or regulating halotropic events have not been determined.

Polyamines (PAs) as essential polycations are regulators of a
plethora of developmental and stress induced alterations
(Bouchereau et al., 1999; Alcázar et al., 2010). Emerging
interest has been added to study PAs in halophytes in salt
tolerance (Bueno and Cordovilla, 2019), emphasizing the
regulatory role of polyamines in abiotic stress as hub molecules
(Sequera-Mutiozabal et al., 2017). Cooperating with other plant
hormones such as cytokinin (Černý et al., 2013) and interacting
with nitrogen in stress responses make them able to fine tune the
proper C/N ratio in order to achieve the optimal conditions for
growth or stress responses (Paschalidis et al., 2019). Moreover,
PAs reprogramming oxidative and nitrosative status of salt
exposed citrus plants could affect their redox status (Tanou
et al., 2014). Newest findings suggest that PAs can adjust the
quality control of post-transcriptional regulation (Poidevin et al.,
Frontiers in Plant Science | www.frontiersin.org 5
2019). Some important N-containing metabolite like proline
amino acid (Szepesi and Szollosi, 2018; Guan et al., 2020) or
gamma-aminobutyric acid (GABA) as endproduct of PA
catabolism could be involved in abiotic stress responses
(Su et al., 2019). PA catabolism can synthesize secondary
messengers like hydrogen peroxide or GABA (Wang W. et al.,
2019), involved in sublethal and lethal salt stress (Takács et al.,
2017). Recently, new results suggested that PAs can mediate
halotropic events as tetraamine spermine in exogenously applied
manner triggering a rapid intracellular phosphatidic acid
response in Arabidopsis with PLDd activation and ion flux
stimulation (Zarza et al., 2019) (Figure 2). Halophytes can
contain elevated polyamine levels dependent from plant
species, age or organ, so polyamines are also promising targets
for halotropic studies.
POTENTIAL APPLICATION OF
HALOTROPISM IN AGRICULTURE
AND OTHER AREAS

Soil salinity of fields is often non-uniform. Xiong et al. (2020)
suggested that the hormone signal transduction and the
antioxidant pathway probably play important roles in inducing
more salt-related genes and increasing resistance to non-uniform
salt stress on both sides of the roots investigated in alfalfa. Recent
studies show the needs to investigate a salt mixture or use non-
homogenous salt concentrations in order to gain better
understanding crop salt avoidance or foraging strategies. Also,
Waidmann et al. (2020) reported that primary and lateral roots
growth responses are differentially integrated root system
growth. Primary and lateral roots perceive and integrate non-
uniform salt conditions and may energy can allocate between
these root types in case of glycophytes or halophytes (Ramezani
et al., 2013; Wu et al., 2019). Also important issue to focus on
invasive plants which has extraordinary surviving strategies in
adverse conditions threatening the natural habitat (Bakacsy,
2019). Stress factors usually occur combined combination to
each other affecting RSA (Osthoff et al., 2019; Sewelam et al.,
2020). There is an increasing evidence about significance of root
tropism in adjusting root system to changing conditions due to
global climate change and inadequate agricultural procedures
(Rozema and Schat, 2013; Gohari et al., 2020; Zhao et al., 2020).
Halotropism can help roots to navigate and remodel their system
architecture by cost effective energy supply in order to
successfully survive during different salt conditions. Modulate
RSA in order to adapting for rapidly and unexpectedly changing
environment is inevitable process of plants (Waidmann et al.,
2020). It should be keep in mind that these responses strongly
depend of energy costs of plants during salt stress (Munns and
Gilliham, 2015; Fricke, 2020; Munns et al., 2020). In the future, a
big task to find good candidate plants differing salt avoidance and
foraging mechanisms (e.g. euhalophytes, facultative halophytes
and recretohalophytes) (Zarei et al., 2020). There is an increasing
number of studies from investigation of halophyte-specific
root growth (Yuan et al., 2018; Kiani-Pouya et al., 2020). To
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increase the halophyte feature our crop plants can provide an
environmentally sustainable solution for increased crop yield in
line with food demand (Liu et al., 2020). Genes which responsible
for and metabolites involved in rapid and successful halotropic
movements avoid salt stress can help us to integrate them or
apply into salt sensitive crop plants increasing their tolerance
against salt stress (Kosmacz et al., 2020). Also, transcriptomic
analysis of monocot halophyte plants can reveal new data about
their root tropism against salt (Ye et al., 2020). The next level can
be to investigate these responses at system level (Zandalinas et al.,
2020) monitoring the overlapping and cooperating proteins
involved in root salt avoidance or foraging mechanism. One
other possible mode of enhancing the salinity tolerance in our
crop plants is the use of halotolerant microorganisms (Zhou
et al., 2017; Etesami and Glick, 2020; Molina-Montenegro et al.,
2020). There is some suitable experimental setup which can offer
easily laboratorial assay to investigate the microbe related root
tropic movements or deciphering some natural metabolites from
plants which can mediate halotropic movements (Marik et al.,
2019; Turbat et al., 2020). Since halophytes plants bear capability
to survive adverse conditions even combined stress factors, like
salt stress and heavy metal stress, they can efficiently use in
phytoremediation purposes (Wani et al., 2020). Information
about their root growth and their altered RSA can contribute
to our knowledge (Yun et al., 2019) and help us to use marginal
Frontiers in Plant Science | www.frontiersin.org 6
lands for more crop yield. Investigating root salt avoidance or salt
directed movements is important in Earth and also in Space
conditions to unravel the aspects and background mechanisms
of sodium derived plant growth direction movements (Muthert
et al., 2020).
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