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Gray leaf spot (GLS) is one of the major maize foliar diseases in sub-Saharan Africa.
Resistance to GLS is controlled by multiple genes with additive effect and is influenced
by both genotype and environment. The objectives of the study were to dissect
the genetic architecture of GLS resistance through linkage mapping and genome-
wide association study (GWAS) and assessing the potential of genomic prediction
(GP). We used both biparental populations and an association mapping panel of
410 diverse tropical/subtropical inbred lines that were genotyped using genotype by
sequencing. Phenotypic evaluation in two to four environments revealed significant
genotypic variation and moderate to high heritability estimates ranging from 0.43 to
0.69. GLS was negatively and significantly correlated with grain yield, anthesis date,
and plant height. Linkage mapping in five populations revealed 22 quantitative trait loci
(QTLs) for GLS resistance. A QTL on chromosome 7 (qGLS7-105) is a major-effect QTL
that explained 28.2% of phenotypic variance. Together, all the detected QTLs explained
10.50, 49.70, 23.67, 18.05, and 28.71% of phenotypic variance in doubled haploid (DH)
populations 1, 2, 3, and F3 populations 4 and 5, respectively. Joint linkage association
mapping across three DH populations detected 14 QTLs that individually explained
0.10–15.7% of phenotypic variance. GWAS revealed 10 significantly (p < 9.5 × 10−6)
associated SNPs distributed on chromosomes 1, 2, 6, 7, and 8, which individually
explained 6–8% of phenotypic variance. A set of nine candidate genes co-located or in
physical proximity to the significant SNPs with roles in plant defense against pathogens
were identified. GP revealed low to moderate prediction correlations of 0.39, 0.37, 0.56,
0.30, 0.29, and 0.38 for within IMAS association panel, DH pop1, DH pop2, DH pop3,
F3 pop4, and F3 po5, respectively, and accuracy was increased substantially to 0.84
for prediction across three DH populations. When the diversity panel was used as
training set to predict the accuracy of GLS resistance in biparental population, there
was 20–50% reduction compared to prediction within populations. Overall, the study
revealed that resistance to GLS is quantitative in nature and is controlled by many
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loci with a few major and many minor effects. The SNPs/QTLs identified by GWAS
and linkage mapping can be potential targets in improving GLS resistance in breeding
programs, while GP further consolidates the development of high GLS-resistant lines by
incorporating most of the major- and minor-effect genes.

Keywords: GLS, GP, GWAS, SNP, disease resistance, JLAM

INTRODUCTION

Maize is the most important cereal crop in sub-Saharan Africa
(SSA), where more than 80% of the population rely on it as a
source of food, income, and livelihood (Prasanna et al., 2020).
Gray leaf spot (GLS) is a one of the major foliar diseases of
maize caused by the polycyclic pathogens Cercospora zeae-maydis
and Cercospora zeina (Crous et al., 2006; He et al., 2018). In
eastern Africa, C. zeae-maydis is more prevalent. GLS poses
a serious problem to maize production with estimated yield
losses of more than 70% (Liu et al., 2016) under favorable
conditions. The disease caused severe economic losses in SSA
(Ward, 1996; Vivek et al., 2010; Kibata et al., 2011; Bekeko
et al., 2018; Yigrem and Yohannes, 2019). Therefore, maize
breeding programs in SSA typically incorporate GLS resistance
in product pipelines.

Diagnostic symptoms of GLS include necrotic and chlorotic
spots that run parallel to the leaf veins, rectangular fleck-type
lesions; later-stage infection leads to severe blighting of leaves,
stalk rotting, severe lodging, and premature death (Latterell and
Rossi, 1983). Several factors contribute to the prevalence of
GLS including conducive environment for disease development,
monoculture of maize, and adoption of conservation tillage,
which allows fungal inoculum to build up on crop residues.
Moderate to high temperatures coupled with prolonged periods
of high relative humidity also favor the development of
disease symptoms (Ward, 1996). Chemical control has been
recommended to combat GLS, but the application of fungicides
is not economical especially for small and marginal farmers,
and is also hazardous to human health with negative impacts
on environment (Dhami et al., 2015). Breeding for resistant
germplasm through conventional methods and by integrating
advanced molecular tools is the most effective method to control
diseases and to ensure maize-based food security in SSA.

Quantitative trait loci (QTLs) underlying resistance to several
diseases in maize have been identified in the last two decades
(Welz and Geiger, 2000; Shi et al., 2014; Xu et al., 2014; de
Jong et al., 2018; He et al., 2018; Sitonik et al., 2019; Du
et al., 2020; Lv et al., 2020). Despite the substantial number
of QTLs reported, majority of them had huge confidence
intervals, which represented large segments of chromosomes. In
many cases flanking markers are very far from the causative
mutations that can be easily lost during meiotic recombination
and consequently limit their usefulness in breeding applications.
Use of small mapping populations with low mapping resolution
is also another major reason for the failure to identify robust
and reliable markers associated with disease resistance. Although
a biparental population-based genetic mapping approach offers
high QTL detection power, the resolution remains low (Holland,

2007). In recent QTL mapping studies, the size of the mapping
populations usually ranged between 100 and 300 individuals
(Lehmensiek et al., 2001; Zwonitzer et al., 2010; Berger et al., 2014;
He et al., 2018).

Genome-wide association studies (GWAS) have shown great
potential by detecting QTL with high resolution, besides faster
and accurate determination of recombination breakpoints (Zhu
et al., 2008), but the detection power is fairly low and the false-
positive rate is often high (Mammadov et al., 2015). Nevertheless,
GWAS has been used successfully to identify QTL or genomic
regions for some major diseases in maize at the whole-genome
level, including maize lethal necrosis (MLN) (Gowda et al., 2015;
Sitonik et al., 2019; Nyaga et al., 2020) and tar spot complex
(Mahuku et al., 2015). GWAS of GLS was reported earlier in
temperate maize germplasm (Benson et al., 2015; Mammadov
et al., 2015) where significant SNPs associated with GLS resistance
have been identified using diverse panels. However, GWAS for
GLS resistance in tropical maize germplasm adapted to SSA
agroecology was not reported so far.

Molecular marker-assisted breeding for improving disease
resistance in maize is implemented in a few cases where
QTLs with major effects were identified and validated; minor-
effect QTLs are not part of the selection process, as these are
often not consistent across different genetic backgrounds (Kuki
et al., 2018). Genomic prediction (GP) is a newer approach
that estimates the effects of all markers simultaneously, while
omitting the stringent significance testing needed to identify QTL
(Meuwissen et al., 2001). For GP, genetic markers spanning the
whole genome are used with the assumption that all QTLs will
be in linkage disequilibrium (LD) with at least one of these
markers (Heffner et al., 2010). GP combines phenotypic and
genotypic data of the training population to obtain genomic
estimated breeding values (GEBVs) of the testing population that
has been genotyped (Crossa et al., 2017; Wang et al., 2018). GP
captures even the small effect QTLs/genes that are not detected
by marker-assisted selection (Hayes et al., 2009).

In GP, the number of markers tend to be higher than the
number of phenotypic observations; to account for this, GP
applies various algorithms and models including genomic best
linear unbiased prediction (GBLUP), rr-BLUP (Ridge regression),
and Bayes (Crossa et al., 2017). GP reduces the time required
for variety development and the cost per cycle as compared to
phenotypic selection (Crossa et al., 2017; Beyene et al., 2019).
However, applying GP in an association mapping population
shows more effectiveness for traits possessing high heritability
(Combs and Bernardo, 2013).

With this background, the objectives of the study were as
follows: (1) to phenotypically characterize a genetically diverse
association mapping panel and biparental populations for their
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responses to GLS, including correlation with other agronomic
traits; (2) to conduct population-based QTL mapping and joint
linkage association mapping (JLAM); (3) to identify marker-
trait associations for GLS resistance through GWAS; and (4)
to assess the usefulness of GP in breeding for GLS resistance
in tropical maize.

MATERIALS AND METHODS

Plant Materials and Field Trials
An association mapping panel developed at the international
Maize and Wheat Improvement Center (CIMMYT), called the
Improved Maize for African soils (IMAS) panel (Ertiro et al.,
2020a), three doubled haploid (DH) populations [pop1 CML 550
x CML494 (107 lines); pop2 CML550 x CML504 (211 lines); pop3
CML550 x CML511 (107 lines)] (Ertiro et al., 2020b), and two F3
populations [pop4 CZL0618 x LaPostaSeqC7-F71-1-2-1-1B (183
lines); and pop5 CZL074 x LaPostaSeqC7-F103-1-2-1-1B (172
lines)] (Semagn et al., 2012; Zhang et al., 2015) were used in this
study (Supplementary Table S1). The IMAS panel, comprising
410 CIMMYT maize (sub)tropical inbred lines, was used to
evaluate the genetic architecture of resistance to several major
diseases through GWAS (Gowda et al., 2015; Sitonik et al., 2019).
The IMAS panel included lines adapted to tropical lowlands,
African mid-elevation/subtropical, and the tropical highlands.
All three DH populations used in this study were also used in
earlier studies on MLN and low N stress conditions (Sitonik
et al., 2019; Ertiro et al., 2020b); the two F3 populations were
used to study the grain yield under optimum and drought
stress conditions (Semagn et al., 2012; Zhang et al., 2015). The
IMAS panel was evaluated in four location–year combinations
[Kakamega (0◦17′3.19′′ N 34◦45′8.24′′ E, 1535 masl) and Kitale
(1.0191◦ N 35.0023◦ E, 1900 masl) in 2013 and 2014]. DHpop2
and DH pop3 were evaluated in Kakamega and Kitale for 2 years
in 2014 and 2015. DH pop1 was evaluated only in 2015 in the
same two locations. F3 pop4 and F3 pop5 were evaluated in
two locations in Kakamega and Embu (0◦31′52′′ S 37◦27′02′′
E, 1406 masl) at 2011 in Kenya (Supplementary Table S1).
The list of the inbred lines, DH lines and F3 populations,
and their phenotypic and marker data is available for all in
CIMMYT depository1.

All the genotypes from IMAS panel, DH, and F3 populations
were planted in 4-m-long single row plots in an alpha lattice
design with two replications in independent trials at locations
mentioned above. Two seeds were planted per hill and thinned
to a single plant per hill, 3 weeks after emergence to ensure
uniform plant density. Standard agronomic practices were
followed. The chosen locations were natural hotspots for GLS;
uniform disease infection across the trials at each location was
observed. The IMAS panel, and the DH and F3 populations were
evaluated for their responses to GLS in two to four environments
(Supplementary Table S1). GLS disease severity is typically at

1https://data.cimmyt.org/dataset.xhtml;jsessionid=
dc30e94cd6c7318ac8df044c42eb?persistentId=hdl%3A11529%2F10548467&
version=DRAFT

its peak between the growth stages of tasseling and physiological
maturity; therefore, disease severity data were recorded at the
mid-silking and hard dough stages, and scored plot-wise on an
ordinal scale of 1 (highly resistant, without disease symptoms) to
9 (highly susceptible, leading to necrosis). On the IMAS panel,
in addition to GLS severity scoring, data were also collected
for several other agronomic traits, including anthesis date (AD),
anthesis-silking interval (ASI), plant height (PH), ear height
(EH), ear position (EPO), ears per plant (EPP), husk cover (HC),
ear rot (ER), corn rust (PS), Turcicum leaf blight (TLB), grain
yield (GY), and grain moisture (MOI).

Phenotypic Data Analyses
Since the phenotypic data for GLS was recorded based on an
ordinal scale, we evaluated whether the data met the assumptions
of the applied statistical model, i.e., normally distributed,
constant variance, and independent (Rawlings et al., 1998). The
analysis revealed that the GLS data met all the assumptions. For
every population, each location–year combination was treated as
an independent environment that resulted in four environments
for the IMAS panel, DH pop2, and DH pop3, whereas the number
of environments was two for DH pop1, F3 pop4, and F3 pop5.
Analysis of variance for individual and across environments was
undertaken using the ASREML-R (Gilmour et al., 2009) for
each biparental population and the IMAS panel. The following
statistical model was used to estimate variance components:

Yijko = µ + Gi + Ej + (GE)ij + R(E)kj + B(R.E)ojk + eijko,
where Yijko is the phenotypic performance of the ith genotype at
the jth environment in the kth replication of the oth incomplete
block, µ is an intercept term, Gi is the genetic effect of the
ith genotype, Ej is the effect of the jth environment, (GE)ij
is the interaction effect between genotype and environment,
R(E)kj is the effect of the kth replication at the jth environment,
B(R.E)ojk is the effect of the oth incomplete block in the kth
replication at the jth environment, and eijko is the residual. The
genotypic effect (Gi), genotype by environment interaction, and
effect of incomplete blocks were treated as random effects in
order to estimate their variances and residual error variance.
Environments and replications were treated as fixed effects.
Assuming fixed genotypic effects, a mixed linear model (MLM)
was fitted to obtain the best linear unbiased estimates (BLUEs).
With ASREML-R, the significance of variance components were
tested by model comparison (full model vs. half model) with
likelihood ratio tests in which the halved P values were used as
an approximation. Heritability (H2) was estimated as the ratio of
genotypic to phenotypic variance components.

Broad-sense heritability (H2) was calculated for all the traits
using the following equation:

H2
=

σ2
g

σ2
g +

σ2
gl
l +

σ2
ε

lr

where σ2
g is the genotype variance, σ2

gl is the
genotype × environment interaction variance, and σ2

ε is
the error variance, with l representing number of environments
and r denoting number of replications. META-R software
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(Alvarado et al., 2015) was used to obtain best linear unbiased
prediction (BLUP) for each genotype across environments.

Genotypic Data and Linkage Mapping
More detailed explanation on the molecular markers used and the
linkage map construction for DH and F3 populations are available
in earlier studies (Semagn et al., 2012; Sitonik et al., 2019; Ertiro
et al., 2020b). In brief, the DNA of all inbred lines of the IMAS
AM panel and the biparental populations was extracted from
seedlings at 3–4 leaf stages and genotyped using the GBS platform
at the Institute for Genomic Diversity, Cornell University, Ithaca,
United States, using high-density markers, as per the procedure
described by Elshire et al. (2011). For all three DH populations,
TASSEL ver5.2 (Bradbury et al., 2007) was used to exclude SNPs
with a heterozygosity of >5%. Whereas for all the five biparental
populations, a minor allele frequency (MAF) of <0.05 and a
minimum count of 90% were excluded by filtering from raw
GBS SNP markers. Further, for each population, markers that
are homozygous for both the parents and polymorphic between
the parents were retained. Finally, SNPs were further filtered
based on minimum distance between the markers. We used the
criteria of minimum distance between adjacent SNPs as ≥200
kilobase pairs (kbps) to ensure uniform distribution of markers
throughout the genome. For JLAM, markers from all three DH
pops were combined, and markers with <1% missing value and
>5% MAF and heterozygosity of <5% were retained. Finally, a
set of 7490 SNPs that are uniformly distributed across the genome
was used for JLAM analyses.

QTL IciMapping version 4.1 (Meng et al., 2015) was used to
construct the linkage map based on data from all five biparental
populations. QTL IciMapping was used to remove the highly
correlated SNPs that do not provide any additional information
by using an inbuilt tool BIN. This resulted in retention of 2105,
2699, 1962, 1130, and 1047 high-quality SNPs in DHpop1, pop2,
pop3, F3pop4, and F3pop5, respectively. These SNPs were used to
construct linkage maps using the MAP function, by selecting the
most significant markers using stepwise regression. A likelihood
ratio test was used to calculate the logarithm of odds (LOD) for
each marker at a score of >3 with a 30-cM maximum distance
between two loci. Three steps involved in constructing the linkage
were grouping, ordering, and rippling. The Recombination
Counting and ORDering (RECORD) algorithm was used to order
markers. Grouping was done at LOD score > 3.0, and Sum
of adjacent criterion (SAD) ripple was used to confirm marker
order. The Kosambi mapping function (Kosambi, 1944) was
used to transform the recombination frequencies between two
linked loci. BLUPs across environments were used to detect QTLs
based on Inclusive interval mapping (ICIM) for each population.
Phenotypic variation explained by individual QTL and total
variation explained by QTLs were estimated. QTL naming was
done with letter “q” indicating QTL, followed by abbreviation of
trait name, the chromosome, and marker position, respectively.

Joint Linkage Association Mapping
For JLAM, high-quality, uniformly distributed 7490 SNPs across
three DH populations were selected. The SNPs were then used
to construct a linkage map based on their physical positions.

A biometric model (Würschum et al., 2012) was used to perform
JLAM, with BLUPs across environments and population being
applied for analysis. After testing several biometric models, one
that performed well for association studies in multiple biparental
populations (Würschum et al., 2012) was used to conduct the
JLAM. This model controls the differences in population means
by incorporating population effect and the genetic background by
using cofactors and marker effects across populations. This model
was explained in detail by Liu et al. (2011) and Würschum et al.
(2012). In brief, with this model, as a first step, cofactors were
selected based on the Schwarz Bayesian Criterion (SBC, Schwarz,
1978) by including a population effect, and in the second step,
P-values were calculated for the F-test by using a full model
(including SNP effect) versus a reduced model (without SNP
effect). Cofactors were selected by using PROC GLM SELECT
from SAS 9.4 (SAS Institute Inc, 2015) and genome-wide scans
for QTLs were applied in R version 3.2.5 (R Core Team, 2015).

Genome-Wide Association Analyses
TASSEL ver5.2 (Bradbury et al., 2007) was used for GWAS. SNPs
with a heterozygosity of <5%, a MAF of >0.05, and a minimum
count of 90% were included by filtering from raw GBS data
sets, and 337,110 high-quality SNPs were retained for further
analysis in the IMAS AM panel. Distribution of these 337,110
GBS markers in the maize genome is presented with different
color keys in the Supplementary Figure S1. BLUPs across
environments were used as phenotypes in association mapping
scans. Principal component analysis (PCA) was performed using
TASSEL ver5.2. The principal components were used to correct
for population structure and to create a two-dimensional plot to
enable visualization of the probable population structure. A MLM
that computes both PCs and kinship matrix (K) was applied
for GWAS to correct for population structure (Yu and Buckler,
2006). The kinship matrix was calculated in Tassel ver 5.2 using
a normalized Identity by State (IBS) option. The extent of LD of
the genome was based on physical distances between the SNPs
and the adjacent pairwise r2 values between high-quality SNPs
from GBS (Remington et al., 2001). The “nlin” function in R
was used to fit non-linear models into the genome-wide LD data
by incorporating r2 as responses (y axis) and pairwise distances
(x axis) as predictors. The average estimator for LD decay was
calculated at a “significance” threshold of r2 = 0.1 and r2 = 0.2
cutoff points in relation to distance (Hill and Weir, 1988), and
a representative scatter plot was drawn as LD between adjacent
markers versus chromosome distance (kb). In this study, we used
a MAF of 0.05 to assess LD as was applied in other studies (Li
et al., 2014; Vos et al., 2017).

Scans for genome-wide marker-trait associations were carried
out to detect main effect QTLs. R2 statistics was used to assess
the amount of phenotypic variation explained by the model by
simultaneously fitting all significant SNPs in a linear model.
Multiple testing correction was performed to determine the
significance threshold, where instead of 337,110 independent
tests, the total number of tests was estimated based on the average
extent of LD at r2 = 0.1 (Cui et al., 2016). With respect to
the above, significant associations were declared when P-values
in independent tests were less than 9.5 × 10−6. Candidate
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genes containing or being adjacent to the significant SNPs were
obtained from the B73 gene set (version 2.0) in Maize GDB.
BLAST searches were performed with 50-bp source sequences of
the significantly associated SNPs against the “B73” RefGen_v22.

Genomic Prediction
RR-BLUP was used to carry out GP using a fivefold cross-
validation (Zhao et al., 2011). BLUEs across environments
for each of the biparental populations and across three DH
populations were used for the analysis. For all biparental
populations and IMAS panel, the same set of high-quality
uniformly distributed 4000 SNPs with no missing values and
MAF > 0.05 were used. Approaches used for GP include the
“within population” approach in which individual biparental
population and IMAS set were sampled to form a training and
prediction set, a “joint population” or combined population
prediction approach where data from three DH populations
were combined and sampled randomly to form a testing and
training set, and “across population” prediction in which IMAS
association panel was used as a training set and each DH
population was used as a testing set. For each approach, 100
iterations were done for sampling of the training and validation
sets. RR-BLUP was implemented using the statistical software R
(R Core Team, 2015).

RESULTS

The IMAS panel with a set of 410 lines and five biparental
populations were evaluated against GLS in Kenya in two to four
environments. GLS disease severity scores indicated comparable
disease pressures across the tested environments as indicated
by significant genotypic variance at each environment for
each population (Supplementary Table S1). Further, significant
(p < 0.05) Pearson correlations were also observed among
phenotypic values determined at different environments for each
population (Supplementary Table S2). This suggested that there
was enough GLS disease pressure in each environment and the
combined analysis across environments was not biased. The
significant environmental variations (data not shown) observed
for GLS indicated that the environments were distinct and
provided unique information on the individual lines in the
linkage and association mapping population.

The disease severity was high in each of the environments
as well as across environments, with the susceptible checks
CLYN265 and DTPYC9-F13-2-3-1-2-B showing a score of 7
on the 1–9 scale. The frequency of the phenotypic values
followed a near-normal distribution for individual populations
and combined DH populations as well as IMAS panel (Figure 1).
The IMAS panel, on average, was moderately resistant to GLS
with a mean of 3.98, assessed on the 1–9 scale. Four parental lines
of DH populations, CML494, CML504, CML511, and CML550,
recorded GLS scores of 3.77, 3.39, 3.31, and 4.94, respectively.
The DH populations developed from the four parents were
moderately resistant with mean GLS scores of 5.24, 3.90, and

2https://www.maizegdb.org/gbrowse/maize_v2

3.29 in DH pop1, 2, and 3, respectively, while the GLS score in
the combined DH populations across environments was 4.52.
For the F3 populations, the parental lines LapostaSeq-C7-F71
and CZL074 were GLS-resistant with mean scores of 2.60 and
3.00, respectively, whereas the other two parents LapostaSeq-C7-
F108 and CZL618 had mean scores of 3.58 and 4.01, respectively.
F3 pop4 and 5 recorded mean GLS scores of 3.24 and 3.84,
respectively. Thus, significant variation for GLS disease severity
was observed in all populations.

ANOVA, calculated across environments, revealed significant
genotypic and genotype by environment (G × E) interaction
variance in the IMAS panel (Table 1). Individual biparental
populations and the combined DH populations had significant
genotypic and G × E interaction variance except for F3 pop5
where the G × E interaction variance was not significant.
Heritability estimates were moderate, ranging from 0.43 to 0.68.
F3 pop4 had the lowest heritability estimates while DH pop2
had the highest estimates of heritability. The IMAS panel and
combined DH population had heritability estimates of 0.56.
Each population displayed adequate disease expression for both
susceptible and resistant lines for response to GLS. The IMAS
panel used in this study showed significant variations for all
other agronomic traits including plant height, grain yield, ear
height, and ear position (data not shown). GLS is negatively
and significantly correlated with grain yield, anthesis date, ear
position, grain moisture, plant height, and ear height (Figure 2).
Correlation among GLS and anthesis date was significant, but low
magnitude (-0.27), showing that flowering time is not a cofound
effect in GLS resistance. Of the traits surveyed, the largest positive
correlation was estimated between ear height and ear position
(r = 0.84, p < 0.01) and between ear height and plant height
(r = 0.82, p < 0.01).

Population structure was diagnosed using STRUCTURE
software for K (number of clusters/fixed subgroups). Most of
the significant change was observed when K was increased from
one to two and one to four. Structure results of K = 4 was
the best probable partition, as they showed high consistency
with significant delta K values, geographical origin, and pedigree
history (Supplementary Figure S2). PCA indicated a clear
diverse population structure within the panel. The first two
PCs, PC1 and PC2, explained a variation of 35.99 and 19.56%,
respectively. Further, LD for the entire genome was calculated
using 11,035 SNPs. LD decay of the panel was rapid with increase
in physical distance. Physical distance at a cutoff value of r2 = 0.1
was found to be 14.97 kb and that at r2 = 0.2 was 5.23 kb
(Supplementary Figure S3).

Linkage map for each of the populations was constructed.
The number of progenies or lines, markers, map lengths, and
average genetic distances between the markers for each biparental
population are presented in Supplementary Table S3. Linkage
mapping detected one QTL (qGLS5-217) for GLS in DH pop1
on chromosome 5, which explained 11% of the phenotypic
variance (Table 2). Five QTLs were identified for DH pop2
on chromosomes 1, 5, 7, and two on chromosome 8, which
individually explained phenotypic variance ranging from 1.5 to
28.2%, and together explained 49.7% of the total phenotypic
variance. In DH pop3, only two QTLs were detected on
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FIGURE 1 | Phenotypic distribution of GLS disease severity in IMAS association mapping panel, three DH populations, across DH populations, and two F3

populations evaluated in two to four environments.

TABLE 1 | Means and components of variance for gray leaf spot disease severity for maize inbred lines from IMAS association panel, three DH and two F3 populations,
as well as across DH populations evaluated in two to four environments.

Population Mean σ 2
G σ 2

G × E σ 2
e h2 LSD CV

IMAS AM panel 3.98 0.05** 0.08** 0.19 0.56 0.26 22.05

CML550XCML494 DHpop1 5.24 0.07** 0.04* 0.24 0.45 0.39 15.66

CML550XCML504 DHpop2 3.90 0.07** 0.02* 0.20 0.68 0.29 22.04

CML550XCML511 DHpop3 3.29 0.05** 0.03* 0.24 0.59 0.30 24.51

CZL618XLaPostaSeqC7-F71-1-2-1-1 F3pop4 3.24 0.03* 0.03* 0.10 0.43 0.11 24.36

CZL074XLaPostaSeqC7-F103-1-2-1-1 F3pop5 3.70 0.04* 0.01 0.12 0.53 0.26 23.23

Across three DH populations 4.62 0.19** 0.13** 0.33 0.56 0.53 24.80

The environment-wise statistics are given in Supplementary Table S1. *, ** Significance at P < 0.05 and P < 0.01, respectively. σ2
G, genotypic variance; σ2

G × E ,
genotypic × environment interaction variance; σ2

e, error variance; h2, broad sense heritability.

chromosomes 1 and 10, which individually explained 16.6 and
8.7% of phenotypic variance, and together explained 23.7% total
phenotypic variance. Seven QTLs were detected in F3 pop4,
which individually explained 3.21–14.36% of phenotypic variance
and together contributed for 18.05% of total phenotypic variance.
In the F3 Pop5, seven QTLs were detected, distributed on
chromosomes 1, 2, 4, 5, and 6, individually explaining 2.53–
12.79% of phenotypic variance. The QTL on chromosome 7
(qGLS7-105) in DH pop2 was found to explain the largest
proportion of phenotypic variance (28.2%). Overlapping of QTLs
was compared based on the physical distance between the
flanking markers, as the linkage maps were not comparable due
to different sets of markers used. The QTL qGLS1-104 on F3
pop5 overlapped with the qGLS1-123 on F3 pop4, qGLS1-155

in DH pop3, and qGLS1-158 in DH pop2 (Table 2). Another
QTL on chromosome 4 qGLS4-190 in F3 pop4 overlapped with
qGLS4-157 detected in F3 pop5. QTL qGLS5-217 on DH pop1
overlapped with qGLS5-217 QTL detected on F3 pop5. The QTLs
detected between 155 and 159 Mbp on chromosome 1 in DH
pop2 and DH pop3 were in close physical proximity and could
possibly represent the same QTL.

Joint linkage association mapping analyses revealed 14 QTLs
distributed across six chromosomes, 3 QTLs on chromosome
1, 5 QTLs on chromosome 5, 2 QTLs each on chromosomes 4
and 8, and 1 QTL each on chromosomes 6 and 9. These QTLs
individually explained 0.1–15.7% of the phenotypic variance
(Table 3). The QTL on chromosome 4 (qGLS4-163) had the
largest effect at 15.7% of phenotypic variation and was found
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FIGURE 2 | Phenotypic correlations among 12 traits evaluated in four environments. The correlation level is color-coded according to the color key plotted on the
extreme right. Correlations with >0.12, and >0.15 were significant at 0.05 and 0.01 levels, respectively. GY, grain yield; AD, days to anthesis; PH, plant height; EH,
ear height; EPO, ear position; EPP, number of ears per plant; HC, husk cover; GLS, gray leaf spot; TLB, Turcicum leaf blight; CR, corn rust; MOI, grain moisture
content.

overlapping with the QTL qGLS4-190 detected on F3 pop4
(Tables 2, 3). In addition, qGLS1-158 overlapped with the QTL
qGLS1-104 detected in F3 pop5 and qGLS1-158 in DH pop2.
Another QTL, qGLS4-154, detected in JLAM also overlapped
with QTL qGLS4-190 in F3 pop4 and qGLS4-157 in F3 pop5.
A QTL on chromosome 5, qGLS5-19, overlapped with QTL
qGLS5-18 detected on DH pop2. Two QTLs detected in JLAM
qGLS5-213 and qGLS5-216 were falling within the confidence
interval of the QTL qGLS5-217 detected in DH pop1 and F3
pop5 (Tables 2, 3). Large variation was observed for both allele
substitution effects (α effect) even with changing in signs and
QTL effects (Table 3).

We performed GWAS based on MLM, which corrects for
both the population structure and familial relatedness to avoid
type I errors. Further, type II errors was avoided by observing
the distribution of null versus alternative hypotheses in quantile–
quantile (QQ) plots (Figure 3). GWAS analyses revealed the
quantitative genetic nature of the GLS resistance and identified 10
marker-trait associations (MTA) in five chromosomes (Table 4)
based on a significant threshold p value of 9.5 × 10−6. SNPs
identified for GLS severity explained moderate phenotypic
variation ranging from 6 to 9%. The SNP S1_215340710 is co-
located with QTL qGLS1-104 detected in biparental F3 pop5
(Tables 2, 4). The B73 maize genome reference V2.0 sequence
was used to identify putative candidate genes based on significant
SNP associations. Sets of putative candidates were identified
together with their predicted functions (Table 4).

The predictive ability of the GP model was determined as
the correlation between GEBVs and observed phenotypes. The

fivefold cross-validation revealed low to moderate prediction
correlations of 0.39, 0.37, 0.56, 0.30, 0.29, and 0.38 for within
IMAS association panel, DH pop1, DH pop2, DH pop3, F3
pop4, and F3 po5, respectively (Figure 4). The prediction
correlations were increased to 0.84 when the prediction was
based on combined three DH populations. Combining both
IMAS association panel and all DH populations increased the
diversity of the training set, but the correlation was still high
at 0.77. In breeding, prediction of new population using one
diverse panel as common training set is desired. However, this
could affect the prediction accuracy, particularly for complex
traits. Nevertheless, for GLS, using IMAS association panel
as the training set, we predicted the response of each DH
population and observed cross-validated correlations of 0.29,
0.36, and 0.14 for DH pop1, DH pop2, and DH pop3,
respectively (Figure 4).

DISCUSSION

Gray leaf spot is an economically important foliar disease of
maize in SSA. With the changing climates and ever-increasing
maize monoculture in SSA, GLS becomes a more serious threat
to maize production in the future. Understanding the genetic
basis of GLS resistance is important to design an effective
breeding strategy for developing and deploying GLS-resistant
parental lines and hybrids. Breeding for GLS resistance is
influenced by several factors including genotype, environment,
and their interactions. The present study used CIMMYT’s
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TABLE 2 | Detection of QTL associated with resistance to GLS, their physical positions, and genetic effects in three DH populations and two F3 populations.

QTL namea Chr Position
(cM)

LOD PVE (%) Add Dom Total PVE (%) Flanking markers Left CI (cM) Right CI
(cM)

CML550xCML494 DHpop1

qGLS5-217 5 212 2.76 10.99 0.06 − 10.5 S5_201939197 S5_217052211 190.5 214.5

CML550xCML504 DHpop2

qGLS1-158 1 244 3.34 1.52 0.04 − 49.7 S1_158718899 S1_158003946 242.5 244.5

qGLS5-18 5 488 4.12 1.91 0.05 − S5_17891733 S5_19048161 485.5 489.5

qGLS7-105 7 266 40.22 28.2 0.17 − S7_105221050 S7_113205468 264.5 266.5

qGLS8-108 8 245 3.28 2.23 0.05 − S8_107791296 S8_148484309 235.5 258.5

qGLS8-8 8 406 11.92 6.02 0.08 − S8_8273703 S8_9875577 402.5 410.5

CML550xCML511 DHpop3

qGLS1-155 1 417 4.86 16.6 0.07 − 23.67 S1_154764228 S1_157179343 415.5 417.5

qGLS10-97 10 181 2.7 8.73 0.05 − S10_96772644 S10_99957462 179.5 181.5

CZL0618xLaPostaSeqC7-F71-1-2-1-1B F3 pop4

qGLS1-123 1 568 4.66 5.70 −0.39 −0.13 18.05 S1_122885347 S1_123767518 567.5 569.5

qGLS3-26 3 32 3.16 3.81 −0.31 0.08 S3_33059091 S3_26022906 25.5 34.5

qGLS4-190 4 192 2.60 14.36 0.44 −0.83 S4_4754149 S4_192217274 188.5 198.5

qGLS4-204 4 330 2.58 3.21 0.13 −0.39 S4_203557175 S4_224911596 326.5 333.5

qGLS4-189 4 359 2.71 3.29 0.26 −0.20 S4_187296983 S4_189157835 350.5 363.5

qGLS4-187 4 370 3.16 3.94 −0.27 −0.30 S4_175739782 S4_187296983 367.5 372.5

qGLS9-143 9 453 3.36 4.19 0.33 0.12 S9_143037428 S9_143894887 447.5 458.5

CZL074xLaPostaSeqC7-F103-1-2-1-1B F3 pop5

qGLS1-281 1 42 2.52 8.01 −0.55 0.08 28.71 S1_281168712 S1_285979058 40.5 43.5

qGLS1-104 1 510 2.68 12.79 −0.55 −0.26 S1_103385029 S1_241404317 508.5 510.5

qGLS2-37 2 444 3.54 3.36 0.24 −0.42 S2_37133478 S2_43353313 442.5 446.5

qGLS4-157 4 304 7.97 6.26 0.42 0.18 S4_93244319 S4_157631782 299.5 308.5

qGLS5-217 5 176 2.92 3.47 −0.36 0.00 S5_208066400 S5_217416666 167.5 182.5

qGLS5-52 5 376 2.64 7.19 −0.34 1.06 S5_51355494 S5_131040408 375.5 378.5

qGLS6-69 6 90 2.81 2.53 −0.57 −0.25 S6_68207704 S6_110436702 87.5 93.5

aQTL name composed by the trait code followed by the chromosome number in which the QTL was mapped and the physical position of the flanking markers in Mb.
Chr, chromosome; LOD, logarithm of odds; Add, additive effect; Dom, dominance effect; PVE, phenotypic variance explained. Markers with bold letters are the QTL
consistent across at least two populations. The marker name indicates the chromosome number followed by its physical position; for example, S6_68207704 denotes
that the marker is in chromosome 6 at a position of 68,207,704 bp (Ref Gen_v2 of B73). CI, confidence interval.

TABLE 3 | Analysis of GLS trait-associated markers, allele substitution (α) effects, and the total phenotypic variance (R2) of the joint linkage association mapping based
on combined data from three DH populations.

Marker QTL namea chr Position (Mbp) α -effect P-value PVE (%)

S1_15169935 qGLS1-15 1 15.17 −0.04 2.05E-01 0.3

S1_56220954 qGLS1-56 1 56.22 0.11 6.14E-04 2.1

S1_158003964 qGLS1-158 1 158.00 −0.11 5.21E-05 2.9

S4_154047619 qGLS4-154 4 154.05 0.02 4.83E-01 0.1

S4_163681762 qGLS4-163 4 163.68 0.39 2.45E-19 15.7

S5_7702493 qGLS5-7 5 7.70 0.05 3.69E-02 0.5

S5_13738035 qGLS5-13 5 13.73 0.14 2.92E-01 0.1

S5_19525108 qGLS5-19 5 19.52 −0.13 7.61E-08 3.7

S5_212619482 qGLS5-213 5 212.62 −0.16 6.08E-02 0.4

S5_215811751 qGLS5-216 5 215.81 0.04 1.82E-01 0.2

S6_116334713 qGLS6-116 6 116.34 −0.34 3.35E-03 1.1

S8_13783996 qGLS8-14 8 13.78 −0.19 2.34E-11 5.9

S8_166561872 qGLS8-166 8 166.56 0.42 1.07E-17 10.0

S9_79119948 qGLS9-79 9 79.12 −0.03 2.39E-01 0.2

aQTL name composed by the trait code followed by the chromosome number in which the QTL was mapped and a physical position of the QTL. Chr, chromosome;
PVE, phenotypic variance explained. The marker name indicates the chromosome number followed by its physical position; for example, S6_68207704 denotes that the
marker is in chromosome 6 at a position of 68,207,704 bp (Ref Gen_v2 of B73).
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FIGURE 3 | (A) Manhattan and quantile–quantile plots of a mixed linear model for GLS resistance in the IMAS association mapping panel evaluated in four
environments. The dashed horizontal line depicts the significance threshold (P = 9.5 × 10-6). The X-axis indicates the SNP location along the 10 chromosomes, with
chromosomes separated by different colors; Y-axis is the -log10(P observed) for each analysis. (B) Quantile–quantile plots.

TABLE 4 | List of significant SNPs and candidate genes associated with GLS resistance in the IMAS association panel evaluated in four environments.

SNP namea Chr Position MLM-P value R2 (%) MAF Allele MAE Putative
candidate

genes

Predicted function of
candidate gene

S1_82702920 1 82702920 5.0287E-06 0.06 0.46 G/A 0.09 GRMZM2G506660 ATP binding protein

S1_215340710 1 215340710 7.0783E-06 0.07 0.10 T/C −0.06 GRMZM2G106558 myb146—MYB-transcription
factor 146

S2_5924471 2 5924471 8.3283E-06 0.06 0.07 T/C −0.7 GRMZM2G372074 Protein encodes a protease
inhibitor/LTP family protein

S2_148656983 2 148656983 6.2212E-06 0.07 0.42 C/G 0.17 GRMZM2G115659 Carbohydrate transporter/sugar
porter/transporter

S2_148656984 2 148656984 6.0999E-06 0.07 0.43 G/C 0.17 GRMZM2G115658 Carbohydrate transporter/sugar
porter/transporter

S6_150800750 6 150800750 5.8341E-06 0.08 0.06 T/G 0.29 GRMZM2G067156 Unknown

S6_165317183 6 165317183 7.9948E-06 0.07 0.43 C/T 0.01 GRMZM2G092475 Probable sodium/metabolite
cotransporter BASS4

S7_128373677 7 128373677 9.3869E-06 0.07 0.07 T/A 0.03 GRMZM2G416632 Glutathione transferase23

S7_128375218 7 128375218 6.2406E-06 0.08 0.05 T/C 0.32 GRMZM2G416625 Purine permease 3

S8_34664259 8 34664259 7.0625E-06 0.07 0.14 A/C −0.05 GRMZM2G051522 Protein DOG1-like 4

MAF, minor allele frequency; R2, proportion of phenotypic variance explained by SNP. aThe exact physical position of the SNP can be inferred from the marker’s name;
for example, S1_82702920: chromosome 1; 82,702,920 bp (Ref Gen_v2 of B73).

genetically diverse tropical and subtropical maize breeding lines
and populations, with the aim to identify genomic regions for
GLS resistance and validate the same across different populations
and earlier reports. Five biparental populations were used
to detect the QTL for GLS resistance with high detection
power, besides an association mapping panel to find marker-
trait associations.

The phenotypic data for GLS disease severity score in
each of the biparental populations as well as combined three
DH populations and association mapping panel supported
the quantitative nature for GLS resistance (Figure 1). Several
previous studies using either biparental populations (Berger
et al., 2014; Liu et al., 2016) or an association mapping panel
(Mammadov et al., 2015; Kuki et al., 2018) indicated polygenic
control of GLS resistance. We also observed significant genotypic
variance and moderate heritabilities indicating good prospects
for introgressing GLS resistance in breeding programs, similar

to the observations in some earlier studies (Berger et al., 2014;
Mammadov et al., 2015; Liu et al., 2016; Kuki et al., 2018).

Tropical and subtropical maize germplasm possess a huge
amount of unexplored genetic diversity, which provides insights
into resistance for several key traits used in breeding programs
(Liu et al., 2016). Moderate to high heritability within the
biparental populations for GLS resistance is reported to be
controlled by additive gene action (Gordon et al., 2006). QTL
analyses in five biparental populations revealed 22 potential QTLs
providing resistance to GLS. Several QTLs were consistently
detected at least in two populations; for example, QTL qGLS1-
104 on F3 pop5 overlapped with the QTLs on F3 pop4, DH
pop2, and DH pop3. Another QTL qGLS4-190 in F3 pop4
overlapped with QTL in F3 pop5, and QTL qGLS5-217 in DH
pop1 overlapped with QTL detected on F3 pop5 (Table 2). There
were five QTLs (qGLS1-104, qGLS1-155, qGLS4-190, qGLS5-217
and qGLS7-105) with major effects (>10% phenotypic variance
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FIGURE 4 | Genome-wide prediction accuracies for GLS resistance in biparental and IMAS AM panel based on three different scenarios. (A) Estimation and
prediction within IMAS AM panel and biparental populations; (B) estimation and prediction combined DH populations and combined all DH populations and IMAS
AM panel; (C) prediction of the DH population using IMAS AM panel as a training set with fivefold cross-validation.

explained) detected on chromosomes 1, 4, 5, and 7 in five
biparental populations. A major QTL (qGLS5-217) identified in
DH Pop1, explaining about 11% of total phenotypic variance
and located between 201 and 207 Mbp, was consistent with a
consensus QTL in bin 5.03 reported by Shi et al. (2007) in a meta-
QTL study. A study carried out by Liu et al. (2016) also identified
a major QTL on bin 5.04, which coincided with a similar QTL
for flowering time and showed linkage between GLS resistance
and flowering time. In the findings of QTL mapping within DH
pop2, only the QTL on chromosome 7 between 105 and 113 Mbp,
qGLS7-105, was found to have a significant effect (R2 of 28.3%).
For this major QTL qGLS7-105, the segregation alleles from two
tightly linked flanking SNPs reveal that DH lines and inbred lines
from the IMAS panel with low DS scores were strongly associated
with GLS-tolerant parent CML504 (Supplementary Figure S4).
However, the efficiency of these flanking markers should be
assessed further through KASP (Kompetitive allele-specific PCR)
assays, where we can check these markers’ ability to identify GLS-
resistant and susceptible genotypes. In the previous study carried
out in South Africa, Berger et al. (2014) identified various QTL
hotspots for GLS resistance in chromosomal bins 7.02 and 7.03.
“Hotspot,” in this case, is a genomic region comprising multiple
genes (clusters) that correspond to a particular trait or a group
of related traits. Similar hotspots for GLS have been observed
in various studies within chromosome 1 (Clements et al., 2000;
Lehmensiek et al., 2001; Pozar et al., 2009; Berger et al., 2014;
Lv et al., 2020). Our findings also suggest a possible hotspot
within DH pop3 on chromosome 1; QTL qGLS1-155 explained
16.6% phenotypic variation. The same case applies for two QTLs
(qGLS8-108 and qGLS8-8) on chromosome 8 within DH pop2, as
was also reported by Bubeck et al. (1993) and Chung et al. (2011).
Overall, several QTLs were consistent with the previous studies
indicating their reliability to be used in applied breeding.

Joint linkage association mapping explores both within- and
across-population variations that enabled the detection of novel

QTL, which would have been omitted by linkage mapping. In line
with this expectation, we found that 8 out of 14 QTLs detected
were novel, not observed in linkage mapping. JLAM results
indicated the influence of many genes with minor effects on GLS
resistance, as shown by the many identified QTLs that explained
low phenotypic variation. In general, linkage mapping confines
a QTL to a 10–20 cM interval because of limited recombination
events during development of mapping population. Identifying
QTLs that are consistent across populations, fine mapping of
these QTLs, and construction of a high-resolution linkage map
could help identify markers for cloning the QTL. On the contrary,
six QTLs detected through JLAM overlapped with the QTL
detected in linkage mapping, revealing not only stability but also
help in reducing the confidence interval of the QTLs and may
even be closer to the causal variant responsible for GLS resistance.

Population structure is an essential aspect as it influences
detected MTAs including the false positives in an association
mapping panel. The present study used CIMMYT’s elite
maize lines from multiple breeding programs, including Africa
highland, mid-elevation, and lowland tropics. We observed a
moderate population structure with PC1 and PC2 explaining
35.99 and 19.56% of variation, respectively (Supplementary
Figure S2). The diversity panel lines did not cluster into a group
but were scattered among different groups. Similar findings were
also observed by George et al. (2004) who studied the diversity of
Asian inbred lines including CIMMYT’s tropical and subtropical
lines of the region and concluded that the lines had a significant
genetic diversity.

The mapping resolution of GWAS and number of SNPs
required for desired marker density are dependent on the
magnitude of LD and LD decay with genetic distance (Myles
et al., 2009). The correlation between alleles in different genomic
locations is generally based on the historical recombination
between polymorphisms and hence requires a large population
for study. The genome-wide average LD decay was 14.97 kb at
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r2 = 0.1 and 5.23 kb at r2 = 0.2, similar to Rashid et al. (2018)
observed in their association panel. LD decayed rapidly with
distance between sites but showed substantial variation among
loci. Previous studies indicated a rapid decay in tropical maize
germplasm as compared to the temperate germplasm; the high
LD decay in tropical maize suggests a broader genetic base,
resulting from high recombination events (Lu et al., 2009). This
provides breeders with an opportunity to select germplasm that
integrates high grain yield with disease resistance and abiotic
stress tolerance.

The ad hoc statistics 1K was used to determine the optimum
number of subgroups based on the output log likelihood of
data [LnP (D)] of STRUCTURE. The peaks of the line plot
(Supplementary Figure S2) suggest that the population could be
divided into two or four distinct groups in order of possibility,
with the K = 4 of delta K intersecting with LnP (D) showing
higher possibility. At K = 2, the panel could be grouped into
tropical and subtropical groups with group 2 (G2) occupying the
bulk. When K = 4, G2 appeared as a mixed group and was further
divided into three groups. These three groups could be divided
into highland, lowland, and mid-elevation. The clustering of the
population using STRUCTURE correlated highly with known
pedigree information and origin of the lines.

Multiple studies have been carried out earlier to evaluate
the genetic architecture of GLS resistance using both biparental
populations and association mapping panels, especially using
temperate maize germplasm. Berger et al. (2014), Shi et al.
(2014), and Liu et al. (2016), used F2:3 families, association
mapping panel, and F7 RILs, respectively, and identified several
QTLs for GLS resistance. Detection of QTLs for resistance to
GLS was found to be variable between seasons and locations
(Bubeck et al., 1993; Lukman et al., 2012). The use of a
large tropical association mapping panel and testing across
multiple environments in the present study enabled us to identify
putatively associated SNPs for GLS resistance. We identified 10
SNPs significantly associated with GLS each explaining between
6 and 8% of total phenotypic variation. This concurred with
the polygenic nature of GLS resistance where many genes with
minor effects control disease resistance (Asea et al., 2012).
Comparing QTL positions between different studies was difficult
due to the use of different populations, genetic maps, and
statistical tests to define QTL; therefore, we have opted to
use the maize core bin regions to compare the QTL (Wisser
et al., 2006; Balint-Kurti et al., 2008). Three chromosomal
bins were identified in this study: 8.03 with two significantly
associated SNPs, and 7.03 and 1.05 were the same as those
identified by Shi et al. (2014).

The most significant SNP for GLS was in proximity with
the GRMZM2G506660 gene in bin 1.05, which encodes for
adenosine-5′-triphosphate (ATP) binding protein (ABP). ABPs
contain a binding site for interaction with ATP, an energy
molecule. This binding site forms a platform for conversion of
ATP to adenosine diphosphate (ADP), realizing energy for use by
the protein, or conforms to the protein to change shape and act
as a catalytic enzyme. Many ADPs being transmembrane proteins
are responsible for the transport of a wide variety of micro-
and macromolecules across intra- and extracellular membranes.

They have roles in cellular motility, membrane transport, and
regulation of various metabolic processes. GRMZM2G115658
on chromosome 2 bin 2.05 is a carbohydrate transporter
gene, while GRMZM2G092475 on chromosome 6 bin 6.07 is a
sodium/metabolite co-transporter gene within the chloroplast.
Chloroplast plays a crucial role in metabolism and energy
supply to photosynthetic organisms. They possess transporters
and channels within the thylakoid membranes and envelope,
hence mediating exchange of metabolites and ions within the
chloroplast stroma, cytosol, and different sub-compartments of
the chloroplast. GRMZM2G115658 is involved in the regulatory
movement of carbohydrate in and out or within a cell through
a pore or transporter, and in turn regulating the amount of
energy within a cell.

With all these putative candidate genes identified based on
associated SNPs, it is evident that transporter genes and channels
are somehow involved in plant defense, well demonstrated by
the RTM system in Arabidopsis (Chisholm et al., 2000; Gowda
et al., 2015), also suggesting that plants can resist pathogens
in multiple ways. Since plant pathogens need to move within
and between cells through transporter channels for spreading
infection, there is high probability that the putative candidate
genes identified in this study are involved in disease resistance
in maize. However, this warrants further research on the roles of
various transport proteins before potential use in strategies for
enhancing resistance to GLS.

GRMZM2G372074 is a lipid transfer protein encoding gene
on chromosome 2 bin 2.02 characterized by a hydrophobic
cavity. It functions in the transfer of lipophilic compounds to
cuticular surface of epidermal cells and is directly involved
in plant defense against pathogens. Minimal amounts of
glycophosphatidylinositol (GPI)-anchored lipid transfer proteins
(LPTGs) increase susceptibility to penetration of epidermal
cell by pathogens (Fahlberg et al., 2019). GRMZM2G416632
on chromosome 7 bin 7.03 is a gene coding for glutathione
transferase23 (GST), which are multifunctional enzymes, highly
induced by a wide range of biotic stress factors. This enzyme
was found to be up-regulated by early phase of fungal microbial
infections. Silencing and overexpression of specific GSTs modify
pathogen multiplication rates and subsequent amounts of
pathogens in plants (Gullner et al., 2018).

GWAS and GP can be carried out simultaneously since both
use the same set of markers and mapping populations, and it
captures both minor- and major-effect QTLs (Chaikam et al.,
2019; Sitonik et al., 2019). GP is helpful in accelerating the
breeding cycle by facilitating the rapid selection of superior
genotypes through ease in genotyping and availability of a wide
range of markers, which capture maximum favorable alleles. The
potential for different GS-based models in identifying lines with
favorable traits in maize has been examined in various studies
(Zhang et al., 2015; Crossa et al., 2017; Gowda et al., 2018;
Beyene et al., 2019). Moderate to high accuracies observed in
this study for the biparental populations and diversity panel
offer promise in breeding for GLS resistance in tropical maize.
Prediction accuracy of the diversity panel was in agreement
with various studies on moderately complex traits like MLN
(Gowda et al., 2015), maize chlorotic mottle virus (Sitonik
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et al., 2019), and northern corn leaf blight (Chung et al., 2011).
According to Sitonik et al. (2019), significant genetic structure
and high LD between adjacent markers of the diversity panel
resulted in a moderate prediction accuracy, which could also be
attributed to its moderate heritability. Combining the individual
DH populations and applying cross-validations to obtain the
training set and prediction set from the total DH population
resulted in substantial improvement in the prediction accuracy
(Figure 4). This was due to the increase in population size
of the training set and high relatedness between training and
prediction sets. Adding the GWAS panel to the combined DH
populations increased the population size but resulted in a slight
drop in the accuracy, which was due to the varying degrees
of relatedness between the sets and increase in diversity of
the training set.

The relative advantage of GP over phenotypic selection
determines its routine use in breeding programs. This
implementation is dependent on cost-effective and high-
throughput genotyping technology like GBS, which provides a
platform to genotype many maize lines at relatively low costs
(Elshire et al., 2011). This study showed consistent results
between GP and phenotypic selection accuracy indicating
the possibility to integrate GP with phenotypic selection to
improve the efficiency with less resources (Beyene et al., 2019).
In terms of gain per year, GP is much more efficient taking
into account the likelihood of completing three cycles per
year (Lorenzana and Bernardo, 2009). Rapid decline in the
cost of genotyping makes it possible to routinely apply GP in
breeding. Combining GWAS and the predictive capabilities
of GP will also improve the prediction accuracy by using
information on major QTLs from GWAS or linkage mapping.
Prediction accuracy dropped for the across- and within-
population approach where the GWAS population was used as
the training population, similar to Liu et al. (2018) and Sitonik
et al. (2019) who used diversity panel or natural population to
predict biparental populations. The prediction within each DH
population revealed an accuracy of 0.37, 0.56, and 0.30 for DH
pop1, 2, and 3, respectively, while predicting each biparental
population by using the IMAS panel as training set showed 0.29,
0.36, and 0.14 accuracy for DH pop 1, 2 and 3, respectively.
These correlations are low compared to prediction within
populations. However, when the square root of heritability is
compared to the GP correlations, they show that observed gain
in phenotypic selection and GP were comparable. This relatively
high prediction accuracy by using the IMAS panel as training
set could be attributed to the populations’ relatedness to the
diversity panel as all parents of the three DH populations were
part of the GWAS mapping panel and are related to several lines
derived from a (sub)tropical breeding program. The reduction
in accuracy is also attributed to the magnitude of trait genotypic
variability and heritability in each population. Nevertheless, the
predicted accuracies are positive, and under the assumption
of three cycles per year possibility, the total selection gain
is comparable to phenotypic selection gain. The study thus
shows promise for using a common training population or
historical data to predict GLS resistance in several connected but
independent populations.

CONCLUSION

In this study, we used one association panel comprising
410 (sub)tropical maize inbred lines for GWAS and GP to
understand the genetic basis of resistance to GLS. We also
studied five biparental populations using linkage mapping and
JLAM to understand the underlying architecture of the trait.
Phenotypic correlations of studied traits indicated the potential
use of these populations for selection of superior lines. Linkage
mapping identified several minor- and major-effect QTLs with
a few overlapping across populations, while many QTLs are
population-specific for GLS resistance. GWAS scan revealed 10
SNPs associated with GLS resistance. The putative candidate
genes identified in the study and their proposed functions require
further validation to confirm the involvement of these genes in
GLS resistance. Several QTLs identified in this study were found
to be overlapping across different analyses, and with QTLs or
associated SNPs reported earlier in temperate maize germplasm.
These genomic regions can serve as potential selection targets to
improve resistance to GLS. GP can be used within populations to
predict the response of the germplasm to GLS resistance. Having
a common training population comprising lines with diverse
representation from a breeding program with good quality
phenotypic data and genotyped with high-density markers holds
promise in breeding for GLS resistance.
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