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Plants host numerous endophytic microbes which promote plant performance, in
particular under stress. A new endophytic fungus was isolated from the leaves of
a deciduous wood tree Leucas aspera. Morphological inspection and multilocus
phylogeny identified the fungus as a new Trichoderma strain. If applied to Arabidopsis
thaliana and Nicotiana attenuata, it mainly colonizes their roots and strongly promotes
initial growth of the plants on soil. The fungus grows on high NaCl or mannitol
concentrations, and shows predatory capability on the pathogenic fungus Alternaria
brassicicola. Colonized Arabidopsis plants tolerate higher salt stress and show lower
A. brassicicola spread in roots and shoots, while arbuscular mycorrhiza formation in
N. attenuata is not affected by the Trichoderma strain. These beneficial features of the
novel Trichoderma strain are important prerequisites for agricultural applications.

Keywords: Trichoderma, plant beneficial endophyte, growth promotion, pathogen protection, hormone induction

INTRODUCTION

Trichoderma species are versatile filamentous ascomycetes which are found in nearly all
environments. They live in soil, grow on wood as saprophytes, or feed on fungi, plants, animals
and insects as parasites (Carsolio et al., 1994; Gautheret et al., 1995; Furukawa et al., 1998; El-
Katatny et al., 2000; Rocha-Ramirez et al., 2002; Druzhinina et al., 2011; Li et al., 2013; Mukherjee
et al.,, 2014; Li Destri Nicosia et al., 2015; Berini et al., 2016; Druzhinina and Kubicek, 2016;
Rosmana et al., 2016; Karlsson et al., 2017). Various Trichoderma species were shown to protect
plants against pathogenic fungi, such as Rhizoctonia solani (Grosch et al., 2007; Zhang and Zhuang,
2020). Therefore, they are commonly used as bio-control agents in agriculture, with more than
250 commercial Trichoderma-based bio-fungicides registered world-wide (Woo et al., 2014). Apart
from being used as bio-fungicide, Trichoderma species also stimulate plant growth (Lee et al., 2016)
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and nutrient uptake under nutrient deficient conditions (Li
et al., 2015), often in combination with better stress tolerance
of crop plants (Studholme et al., 2013). Other species, such as
T. pleuroti (CBS124387) and T. pleuroticola (CBS124383) cause
green mold disease in oyster mushroom (Pleurotus ostreatuss)
farms (Park et al., 2006).

Most of the investigated Trichoderma species colonize either
the root surface, or live as endophytes inside root tissues
(Samolski et al., 2012; Ruano-Rosa et al., 2016). However,
some species were also isolated from the aerial parts of the
plants (Bailey and Melnick, 2013). In response, plants often
activate defense mechanisms including the biosynthesis of the
defense-related phytohormones salicylic acid (SA), jasmonic
acid (JA), ethylene (ET) or abscisic acid (ABA) (Contreras-
Cornejo et al., 2009; Hermosa et al., 2012; Sivakumaran et al,,
2016; Checker et al.,, 2018). The phytohormones regulate two
types of induced resistance in plants, namely, SA-dependent
systemic acquired resistance (SAR) and JA/ET-dependent
induced systemic resistance (ISR). The signaling events induced
by Trichoderma species often result in elevated SA and JA levels
in different parts of the plant (Martinez-Medina et al., 2013;
Leonetti et al., 2017).

In this study, we wanted to find out if the novel endophytic
Trichoderma strain isolated from the leaves of Leucas aspera
also interacts with other plant species (Arabidopsis, Nicotiana
attenuata) and has beneficial effects in terms of plant growth
and alleviation of abiotic and biotic stress. We could show that,
although the strain is phylogenetically related to mushroom-
infecting T. pleuroti and T. pleuroticola, it efficiently colonizes the
roots of the two plant species, strongly promotes their growth
on soil during early development and protects them against
systemic A. brassicicola spread, while mycorrhiza formation in
N. attenuata appears not to be affected. We also evaluated
if phytohormones might be involved in the plant-fungus
interaction.

MATERIALS AND METHODS

Growth Medium and Conditions for

Seedlings

Seeds of wild-type A. thaliana (ecotype Columbia-0) were
surface-sterilized for 8 min in sterilizing solution containing
lauryl sarcosine (1%) and Clorix cleaner (23%). Surface-sterilized
seeds were washed with sterilized water eight times and placed
on Petri dishes with MS medium supplemented with 0.3% gelrite
(Murashige and Skoog, 1962). After cold treatment at 4°C for 48—
72 h, plates were incubated at 22°C under long day conditions
(16 h light/8 h dark; 80 jumol m—2 s~ 1).

Nicotiana attenuata Torr. ex S. Watson seeds of the 31st
generation of an inbred accession originally collected from
southwestern Utah were used for all experiments mentioned for
this species. Seeds were germinated after surface sterilization
and treatment with liquid smoke (1:50 dilution; House of
Herbs, Passaic, NY, United States) and 1 mM of gibberellic
acid (GA3; Duchefa-Biochemie, The Netherlands) on agar plates
containing Gamborgs B5 medium as previously described in

Kriigel et al. (2002). Seeds were kept in a growth chamber under
a day/night cycle of 16 h (26-28°C)/8 h (24-26°C).

Growth of Fungi and Spore Collection

Based on our previous screen for plant growth-promoting fungi
in a field station in India, the new Trichoderma strain was
selected for detailed characterization. It was isolated from the
leaves of Leucas aspera (Wild.) Link (family: Lamiaceae), a
widely distributed medicinal plant reported for its antifungal,
antioxidant, antimicrobial and cytotoxic activities (Prajapati
etal,, 2010; Rajani et al., 2020). The Trichoderma strain was grown
on Petri dishes with Kaefer medium (KM) or Potato-Dextrose-
Agar (PDA) medium, pH 6.5, at 23°C in the dark (Bains and
Tewari, 1987; Hill and Kafer, 2001). Alternaria brassicicola was
grown on Potato-Dextrose-Agar (PDA) medium, pH 6.5, 23°C
in the dark (Bains and Tewari, 1987). We did not observe any
difference of the fungal performance on the two media. Two
additional pathogens, Fusarium brachygibbosum and Alternaria
spp. isolate Utah 10, native to the natural habitat of N. attenuata
isolated in a previous study (Luu et al., 2015), were grown on PDA
medium at 26°C in the dark.

For spore collection, sterilized 0.01% Tween 20 solution was
poured onto plates with fungi which were grown for less than 2
weeks. Spores were scratched from the agar surface and dispersed
in 0.01% Tween 20. The resulting spore suspension was filtered
through two layers of nylon membrane (75 pm pore size, Sefar
AG, Switzerland), pelleted and washed with sterile distilled water.
The A. brassicicola spore concentration was determined in a
hemocytometer, while the Trichoderma spore concentration was
determined by O.D.gpp nm measurements using a spectrometer
(BioSpectrometer® basic, Eppendorf, Germany).

For co-cultivation experiments with N. attenuata, the
Trichoderma strain was cultivated on PDA plates. Spores of 7-
14 day-old cultures were dislodged from the surface with sterile
distilled water containing 0.01% Triton X-100. The resulting
solution was diluted with distilled water to an O.D.s00 nm
of 0.250-0.350.

Co-cultivation of A. thaliana and

N. attenuata With Trichoderma
Co-cultivation of A. thaliana and fungi was performed according
to Johnson et al. (2011) with modifications. A plug (5 mm
diameter) from a KM plate containing the fungus or a control
plug without the fungus was put on a fresh plate with solid plant
nutrient medium (PNM), which contained a layer of a nylon
membrane (pore size 75 jum) on the agar surface. The plates were
incubated at 23°C for 7 days. Unless specified, four 10 day-old
A. thaliana seedlings of equal size were transferred to the plates.
They were incubated at 22°C under long day conditions (16 h
light/8 h dark; 80 pmol m=2 s™1).

For co-cultivation of A. thaliana with Trichoderma on soil,
1 kg of soil was suspended in 5 L of distilled water overnight.
The liquid was removed by filtration and the soil was autoclaved
twice. 200 g of the soil was transferred to magenta boxes for co-
cultivation assays. The soil was inoculated with a 5 mm plug of
KM medium with or without Trichoderma 3 cm below the soil
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surface in the center of the box. 10 day-old Arabidopsis seedlings
were transferred to the soil, and the boxes were kept at 22°C
under long day conditions (16 h light/8 h dark; 80 wmol m~2
s1) for 4 weeks.

Co-cultivation of N. attenuata with Trichoderma was
performed in Petri dishes and on soil. For experiments in
Petri dishes, sterilized seeds treated with liquid smoke (1:50
dilution; House of Herbs, Passaic, NY, United States) and
GA (1 mM GAj3; Duchefa-Biochemie, The Netherlands) were
incubated for 1 h with a highly diluted spore and hyphae solution
before transfer to GB5 medium (see Santhanam et al., 2019
for experimental details). In a second set-up, liquid smoke-and
GA-treated seeds were germinated on GB5 medium for 7 days
before they were transferred in a circle with 10 seedlings to a
new plate. Immediately after transfer roots either received 10
WL sterile distilled water or the same amount of spore solution
(O.D.600 nm = 0.2653). One day later an Agar plug of Alternaria
spp. Utah 10 was placed in the middle of the plate. Inoculated
seedlings were kept at 26°C and 14 h light and 10 h dark cycle for
16 days.

For pot experiments on soil, Trichoderma treated seedlings
and controls were transferred to pots and cultivated in a Snijders
Chamber with a 16 h light/8 h dark cycle at 65% relative humidity.

To study the effect of Trichoderma strain on arbuscular
mycorrhizal fungi (AMF), N. attenuata seedlings were transferred
to Teku pots with sand 10 days after germination, and
transferred to 10% of the commercial inoculum (BiomycVital,
which contains AMF spores and tiny pieces of roots/hyphae in
expanded clay)' after another 12 days. Upon transfer, half of
the plants received a Trichoderma spore solution, while control
plants received the same amount of distilled water. Plants were
watered with hydroponics solution containing 0.05 mM P. Roots
were collected for further analysis 8 weeks after transfer.

Nucleic Acid Isolation, Primers, and PCR

and Sequencing

Arabidopsis root and fungal tissue were ground in liquid nitrogen,
and DNA extraction was performed according to Doyle (1990).
RNA from AMF-colonized N. attenuata roots was extracted
with the LiCl method according to Kistner and Matamoros
(2005). RNA samples were treated with DNAse removal
kit (Ambion, Thermo Fisher Scientific, Germany) according
to the manufacturer’s instructions and reverse transcribed
with Superscript II (Invitrogen, Thermo Fisher Scientific,
Germany) and Oligo-dT.

The primer pairs for amplifying the TEFI (translation
elongation factor 1-alpha) and RPB2 (RNA polymerase
II subunit 2) genes from Trichoderma are: TEF1-F: 5'-
CATCGAGAAGTTCGAGAAGG-3; TEF1-R: 5'-AACTTGCAG
GCAATGTGG-3; RPB2-F: 5-TGGGGWGAYCARAARAAGG-
3’; RPB2-R: 5-CATRATGACSGAATCTTCCTGGT-3'. Each
20 pL PCR reaction contains 2 pL of 10x DreamTaq Buffer
(Thermo Fisher Scientific, Germany), 0.2 mM dNTP, 1.0 uM
forward/reverse primer, 100 ng genomic DNA template and
1U of DreamTaq DNA Polymerase (Thermo Fisher Scientific,

Lwww.biomyc.de

Germany). The reaction was performed in a thermal cycler
(Applied Biosystems SimpliAmp Thermal Cycler, Thermo
Fischer Scientific, Germany). The initial denaturation step was
set at 95°C for 3 min, followed by 30 cycles of denaturation at
95°C for 30 s, annealing at 55°C (TEFI) or 62°C (RPB2) for
30 s, and extension at 72°C for 30 s. The final extension step
was set at 72°C for 10 min. The PCR products from at least
two independent PCR runs were purified by NucleoSpin Gel
and PCR Clean-up kit (Macherey-Nagel, Germany). Purified
PCR products were sent to Eurofins Genomics for Sanger
sequencing. Consensus sequence of TEFI and RPB2 was
deposited to Genbank with accession numbers MT591352 and
MT602550, respectively.

To quantify the colonization of Trichoderma under various
salt concentrations, Trichoderma TEFI and A. thaliana RPS
(AT1G34030) were detected by qPCR with the following
primers: TEF-qF: 5-TCAAGTCCGTTGAGATGCAC-3'; TEF-
qR: 5-CGTTCTTGACGTTGAAACCA-3’; RPS-qF: 5- GT
CTCCAATGCCCTTGACAT-3'; RPS-qR: 5'-
TCTTTCCTCTGCGACCAGTT-3'.

For qPCR analysis of AMF colonization of N. attenuata
roots, qPCR reactions were performed on Mx3005P qPCR
system (Stratagene, Santa Clara, CA, United States) with Takyon
Sybr Green No ROX kit (Eurogentec, Belgium). Primers for
NaRAM]I, NaPT4, and Rhizophagus irregularis tubulin are
from Wang et al. (2018a). Primers for NaEFI are from
Wang et al. (2018b). Primers for RPB2 of Trichoderma are:
RPB2-qF: 5-AGACGTCCATGATCTGCATGAC-3’; RPB2-qR:
5-TGTCTTGGTCTTGAGTCGCTTG-3

The genes for A. thaliana Ubiquitin 5, N. attenuata
Elongation Factor 1 alpha (NaEF1, Wang et al, 2018b)
and A. brassicicola Cutinase 1 were used to monitor
A. brassicicola infection in root tissue. The primer pairs for gPCR
analysis are: AtUBQ5-qF: 5-GACGCTTCATCTCGTCC-3';
AtUBQ5-qR:  5-GTAAACGTAGGTGAGTCCA-3’; AbCUT1-
gF:  5-GACCGAGGAAGCTCAGATGC-3';  AbCUTI-qR:
5'-GCCTGGGATCTTGGAATGC-3'.

Multilocus Phylogenetic Analysis

The nucleotide sequences of TEFI and RPB2 from 55
Trichoderma species and an outgroup species, Nectria
eustromatica, were retrieved from the NCBI Nucleotide
public database. The TEFI and RPB2 sequences of the new
Trichoderma strain were obtained from the PCR products.
TEFI and RPB2 genes from the same species were concatenated
for combined analysis. In total, 56 concatenated sequences
were subjected to alignment using MAFFT v7 online at
https://maftt.cbrc.jp/alignment/server (Katoh et al., 2019), with
G-INS-i parameters and a scoring matrix of “IPAM/k = 2” for
nucleotide sequences. The resulting alignment was inspected
and selected for conserved blocks using Gblocks version 0.91b
(Castresana, 2000).

Maximum likelihood analysis was conducted using RaxML-
NG v.0.9.0 through web service at https://raxml-ng.vital-it.ch
(Kozlov et al, 2019). Using the GTR+FO+G4m model,
2000 distinct ML tree were searched and bootstrapped
with 100 replicates. For maximum parsimony analysis,
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PAUP 4.0al166 was utilized (Swofford, 2002). Heuristic
search of 100 replicates was performed with random
addition of sequence, and tree bisection-reconnection
(TBR) as the branch-swapping algorithm (steepest decent
and MulTrees option not in effect). All characters were
weighted equally, and gaps were treated as missing
character. Bootstrap of 1,000 replicates was undertaken with
Maxtrees set as 5,000.

The Bayesian analysis was conducted using MrBayes v3.2.7a
(Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck,
2003). The evolutionary model was set to the general time-
reversible model (GTR; Tavare, 1986), and the nucleotide
variation rate set to inverse gamma distribution (Yang, 1993).
Two simultaneous and independent Markov chain Monte Carlo
(mcmc) analyses was run to generate 1 million generations each,
while they were sampled for every 10 generations to determine
the posterior probability (Geyer, 1991). From the resulting
100,000 sampled trees, the first 25% of them were discarded,
and the remaining 75,000 trees were summarized to produce
the consensus tree.

The Maximum likelihood boostrap proportions (MLBP),
Maximum parsimony bootstrap proportions (MPBP), as well
as the Bayesian inference posterior probability (BIPP) from
each analysis were combined to the phylogenetic tree from the
RAXML analysis using TreeGraph2.15.0-887 beta (Stover and
Miiller, 2010). The final tree was created with FigTree v1.4.4
(Rambaut, 2018). The accession numbers of the individual genes
are provided in Supplementary Table 1.

Histological Staining and Microscopy

Roots of A. thaliana co-cultivated with the Trichoderma strain
for 2 or 7 days were collected and immersed in Wheat
Germ Agglutinin, Alexa Fluor™ 488 Conjugate (Thermo Fisher
Scientific, Germany) for 10 min in dark. Immersed samples
were taken out from the staining solution and placed on a
glass slide. Water was applied to the slide to wash away excess
staining solution and the slide was covered with a cover slip for
microscopic inspection with Axio Imager.M2 (Zeiss Microscopy
GmbH, Germany). The bright field and fluorescent images
were recorded with a monochromatic camera Axiocam 503
mono (Zeiss Microscopy GmbH, Germany). Digital images were
processed with the ZEN software (Zeiss Microscopy GmbH,
Germany).

For confocal imaging of root colonization, A. thaliana
roots co-cultivated with Trichoderma for 2 days were
stained with Wheat Germ Agglutinin, Alexa Fluor™488
Conjugate and RH414 [N-(3-Triethylammoniumpropyl)-4-(4-
(4-(Diethylamino)phenyl)Butadienyl)Pyridinium  Dibromide;
Thermo Fischer Scientific, Germany] with the method described
above. Samples were imaged using an LSM 880 microscope
(Zeiss Microscopy GmbH, Germany) with the 488 nm laser line
of an argon multiline laser (11.5 mW). Images were taken with a
40x objective (Plan-Apochromat 40x/0.8). Lambda stacks were
created using the 32 channel GaAsP detector followed by Linear
Unmixing with the ZEN software. Z-stacks were taken from
specific areas of the sample and Maximum Intensity Projections
were produced with the ZEN software.

Phytohormone Analyses by LC-MS/MS

Sixteen seedlings from control and co-cultured plates were
harvested and separated into root and shoot samples. Mycelium
of the Trichoderma strain grown on KM plates was harvested for
phytohormone analysis.

Fifty to one hundred thirty milligrams of fresh tissue were
extracted and homogenized in 1.5 mL methanol containing 60 ng
D4-SA (Santa Cruz Biotechnology, United States), 60 ng D6-JA
(HPC Standards GmbH, Germany), 60 ng D6-ABA (Santa Cruz
Biotechnology, United States), 12 ng D6-JA-Ile (HPC Standards
GmbH), and D5-indole-acetic acid (D5-IAA, OlChemIm s.r.o.,
Olomouc, Czech Republic) as internal standards. Samples were
agitated on a horizontal shaker at room temperature for 10 min.
The homogenate was mixed for 30 min and centrifuged at
13,000 rpm for 20 min at 4°C and the supernatant was collected.
The homogenate was re-extracted with 500 L methanol, mixed
and centrifuged and the supernatants were pooled. The combined
extracts were evaporated under reduced pressure at 30°C and
dissolved in 500 LL methanol.

Phytohormone analysis was performed by LC-MS/MS as in
Heyer et al. (2018) on an Agilent 1260 series HPLC system
(Agilent Technologies) with the modification that a tandem mass
spectrometer QTRAP 6500 (SCIEX, Darmstadt, Germany) was
used. Since we observed that both the D6-labeled JA and D6-
labeled JA-Ile standards (HPC Standards GmbH, Cunnersdorf,
Germany) contained 40% of the corresponding D5-labeled
compounds, the sum of the peak areas of the D5- and D6-
compounds was used for quantification. Details of the instrument
parameters and response factors for quantification can be found
in Supplementary Table 2.

Indole-acetic acid was quantified using the same LC-MS/MS
system with the same chromatographic conditions but with
positive mode ionization with an ion spray voltage at 5,500 eV.
Multiple reaction monitoring (MRM) was used to monitor
analyte parent ion — product ion fragmentations as follows: m/z
176 —130 [collision energy (CE) 19 V; declustering potential
(DP) 31 V] for indole-acetic acid (IAA); m/z 181 —133 + m/z
181 — 134 + m/z 181 — 135 (CE 19 V; DP 31 V) for D5-indole-
acetic acid.

Quantification of Mycelial Growth, AMF
Colonization, and 11-Carboxyblumenol

Levels

Plates with mycelia were scanned with an Epson scanner
(Perfection V600 Photo, Epson, Germany), and the files imported
into Image] (Schindelin et al,, 2012). Mycelial coverage on
each plate was delineated using a free-hand selection tool and
measured with the built-in “Measure” function.

AMF colonization was determined by the “magnified
intersections method” described in detail by McGonigle et al.
(1990). In brief, roots were cut in about 1 cm pieces and we
counted the fungal structures of 150 intersections per sample
after staining with Trypan Blue.

For determination of AMF colonization marker 11-
carboxyblumenol, three leaf disks per AMF inoculated of
the first and second stem leaf were harvested 6 and 8 weeks after

Frontiers in Plant Science | www.frontiersin.org

December 2020 | Volume 11 | Article 573670


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Tseng et al.

Trichoderma Plant Beneficial Interaction

AMEF inoculation. 11-Carboxyblumenol levels were determined
as markers of arbuscule colonization and quantified following
the protocol of Wang et al. (2018a).

Statistical Tests

Statistical tests were performed using R studio version 1.1.463
with R version 3.4.4. Figures were plotted using Python 3.7.4 and
arranged with LibreOffice Draw 5.1.6.2.

RESULTS

Morphological and Phylogenetic

Analysis of the New Trichoderma Strain
The Trichoderma strain was isolated from leaves of Leucas aspera
(Wild.) Link. We selected this strain for further analysis because
we observed in preliminary field experiments that it promotes
growth of several crop species. Its morphology shows typical
characteristics of Trichoderma species of the harzianum clade.
On KM plates, the hyphae cover the entire Petri dish from a
single plug (5 mm in diameter) in 3-4 days (Supplementary
Figure 1A). During the first 3 days after transfer to a new plate,
the hyphae extended and formed conidiophores at the tip of
hyphal branches. The conidia grew, replicated, and aggregated
at the tip of a conidiophore (Supplementary Figure 1B).
After 7 days, mature conidia developed as sphere-like structure
composed of numerous individual conidia (Supplementary
Figure 1C). The hyphal cell shrank after the conidia were
fully developed. This allowed them to detach from the
hyphae (Supplementary Figure 1D). The fully matured conidia
displayed a green color (Supplementary Figure 1E).
Phylogenetic analysis based on Maximum likelihood,
Maximum Parsimony and Bayesian Inference of phylogeny
uncovered that the isolated Trichoderma strain belongs to the
harzianum clade (Figure 1), closely related to T. confertum TC62
and T. confertum TC139, two strains recently isolated from
the soil 2,000 m above sea level in Tibet (Chen and Zhuang,
2017). The multilocus sequence analysis also indicated that the
strain is closely related to T. pleuroti and T. pleuroticola, but less
compared to T. confertum. In summary, according to the three
different analysis methods, the isolated fungus is most probably
anew Trichoderma strain closely related to T. confertum.

The New Trichoderma Strain Colonizes
Arabidopsis and Nicotiana Roots and

Promotes Plant Growth

To characterize the endophytic lifestyle of the new strain, and
to check which organ of the plant can be colonized by the
fungus, it was co-cultivated with the model species, Arabidopsis
thaliana. Two days after co-cultivation, hyphae were already
detectable on the surface of the roots (Figures 2A,C). Light
and confocal microscopy showed that hyphae also invaded into
the root hair (Figures 2B,D-G and Supplementary Movie 1).
Seven days after co-cultivation, the Arabidopsis roots were highly
colonized, and conidiophores were found at the tip of the
root hair, although not every root hair contained hyphae or

conidiophore (Figures 2H-K). Close inspections revealed that
the conidiophores derived from the hyphae in the root hairs.
Under these co-cultivation conditions without stress, the aerial
parts of the plant were not colonized.

When Arabidopsis plants were co-cultivated on soil in the
greenhouse, the germination rate and the performance of the
young seedlings were not affected by the fungus. However, we
observed a strong initial growth-promoting effect of the fungus
on 4-week old Arabidopsis plants, since colonized plants were
almost twice as large as the uncolonized controls (Figures 3A,B).
Root colonization by the Trichoderma strain was confirmed
by microscopy (Supplementary Figure 2). During later stages,
the growth difference between colonized and uncolonized
plants became less and during flowering time, the growth-
stimulating effect of the fungus was barely visible. The number
and size of seeds was not significantly different for plants
grown with or without the fungus (data not shown). This
indicates that the fungus promotes plant growth during early
stages of development.

Growth promotion was also observed for the model plant
N. attenuata (cf. also below). We observed the same colonization
efficiencies as described above for Arabidopsis seedlings. Also, the
germination rates were similar for inoculated and non-inoculated
seeds, and all seedlings were healthy. Similar to Arabidopsis,
we observed a stimulatory effect of the fungus on N. attenuata
growth after 4 weeks on soil, when both the rosette diameter
and root biomass were larger (Figures 3C,D). Comparable to
Arabidopsis, the growth-stimulating effect disappeared during
later stages of development. However, we observed a clear
difference in the response of the two hosts on agar plates during
early seedling’s development, where root and shoot development
can be monitored in more details. With fungal inoculation, the
shoots and roots of 12-day-old Arabidopsis seedlings were bigger
in the presence of the fungus (see Figure 5), while 12-day-old
colonized N. attenuata had significantly shorter shoots and roots
than the uncolonized controls (Figure 3E). We also observed
more root hairs beneath the root-shoot junction, where roots are
in contact with the fungus (Figure 3F). These effects were not
observed for the roots of Arabidopsis seedlings. In conclusion,
the fungus has different effects on the early development of the
seedlings on agar medium.

The New Trichoderma Strain Is Tolerant
Against 100 mM Salt and Mild Salt
Conditions Promote the Interaction With
the Host on Synthetic Medium

Plant growth promoting fungi and bacteria often also improve
the stress tolerance of plants (Qin et al., 2016). Therefore,
we first tested if the fungus itself is tolerant against salt and
mannitol (osmotic) stress. Fungal growth was not altered on
100 mM NaCl compared to control plates without salt. At
300 mM NaCl, the mycelial growth was reduced by about
50%. At 1 M NaCl, only slowly growing mycelia could be
detected after 10 days, and no growth was detectable on
3 M NaCl (Figure 4A and Supplementary Figures 3A-G).
Increasing mannitol concentrations did not inhibit mycelial
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FIGURE 2 | Root colonization of Arabidopsis thaliana by Trichoderma. (A-D) Co-cultivation for 2 days. (A,B) Bright field; (C,D) fluorescence of fungal stain.

(E) Confocal images of hyphae inside root hair observed 2 days after co-cultivation. (F) Magnified view of the region enclosed by the small box in (E).

(G) Fluorescence signal indicating hyphae (green) and plant cell plasma membrane (red) in (F). (H-K) Co-cultivation for 7 days. (H,l) Bright field; (J,K) fluorescence of
fungal stain. Colonized root tissues were stained with WGA Alexa Fluor™ 488 conjugate to detect the presence of the fungus, and RH414 was used to visualize the
plant plasma membrane. The image shown for the confocal microscopy was chosen from three individual roots of three biological replicates.
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FIGURE 3 | Plant growth performance is influenced by Trichoderma colonization. (A) Fresh and dry weights of A. thaliana grown on soil with or without Trichoderma
after 4 weeks. Error bars represent SEs from three independent biological replicates, each with four seedlings. Statistical significance was determined by Welch Two
Sample t-test (*P < 0.05). (B) Growth promotion on A. thaliana on soil after 4 weeks. (C,D) Rosette diameter (C) and root fresh weight (D) of N. attenuata inoculated
with or without Trichoderma on soil after 4 weeks. Error bars represent SDs from 39 independent biological replicates for shoots and 18 replicates for roots. Statistical
significance was determined by Welch Two Sample t-test (**P < 0.01; ***P < 0.001). (E) Shoot and root lengths of N. attenuata 12 days after co-cultivation with
Trichoderma (spore solution O.D.gog nm = 0.0135) or without Trichoderma on Petri dishes. Error bars represent SDs from 10 biological replicates. Statistical
significance was determined by Welch Two Sample t-test (***P < 0.001). (F) Microscopy of N. attenuata roots 12 days on Petri dishes with or without Trichoderma.
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Temperature

growth, although the production of conidia was reduced on
media with >400 mM mannitol (Figure 4B and Supplementary
Figures 3H-K). Also high temperature strongly impaired growth
of the fungus (Figure 4C and Supplementary Figures 3L-N).
The ability of the fungus to survive 1 M NaCl intrigued us
to find out if salt influences the growth stimulating effect of
its host. Unlike on soil, when seedlings were grown on solid
PNM medium without addition of NaCl for 5 days, we observed
only a small increase in growth and biomass production of the
Arabidopsis seedlings in the presence of the fungus. However,
application of 50 mM NaCl to the medium strongly promoted
growth and biomass production (Figures 5A,B; supported by
post-hoc analysis shown in Supplementary Table 3). This was
accompanied by a stronger root colonization (Figure 5C). In
particular, the lateral roots of the host were massively colonized
and the fungus produced large amounts of conidiospores,
compared to those on medium without NaCl. On 100 mM
and higher NaCl concentrations, the growth of the uncolonized
plants was gradually reduced, and growth of Trichoderma-
colonized roots was not stimulated any more (Figure 5A and
Supplementary Figure 4). Closer inspections uncovered that
roots were even more colonized, and the hyphae also appeared on
the surface of the areal parts. They were not only detectable at and
around the hypocotyl (Supplementary Figure 4) but also on the
leaf surface (data not shown). In summary, apparently, the fungus
colonizes preferentially the roots. Low NaCl concentrations
promoted root colonization and stimulated plant growth, while
higher salt concentrations forced the fungus to invade the aerial
parts which was associated with a loss of the benefits to the host.

The New Trichoderma Strain Inhibits
Growth of Alternaria and Protects
Arabidopsis and Nicotiana Against

Alternaria Infection

One of the prominent traits of Trichoderma species in the
harzianum clade is their potential to act as bio-control agent.
After 8 days of co-cultivation of Alternaria brassicicola with

the Trichoderma strain on PDA plates, the mycelial coverage
of A. brassicicola was reduced by 73% and Trichoderma hyphae
grew on top of the A. brassicicola mycelial lawn (Figures 6A-
C). To rule out that faster growth of Trichoderma restricts
A. brassicicola growth, Trichoderma was added to an agar
plate with a 7-day old A. brassicicola culture (Figure 6D).
After additional 7 days of co-cultivation, Trichoderma
hyphae and spores were again observed on top of the
A. brassicicola mycelial lawn (Figure 6E). This supports
active predation of A. brassicicola by the new Trichoderma strain
(Druzhinina et al., 2018).

We further tested Fusarium brachygibbosum and Alternaria
spp. Utah isolate 10, two fungal species previously characterized
as a native pathogen for N. attenuta (Luu et al, 2015), and
co-cultivated them with Trichoderma. Growth of Trichoderma
was much faster than that of the two other species, but
F. brachygibbosum clearly stopped further growth of Trichoderma
when hyphae of the two fungi met, while Alternaria spp. was
overgrown by Trichoderma after 3!/2 weeks of co-cultivation
(Figures 6F,G).

To test if the Trichoderma strain also protects plants from
Alternaria infection, Arabidopsis seedlings were first exposed to
A. brassicicola (A) or Trichoderma (T) or were mock-treated
(C) and then transferred to plates with either A. brassicicola
or Trichoderma for additional 7 days. As expected, the highest
amount of A. brassicicola DNA was detected in seedlings
which were exposed to A. brassicicola only (Figure 7A). Roots
which were exposed to Trichoderma either before or after
A. brassicicola treatment (A-T) contained less DNA of the fungal
pathogen. Furthermore, the seedlings were better protected
against A. brassicicola when they were already colonized
by Trichoderma before pathogen infection (Figure 7A and
Supplementary Figure 5A). Similar results were observed for
N. attenuata and Alternaria (Supplementary Figure 5B). This
demonstrates that the Trichoderma strain restricts growth of the
pathogen in roots of its host plant.

To investigate whether Trichoderma also protects the leaves
against A. brassicicola infection, 500 colony forming units (CFU)
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FIGURE 5 | Mild salt condition optimizes fungal colonization and plant growth performance on synthetic medium. (A) Fresh and dry weights of A. thaliana
co-cultivated with or without Trichoderma on PNM medium with 0-150 mM NaCl for 5 days. Error bars represent SEs from three independent biological replicates,
each with four seedlings. Statistical significance was determined by 2-Way ANOVA. Post-hoc analysis between all groups was further carried out by Tukey HSD test
with P < 0.05, and is shown in Supplementary Table 3. Asterisks indicate significant difference in fresh/dry weight of seedlings grown on 50 mM NaCl with or
without Trichoderma. (B) Growth phenotype of A. thaliana on PNM medium with 50 mM NaCl 5 days after co-cultivation with or without Trichoderma.

(C) Quantification of Trichoderma root colonization on A. thaliana on PNM medium with 0-150 mM NaCl by qPCR. TrTEF1: Trichoderma TEF1; RPS: A. thaliana
ribosomal protein S13/518 family. Error bars represent SEs from three independent biological replicates, each with four seedlings. Statistical significance was
determined by Tukey’s HSD test with P < 0.05, and is indicated by different lower-case letters. Red color represents average background value referred from
samples without Trichoderma.

of an A. brassicicola spore suspension were applied to the leaves  Mycorrhiza Formation Is Not Affected by
of Arabidopsis seedlings which were either co-cultivated with the the New Trichoderma Strain in
symbiont or mock-treated for 7 days. Four days later, the necrotic N attenuata

zone on the leaves of co-cultivated plants was significantly smaller  pociiction of Alternaria growth by the new Trichoderma

compared to the non-colonized controls (Figure 7B). Taken gtrain indicated a putative use for bioprotection. However,
together, Trichoderma restricts spread of Alternaria in both  agricultural application requires that other beneficial fungi, such
roots and shoots. as arbuscular mycorrhizal fungi (AMF) are not affected by the
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FIGURE 6 | Trichoderma inhibits growth of Alternaria brassicicola. (A,B) A plug of A. brassicicola was applied to the upper side of the PDA plate. A plug of KM agar
(A) or the Trichoderma strain (B) was put to the lower side of the plate before co-cultivation for 8 days. (C) Quantification of A. brassicicola mycelial coverage from
(A,B). Error bars represent SDs from three independent biological replicates. Statistical significance was determined by Welch Two Sample t-test (**P < 0.01).

(D) An agar plug with Trichoderma was placed on a PDA plate which contained 7-day old A. brassicicola culture. (E) Seven days after the plug with Trichoderma was
placed in (D). (F,G) Co-cultivation of Trichoderma with the native N. attenuata pathogens Fusarium brachygibbosum (F) or Alternaria spp. strain Utah 10 (G).
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Trichoderma strain. As Arabidopsis is a non-mycorrhizal species,
we used the well-established N. attenuata system (Groten et al.,
2015). N. attenuata plants grown on soil in the greenhouse
were simultaneously inoculated with AMF and Trichoderma.
Microscopic observations of the roots and qPCR analyses
with fungus-specific markers clearly indicate that AMF and
Trichoderma colonize the roots and propagate, without inhibiting
each other (Figures 8A,B). In addition, the amounts of 11-
carboxyblumenol, a marker for AMF root colonization (Wang
etal., 2018a), did not differ between Trichoderma-inoculated and
non-inoculated samples (Figure 8C). 11-Carboxyblumenol levels
were also similar when plants were pre-inoculated with AMF and
after 6 weeks co-cultured with Trichoderma (data not shown).
These results suggest that AMF colonization is not affected by the
new Trichoderma strain in N. attenuata.

The Trichoderma Strain Alters
Phytohormone Levels in Arabidopsis

Roots and Shoots

Beneficial plant-microbe interactions often result in altered
phytohormone levels, which may lead to better fitness of the host
upon pathogen attack but can also influence root colonization

due to an altered plant immune system (Jacobs et al., 2011).
In mycelial cultures, we detected only trace amounts of auxin
(indole-acetic acid, IAA) and SA (Figure 9A). However, SA
in Trichoderma-colonized seedlings were significantly reduced
in roots and increased in shoots compared to controls
(Figure 9B). Metabolites related to the biosynthesis and
degradation of JA as well as ABA and IAA also showed some
minor changes after Trichoderma colonization, but compared
to SA, these changes were rather weak (Figures 9C,D and
Supplementary Figure 6). Overall, it appears that the fungus
does not produce high hormone levels itself influencing
plant performance, but the fungus may activate SA-dependent
resistance responses in the plant.

DISCUSSION

In this study, a new endophytic Trichoderma strain is described.
It belongs to the harzianum clade, closely related to T. confertum,
T. pleuroti and T. pleuroticola. It survives under salt and osmotic
stress, and possesses a strong capability to reduce A. brassicicola
growth. The hyphae colonize the root surface and are found
in root hairs of A. thaliana. Infection assays showed reduced
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replicates, each with 6-9 seedlings. Statistical significance was determined by
Tukey’s HSD test with P < 0.05, and is indicated by different lower-case
letters. (B) Necrosis area on leaflets infected by A. brassicicola. Error bars
represent SEs from 35 independent biological replicates. Statistical
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FIGURE 8 | Continued

Reduced Arbuscular Mycorrhization 1; Tubulin, Tubulin gene of R. irregularis;
Trichoderma, RPB2 of Trichoderma. Relative expression was normalized to

N. attenuata elongation factor 1-a. Error bars represent SEs from three to five
independent biological replicates. Statistical significance was determined by
Welch Two Sample t-test between control and co-culture treatments, and was
not significantly different. (C) 11-Carboxyblumenol level in N. attenuata roots 8
weeks after inoculation of AMF, with or without Trichoderma. Error bars
represent SEs from five to six independent biological replicates. Statistical
significance was determined by Welch Two Sample t-test between control
and co-culture treatments; no significant differences were found.

A. brassicicola spread in roots and shoots of Trichoderma-
colonized Arabidopsis plants, while mycorrhiza formation is not
affected in N. attenuata. These observations are important for
potential application of the endophyte as bio-control agent,
and for the development of more effective and versatile bio-
control agents.

Numerous Trichoderma species have been reported to
stimulate plant growth (Contreras-Cornejo et al., 2009; Gonzalez-
Pérez et al,, 2018), and T. atroviride and T. virens have been
shown to promote root hair development (Contreras-Cornejo
et al., 2015; Gonzalez-Pérez et al., 2018). Our results highlight
the importance of the growth conditions for the investigations
of the symbiotic interactions with the new Trichoderma strain.
Most importantly, as long as the symbionts grow in soil,
we observe growth promotion during early phases of the
development in the two tested host species. However, the
growth stimulating effect of the fungus was barely or not
detectable at all on agar plates, as long as no NaCl is added.
A possible scenario could be that the fungus requires low
concentrations of NaCl for growth and thus root colonization.
If the salt concentration in the medium is too high, the fungus
helps the plant by stimulating osmolyte production and Na™
elimination through root exudates (Contreras-Cornejo et al,
2014). We demonstrate that the fungus also tries to escape
from the stress by growing on the plant material, since the
roots become more colonized with increased salt concentrations.
Ultimately, hyphae can also be detected in the aerial parts
of the plant, which occurs only when the stress around the
roots is high. We assume that the extensive fungal propagation
triggers the plant defense machinery to restrict fungal growth
and consequently may reduce the host’s investment into growth.
While our experiment focusses on the role of NaCl for the
symbiosis, there are apparently other growth-stimulating factors
in soil. A comparative analysis of the different growth conditions
established in this study may help to elucidate critical parameters
with agricultural relevance.

Root Colonization Alters Root

Architecture

The new Trichoderma strain not only colonizes the root surface,
but also penetrates into the root epidermis and resides in
the root hairs (Figures 2E-G and Supplementary Movie 1).
To the best of our knowledge, this is a new colonization
strategy for Trichoderma species and demonstrates that the
fungus can also live as endophyte. This finding is further

supported by the fact that the fungus was originally isolated
from the leaf cells of a tree. Although Trichoderma species
have been often reported to colonize plant roots (Lopez-Bucio
et al., 2015; Ruano-Rosa et al., 2016), the invasion of hyphae
into root cells might indicate a closer symbiosis compared
to other Trichoderma strains and species. Reprogramming of
root development, inhibition of root growth and stimulating
root branching is a typical feature of AMF (Bonfante and
Genre, 2010), but also observed for Trichoderma-colonized
Arabidopsis roots (e.g., Contreras-Cornejo et al., 2015). Similar
to AMF associations, the endophyte might contribute to nutrient
and water uptake and allow the plants to reduce their root
sizes. Further studies are needed to support this hypothesis.
Additionally, an increase in the number of root hairs may lead to
a larger surface area for fungal attachment. Its close phylogenetic
relationship to Trichoderma species which grow preferentially
on mushrooms also demonstrates that minor changes in the
Trichoderma genomes allow major changes, enlargements or
alterations in their host range or preference.

The New Trichoderma Strain Has
Potential as New Bio-Control Agent

The infection assays with A. brassicicola show effective protection
of Arabidopsis roots and shoots by Trichoderma. Interestingly,
the beneficial fungus also restricted growth of A. brassicicola
in the roots, when the roots were already infected by the
pathogen (Figure 7A, A-T vs. C-T). This is consistent with
the plate experiments in which Trichoderma actively predated
A. brassicicola. Propagation of the pathogen in the leaves is
also restricted when the roots are colonized by Trichoderma.
Different local and systemic plant immune responses against
various pathogens in Alternaria-colonized hosts have been
reported, however, a general strategy for Trichoderma species
is not apparent (Busby et al, 2016; Rai and Agarkar, 2016).
Apparently, systemic signals travel from the roots to the leaves,
and this is reflected by elevated SA levels in the leaves of
Trichoderma-colonized seedlings even before they are exposed
to the pathogen (Figure 9B). The higher SA levels in the leaves
might indicate that the new Trichoderma strain has the ability
to induce SAR. The low or undetectable levels of the defense-
related hormones in the mycelium suggest that they are not
of fungal origin.

Another feature of this new strain is its ability to sustain
beneficial microbe interaction with plants. Although pathogen
progression in root tissue is hindered by the new Trichoderma
strain, the presence of the fungus does not interfere with AMF
colonization. Recently, Metwally and Al-Amri (2020) showed
an interactive role of Trichoderma viride and AMF on growth
and pigment content of onion plants, however, due to the
small number of AMF—Trichoderma-host plant combinations
that have been investigated so far, general conclusions on
those tripartite interactions are not possible (cf. Szczalba
et al., 2019). Those studies are important for a successful bio-
control agent, as Trichoderma species are also competitors of
beneficial microbes (Sood et al., 2020), which could impair plant
growth or yield.
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CONCLUSION

In conclusion, the new Trichoderma strain might be a useful
tool as bio-control agent, since it stimulates the plant immune
system against pathogen infection, but at the same time
does not interfere with other beneficial microbial interactions,
such as mycorrhizal formation. Its growth promoting ability
in soil provides additional benefit in agricultural application.
Furthermore, the experimental set-up allows us to address
further questions to understand the role of this fungus on
plant performance, especially why the fungus is successful in
promoting plant growth in soil but not on minimal medium,
and how it influences the balance between growth and stress
responses under different environmental conditions.
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