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Self-compatibility in Arabidopsis thaliana represents the relatively recent disruption of
ancestral obligate cross pollination, recognized as one of the prevalent evolutionary
pathways in flowering plants, as noted by Darwin. Our previous study found that
inversion of the male specificity gene (SP11/SCR) disrupted self-incompatibility, which
was restored by overexpressing the SCR with the reversed inversion. However, SCR in A.
thaliana has other mutations aside from the pivotal inversion, in both promoter and coding
regions, with probable effects on transcriptional regulation. To examine the functional
consequences of these mutations, we conducted reciprocal introductions of native
promoters and downstream sequences from orthologous loci of self-compatible A.
thaliana and self-incompatible A. halleri. Use of this inter-species pair enabled us to
expand the scope of the analysis to transcriptional regulation and deletion in the intron, in
addition to inversion in the native genomic background. Initial analysis revealed that A.
thaliana has a significantly lower basal expression level of SCR transcripts in the critical
reproductive stage compared to that of A. halleri, suggesting that the promoter was
attenuated in inducing transcription in A. thaliana. However, in reciprocal transgenic
experiments, this A. thaliana promoter was able to restore partial function if coupled with
the functional A. halleri coding sequence, despite extensive alterations due to the self-
compatible mode of reproduction in A. thaliana. This represents a synergistic effect of the
promoter and the inversion resulting in fixation of self-compatibility, primarily enforced by
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disruption of SCR. Our findings elucidate the functional and evolutionary context of the
historical transition in A. thaliana thus contributing to the understanding of the molecular
events leading to development of self-compatibility.
Keywords: Arabidopsis thaliana, artificial chimeric gene, evolutionary process, flower development, promoter
activity, self-compatibility, S-locus protein 11/S-locus cysteine rich protein gene
INTRODUCTION

While a variety of mechanisms to promote outcrossing for
diversification have evolved in angiosperms, selfing may
nevertheless be favored in terms of reproductive assurance and
inherent genetic transmission when these advantages outweigh a
reduction in fitness (Darwin, 1876; Charlesworth and Vekemans,
2005; Franklin-Tong, 2008). In this evolutionary process, the
switch from outcrossing to selfing mode is associated with the
loss of self-incompatibility (SI) in many plant lineages (Stebbins,
1974; Goodwillie et al., 2005). SI is defined as the inability of a
fertile hermaphrodite plant to produce zygotes after self-
pollination, consequently promoting outcrossing, and diverse
SI systems have evolved in angiosperms (de Nettancourt, 2001;
Watanabe et al., 2012). The molecular basis of SI has been
extensively studied in the family Brassicaceae, and it has been
found to be controlled by a single highly polymorphic locus, the
S-locus (Bateman, 1955; Watanabe et al., 2012), which comprises
the male and female SI specificity genes SP11 (S-locus protein
11)/SCR (S-locus cysteine rich protein) and SRK (S-locus
receptor kinase), respectively (Suzuki et al., 1999; Schopfer
et al., 1999; Takayama et al., 2000; Takasaki et al., 2000; Shiba
et al., 2001). SP11/SCR is a small cysteine-rich protein localized
in the pollen coat that acts as a ligand, and SRK is a
transmembrane serine/threonine receptor kinase on the stigma
epidermis that functions as a receptor for SP11/SCR. Their
physical interaction, in an allele-specific manner, initiates the
subsequent incompatible reaction to reject self pollen (Takayama
et al., 2001), through an as yet inadequately understood
downstream system.

The model plant Arabidopsis thaliana is a self-compatible,
predominantly selfing species of Brassicaceae, whereas its
ancestral state is thought to have been an obligate outcrosser
enforced by SI (Kusaba et al., 2001; Bechsgaard et al., 2006; Tang
et al., 2007; Shimizu et al., 2008) through haplotype-specific
interaction of SCR and SRK. Functional orthologues of SCR and
SRK are found in A. lyrata and A. halleri, SI congeners, as shown
by the successful recovery of SI in A. thaliana in heterologous
experiments with introduction of the orthologues (Nasrallah
et al., 2002; Nasrallah et al., 2004; Tsuchimatsu et al., 2010;
Fujii et al., 2020). Although such experiments provided the
insight that A. thaliana genomic and physiological background
is compatible with the orthologues in recovering SI, heterologous
experiments might not have captured the functional context of
nucleotide variations in SCR and/or SRK. For example, A. lyrata
SCR and SRK were of different haplotype origin (Nasrallah et al.,
2002; Nasrallah et al., 2004) and the transgenic SCR construct
was driven by the non-native anther-specific promoter (Tsuchimatsu
.org 2
et al., 2010), which might not align with the attempt to reverse the
evolutionary course that occurred in this locus inA. thaliana. Indeed,
even within A. thaliana the evolution of SI has been diverse with
different paths leading to disruption of SCR and/or SRK (Kusaba
et al., 2001; Sherman-Broyles et al., 2007; Shimizu et al., 2008;
Tsuchimatsu et al., 2017; Fujii et al., 2020).

In this study our aim is to understand the functional and
evolutionary contexts of the loss of SI in A. thaliana by
segregating the primary and secondary mutations. For this we
compared functional and disrupted SCRs between A. halleri and
A. thaliana, including their transcriptional regulation, from the
same haplotype origin and elucidated the historical transition in
A. thaliana.
MATERIALS AND METHODS

Plant Material
A. thaliana ecotype Oldenburg (Old-1) was obtained from the
Arabidopsis Biological Resource Center (ABRC; http://abrc.osu.
edu/). Old-1 plants were grown in a growth chamber (BIOTRON
LH-240S, NK system, Osaka, Japan) at 22°C under 8 h light/16 h
dark photoperiod for the vegetative stage and 16 h light/8 h dark
photoperiod for the reproductive stage. A. halleri Tada-mine
accession (W302) was originally collected in Japan and
developed by self-fertilization for five generations. W302 plants
were grown in a growth chamber at 22°C under 16 h light/8 h
dark photoperiod.

Pollination Assay
Flower buds of Old-1 and W302 were emasculated at
developmental stage 12 (Smyth et al., 1990) and incubated at
22°C on 1% agar medium until appropriate developmental
stages. Each emasculated pistil at developmental stages 12, 13,
14, and 15 of W302 was self-pollinated. In Old-1, each
emasculated pistil at developmental stages 12, 13, 14, and 15
was pollinated with pollen of W302 to test the female SI function
of Old-1. After fixation and staining with aniline blue solution,
pollen tubes were observed using fluorescence microscopy (Axio
Imager A2, Carl Zeiss, Jena, Germany) according to Nou et al.
(1991) and Watanabe et al. (1992).

Determination of Full Structure of SCR-A
Genomic DNA and mRNA were extracted from Old-1 and
W302 using Plant DNeasy and RNeasy kits (Qiagen, Hilden,
Germany). First-strand cDNAs of anther and stigma were
synthesized using a High Capacity RNA-to-cDNA Kit (Thermo
September 2020 | Volume 11 | Article 576140
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Fisher Scientific, Waltham, MA, USA). The promoter and gene
regions of SCR-A of Old-1 and W302 were amplified by genomic
PCR (all primer information is summarized in Supplementary
Table S1), subcloned into pCR2.1-TOPO vector (Thermo Fisher
Scientific) and sequenced by an Applied Biosystems 3130 Genetic
Analyzer (Thermo Fisher Scientific) according to Watanabe et al.
(1994). The 5′- and 3′-UTRs of SCR-A were determined by First
Choice RLM-RACE kit (Thermo Fisher Scientific), using anther
cDNA of W302 based on Kakita et al. (2007).
Quantification of mRNA Expression of
SCR-A and SRK-A
Expression levels of SCR-A and SRK-A in A. thaliana and A.
halleri were quantified by qRT-PCR, using anther and stigma
cDNAs of Old-1 and W302, respectively, by Step One Realtime
PCR System (Thermo Fisher Scientific) according to Osaka et al.
(2013). 18S rRNA was used as an internal control.
Transformation of A. thaliana
A 3,523-bp AhSCR-A fragment, consisting of 1,845-bp AhSCR
promoter and 1,678-bp AhSCR gene, was amplified by genomic
PCR and subcloned into pBI121 vector. Artificial chimeric SCR-
A constructs, with one of the three major mutations of AtSCR,
promoter fragments and former/latter parts of SCR-A coding
region, were amplified from Old-1 and W302 by PCR with
specific primers (Supplementary Table S1), respectively,
connected and subcloned into pBI121 vector. Each vector was
introduced into Agrobacterium tumefaciens strain GV3101 and
transformed into Old-1 plants by the floral dip method according
to Park et al. (2010).
RESULTS AND DISCUSSION

Genetic and Functional Characteristics of
SCR in A. thaliana and A. halleri
Thus far, the remnants of three haplotypes (haplogroups) at the
S-locus have been identified in A. thaliana: haplogroup A is
distributed predominantly in the northern hemisphere,
haplogroup B is restricted to African islands, and haplogroup
C is distributed mainly in Asia (Sherman-Broyles et al., 2007;
Tang et al., 2007; Shimizu et al., 2008). In haplogroup A,
disruption patterns in the S-locus are further classified into five
variants, termed A-t1 to A-t5. While A-t2 and A-t3 groups have
deleted the corresponding SCR genomic region, A-t1 and A-t5
still possess the SCR pseudogene (also known as YSCR1)
together with the SRK pseudogene and A-t4 has the SCR
pseudogene with a functional SRK, reflecting the complex
evolutionary history of selfing in A. thaliana.

Previously we reported the pivotal role of the 213-bp inversion
in the coding region of A. thaliana SCR, in which SI can be
restored by reverting the inversion (Tsuchimatsu et al., 2010). In
order to segregate the functional context of the numerous
Frontiers in Plant Science | www.frontiersin.org 3
mutation that may be responsible for disruption (i.e. primary
mutation) or not directly related (i.e. secondary mutation) in both
coding and upstream regulatory regions, we used a comparative
panel of self-compatible A. thalianaOldenburg accession (Old-1)
and outcrosser A. halleri Tada-mine accession (W302). This
panel enables the comparative functional dissection of the S-
locus in Old-1 and W302 because they have the identical S-
haplotype, haplogroup A, trans-specifically, and Old-1 still
retains the female SI function with an intact SRK-A coding
region while the male SI function is disrupted (Tsuchimatsu
et al., 2010). These two lines also have an identical flower
developmental process and pollination behavior (Figure 1).
The structure of SCR-A in W302 consists of two exons (67-bp
exon 1 and 188-bp exon 2) separated by an intron of 1157 bp with
52-bp 5′ and 214-bp 3′ UTRs, and a total length of 1,678 bp
(Figure 2A and Supplementary Figure S1). In comparison to the
SCR-A of W302, as we reported previously (Tsuchimatsu et al.,
2010), the nonfunctional form of SCR-A in Old-1 has variations
including a 252-bp deletion in the intron, minor indels (≤36 bp)
in the exons and a 213-bp inversion in exon 2 (Figure 2A and
Supplementary Figure S1). Compared to the relatively well
conserved SCR-A coding sequences, the upstream element has
extensive alterations; there is no overall homology between
upstream sequences of Old-1 and W302, except for regions -1
to -210 (Figure 2A and Supplementary Figure S1). Thus, to
summarize, there are three major differences in SCR-A between
Old-1 and W302: limited homology in the promoter, a 252-bp
deletion in the intron and a 213-bp inversion in exon 2.

To address the consequences of extensive alteration in
upstream sequences, we compared expression of SCR-A
between Old-1 and W302 in anthers during flower development
(Smyth et al., 1990). Real-time quantitative expression analysis
revealed a significantly lower level of SCR-A expression in Old-1
compared to W302 (Figure 2B). The overall temporal patterns
were similar in both Old-1 and W302, with peak expression
observed prior to anthesis (i.e. stage 12) followed by a drastic
reduction in later stages (i.e. stages 13–15). This indicates that the
native SCR-A promoter in Old-1 seems to be attenuated in
achieving the “optimal” expression level as seen in W302. From
analysis of expression of the female-specificity gene SRK-A, again
a lower expression in Old-1 stigmas was observed at stage 12
(Figure 2C). However, the degree of reduction was only about 10
times for SRK-A, unlike SCR-A which showed an ~6500 times
reduction. Taken together, these results indicate that the S-locus
transcriptional level in Old-1 was strongly silenced, especially in
SCR-A and to a lesser extent in SRK-A, which may constitute a
critical step in the loss of SI in A. thaliana.
Complete Experimental Reversal of the
Historical Transition From Outcrossing to
Selfing in A. thaliana
Given that our representative lines of A. halleri (functional SI)
and A. thaliana (disrupted SI) have an identical S-haplotype with
three major mutations in the SCR-A of A. thaliana Old-1
(AtSCR), namely a promoter with limited homology, a 252-bp
September 2020 | Volume 11 | Article 576140
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deletion in the intron and a 213-bp inversion in exon 2, we
regarded SCR-A of A. halleri W302 (AhSCR) as the functional,
original form of AtSCR. The 3,523-bp AhSCR-A fragment
(designated proAhSCR::AhSCR), consisting of a 1,845-bp
Frontiers in Plant Science | www.frontiersin.org 4
AhSCR promoter and 1,678-bp AhSCR coding region, was
introduced into Old-1. Expression of SCR-A in transgenic
proAhSCR::AhSCR Old-1 plants was similar to that in W302,
and transgenic Old-1 plants rejected self pollen on their stigmas,
FIGURE 1 | Floral morphology and pollination behaviour during flower development in A. thaliana and A. halleri. Appearance and inner morphological structure of
flower buds, with floral developmental stages (Smyth et al., 1990). Flower buds of Old-1 and W302 were emasculated at developmental stage 12 and incubated at
22°C on 1% agar medium until appropriate developmental stages. Each emasculated pistil at developmental stages 12, 13, 14, and 15 was self-pollinated in W302
and cross-pollinated with pollen of W302 in Old-1 to test the female SI function of Old-1. Scale bar, 1 mm. Self-incompatible and self-compatible floral stages are
highlighted with blue and yellow boarders, respectively, in self-pollinated pistils of A. halleri and A. thaliana pistils pollinated with A. halleri pollens. Arrows indicate
growing pollen tubes. Scale bar, 0.1 mm.
A

B C

FIGURE 2 | Genomic structure and expression profile of the SI genes in A. thaliana and A. halleri. (A) Schematic structure of SCR-A of A. thaliana and A. halleri.
(B) Expression profile of SCR-A at flower developmental stages 12-15 in A. thaliana Old-1 (orange) and A. halleri W302 (blue). (C) Expression profile of SRK-A at
flower developmental stages 12–15 in A. thaliana Old-1 and A. halleri W302. (B, C) Relative gene expression was determined by qRT-PCR and expression levels of
transcripts at each stage are shown relative to A. halleri W302 at stage 13 (set to value of 1). Data from 4 biological replicates are shown. Error bars indicate ± SD.
September 2020 | Volume 11 | Article 576140
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resulting in siliques with no or very few seeds (Figures 3A–F). In
T2, T3, and T6 plants with proAhSCR::AhSCR, which were
produced through bud self-pollination, developmentally stable
SI was observed during autopollination at stages 12 to 15 (Figure
3G), while previously we observed that the SI reaction on the
female side was attenuated at a relatively late stage (Tsuchimatsu
et al., 2010). This indicates that the SI trait was restored in these
transgenic Old-1 plants and this was heritable. Together with our
previous results (Tsuchimatsu et al., 2010), this demonstrates a
complete experimental reversal of the historical transition from
outcrossing to selfing in A. thaliana, and is basically consistent
with the heterologous SI in A. thaliana (Nasrallah et al., 2002;
Nasrallah et al., 2004). This finding also indicates that
inactivation of the S-locus was a primary step in the evolution
of selfing in A. thaliana (Nasrallah et al., 2002; Sherman-Broyles
et al., 2007; Boggs et al., 2009).
Frontiers in Plant Science | www.frontiersin.org 5
Discrimination of the Primary Inactivating
Mutation and Decays for the Evolutionary
Loss of SI in A. thaliana
To examine the functional consequences of the three SCR-A
mutations in A. thaliana Old-1 (that is promoter alteration,
deletion in the intron and inversion in exon 2), we conducted
transgenic experiments in which chimeric constructs were
introduced into Old-1 (Figure 4). As explained above,
introduction of a W302-type SCR-A promoter and coding
region (proAhSCR::AhSCR) achieved complete recovery of SI
in all flowers as expected. However, to our surprise, the Old-1
promoter with W302 SCR-A coding region (designated
proAtSCR::AhSCR) showed SI in 53 out of 76 flowers (Figures
4A, C), indicating the SCR-A promoter of Old-1 is partially
functional in inducing transcription of SCR-A. The W302
promoter and coding sequences combined with the Old-1
FIGURE 3 | Characteristics of transgenic A. thaliana with a functional SCR-A. (A) Expression of SCR-A at flower developmental stages 12–15 in proAhSCR::AhSCR
transgenic A. thaliana plants (light blue) and A. halleri W302 plants (blue). Relative gene expression was determined by qRT-PCR and expression levels of transcripts
at each stage are shown relative to A. halleri W302 at stage 13 (set to value of 1). Data from 4 biological replicates are shown. Error bars indicate ± SD. (B) Pollen
tubes accepted in the stigma of a selfed pistil of wild-type A. thaliana Old-1. Arrow indicates growing pollen tubes. Scale bar, 0.1 mm. (C) Pollen tubes inhibited on
the stigma of a selfed pistil of proAhSCR::AhSCR transgenic A. thaliana plant. Scale bar, 0.1 mm. (D) Inflorescences of proAhSCR::AhSCR transgenic A. thaliana
plant (right) and wild-type A. thaliana Old-1 (left). (E) Silique resulting from selfing of proAhSCR::AhSCR transgenic A. thaliana (right) and wild-type A. thaliana Old-1
(left). Scale bar, 1 mm. (F) Comparison of number of seeds per silique resulting from selfing of the proAhSCR::AhSCR transgenic A. thaliana plant and wild-type A.
thaliana Old-1. Thirty siliques were examined from each plant. Red bars, gray boxes, and black whiskers represent the median, the interquartile range, and 1.5 times
extension of the interquartile range, respectively. (G) Pollination phenotype in T0 and progeny plants (T2 shown as a representative of T2, T3, and T6 plants) of
proAhSCR::AhSCR transgenic A. thaliana, with flower development stage. Arrows indicate growing pollen tubes. Scale bar, 0.1 mm.
September 2020 | Volume 11 | Article 576140
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deletion in the intron (designated proAhSCR::AhSCR Dintron)
conferred SI in all flowers. The SI reaction was strongly
prohibited by inversion of exon 2 regardless of the W302
promoter and exon 1 and intron (designated proAhSCR::
AhSCR inv. exon2). This is consistent with the role of the
inversion in exon 2 as the primary and strongest determining
factor in the evolution of SI reaction, whereas the other two
mutations of the deleted intron and attenuated expression are the
result of decay. Hence, we conclude that the primary inactivating
mutation for the evolutionary loss of SI in A. thaliana is the exon
2-disrupting inversion in SCR-A, which was a primary and
definitive evolutionary event for the transition from
outcrossing to selfing in A. thaliana.

Functional and Evolutionary Context of
Transitional History in A. thaliana
The three major mutations in SCR-A are nearly fixed in a range
of European A. thaliana accessions (Supplementary Figure S2),
suggesting that these mutations in SCR-A had already occurred
before differentiation of these accessions. Coupled with the
prediction of a relatively recent origin of self-compatibility in
A. thaliana (Nasrallah et al., 2002; Bechsgaard et al., 2006;
Shimizu et al., 2008; Shimizu and Tsuchimatsu, 2015), it is
conceivable that the ancestor of A. thaliana still retained SI
Frontiers in Plant Science | www.frontiersin.org 6
after the split from the common ancestor of the sister species A.
halleri and A. lyrata (Koch et al., 2000), in which all SI
components were under selective constraint for the
maintenance of SI. Interestingly, proAtSCR::AhSCR transgenic
plants showed weakening of SI in some flowers, indicating the
expression level of AhSCR driven by proAtSCR was on the
threshold of the level required for an incompatibility reaction,
resulting in partial SI (Shimizu and Tsuchimatsu, 2015) in
proAtSCR::AhSCR transgenic plants. The partial recovery of SI
could be attributed to two scenarios for the evolutionary loss of
SI in A. thaliana (Figure 5): 1) a two-step scenario in which A.
thaliana first evolved partial SI by depression of proAtSCR and
then complete SC by inversion in SCR-A exon 2 (Castric et al.,
2014; Shimizu and Tsuchimatsu, 2015), and 2) a direct scenario
in which A. thaliana lost SI by inversion in SCR-A exon 2
together with a depression of proAtSCR as a secondary decay
(Tsuchimatsu et al., 2010). Due to limitations in the
methodology of calculating molecular clocks for large
structural alterations compared to small mutations, it is not
possible to reliably determine whether depression of proAtSCR
proceeded the inversion or not. However, in either scenario,
SCR-A provides the molecular basis of transition from
outcrossing to selfing, leading to accumulation of mutations
and decays following release from selective constraints.
FIGURE 4 | Schematic structure of artificial chimeric SCR-A and their effect on pollination in transgenic Arabidopsis plants. (A) Schematic structure of chimeric SCR-
A. (B) Pollen tube behaviour on selfed pistils in each transgenic plant. Arrow indicates growing pollen tubes in the pistil. Scale bar, 0.1 mm. (C) Number of self-
incompatible/self-compatible flowers in T1 or T2 generation of each transgenic plant.
September 2020 | Volume 11 | Article 576140
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CONCLUSION

Our work has established the functional and evolutionary
contexts of the major mutations in promoters, exons and
introns of SCR and has suggested a transcriptional contribution
to achieve the complete switch from outcrossing to selfing in A.
thaliana. It is notable that the functionality of the pseudogene
promoter has been retained. The findings from analysis of the
fixed mutations in SCR-A further support the hypotheses of a
recent origin and selection of selfing in A. thaliana (Bechsgaard
et al., 2006; Shimizu et al., 2008) and the advantage of mutation in
the male specificity gene (Tsuchimatsu et al., 2010), rather than
the female specificity gene, for the evolution of self-compatibility
(Uyenoyama et al., 2001; Busch and Schoen, 2008; Tsuchimatsu
and Shimizu, 2013).
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open box outlined by red lines indicates a homologous region between A. thaliana
and A. halleri. In coding region, two exons, the deletion in intron and the inversion in
exon 2 are highlighted with red, yellow and blue backgrounds, respectively. Black
arrows indicate the primer site for qRT-PCR.

SUPPLEMENTARY FIGURE 2 | Alignment of nucleotide sequences of SCR-A
among A. thaliana accessions. Promoter and coding region of SCR-A aligned
among 11 A. thaliana accessions in haplogroup A. Identical conserved sequences
are highlighted with black background.

SUPPLEMENTARY TABLE 1 | List of Primers
FIGURE 5 | Proposed model of the evolutionary process of loss of self-
incompatibility in genus Arabidopsis. After an evolutionary split from the
common ancestor, ancestral A. thaliana still retained SI, as in the sister SI
species A. halleri. The inactivating mutation resulting in the evolutionary loss of
SI in A. thaliana occurred as an exon 2-disrupting inversion in SCR-A, which
was a primary and definitive evolutionary event for the transition from
outcrossing to selfing in A. thaliana. In addition, the SCR-A promoter was
attenuated in this process, and thus two scenarios can be proposed for the
evolutionary loss of SI in A. thaliana: 1) a two-step scenario in which A.
thaliana first evolved partial SI by depression of proAtSCR and then complete
SC by the inversion in SCR-A exon 2, and 2) a direct scenario in which A.
thaliana lost SI by the inversion in SCR-A exon 2 together with a depression
of proAtSCR as a secondary decay.
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