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Arbuscular mycorrhizal (AM) fungi are one of the most important soil microbial resources 
that help host plants cope with various abiotic stresses. Although a tremendous number 
of studies have revealed the responses of AM fungi to abiotic stress and their beneficial 
effects transferred to host plants, little work has focused on the role of lipid metabolism 
in AM fungi under abiotic stress conditions. AM fungi contain a large amount of lipids in 
their biomass, including phospholipids (PLs) in their hyphal membranes and neutral lipids 
(NLs) in their storage structures (e.g., vesicles and spores). Recently, lipid transfer from 
plants to AM fungi has been suggested to be  indispensable for the establishment of 
AM symbiosis, and extraradical hyphae are capable of directly taking up lipids from the 
environment. This experimental evidence highlights the importance of lipids in AM symbiosis. 
Moreover, abiotic stress reduces lipid transfer to AM fungi and promotes arbuscule collapse 
as well as the hydrolysis and conversion of PLs to NLs in collapsed arbuscules. Overall, 
this knowledge encourages us to rethink the responses of AM symbiosis to abiotic stress 
from a lipid-centric perspective. The present review provides current and comprehensive 
knowledge on lipid metabolism in AM fungi, especially in response to various abiotic 
stresses. A regulatory role of abscisic acid (ABA), which is considered a “stress hormone,” 
in lipid metabolism and in the resulting consequences is also proposed.
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INTRODUCTION

Arbuscular mycorrhizal (AM) fungi, which phylogenetically belong to the subphylum 
Glomeromycotina, can form mutualistic symbiotic associations with more than 80% of terrestrial 
plant species (Smith and Read, 2008; Spatafora et  al., 2016). This extremely ancient (>450 million 
years) and coevolutionary relationship is considered the key factor in early plant colonization 
of land and has also been verified to be  generally beneficial to both partners (Remy et  al., 1994; 
Smith and Read, 2008). AM  fungi are obligate biotrophic fungi that rely exclusively on carbon 
in the form of lipids and sugars from their host plants to sustain their growth, development, 
and function (Bago et  al., 2003; Helber et  al., 2011; Jiang et  al., 2017; Luginbuehl et  al., 2017). 
In return, AM  fungi are capable of helping their host plants grow vigorously under a variety 
of abiotic stress conditions by mediating a series of complex signal communications and  
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enhancing the exchange of multiple substances between partners, 
which leads to enhanced physiological-biochemical traits and 
increased uptake of nutrients and water (Bitterlich et  al., 2018;  
Begum et  al., 2019; Evelin et  al., 2019).

Abiotic stresses are widespread in terrestrial ecosystems and 
are becoming increasingly severe because of dramatic changes 
in the global climate, environmental pollution, and excessive 
human activities during the past several decades. In agricultural 
ecosystems, numerous studies have highlighted that AM  fungi 
are capable of improving the tolerance of their host plants to 
drought (Grümberg et al., 2015; Li et al., 2019b), salinity (Augé 
et  al., 2014; Chandrasekaran et  al., 2019), heavy metals (Wu 
et  al., 2018; Zhang et  al., 2018, 2019; Rask et  al., 2019), low 
nutrient availability (Tanaka and Yano, 2005; Garcia and 
Zimmermann, 2014; Koegel et  al., 2015; Chu et  al., 2020), 
extreme temperature (heat and cold; Zhu et  al., 2011; Chen 
et  al., 2013; Cabral et  al., 2016; Mathur et  al., 2018), acidic 
soils (low pH; Huang et  al., 2017a; Wang et  al., 2017; Feng 
et  al., 2020), aluminum (Al) toxicity (Seguela et  al., 2016; 
Aguilera et al., 2018), and pollutants (As and polycyclic aromatic 
hydrocarbons; Aranda et  al., 2013; Calonne et  al., 2014) to 
varying degrees. The mechanisms underlying the improved 
tolerance afforded by AM  fungi involve increased nutrient 
levels, optimized water balance, enhanced photosynthesis, and 
increased reactive oxygen species (ROS) scavenging activity in 
plants. In contrast, however, the responses of AM  fungi to 
abiotic stresses are largely neglected, hindering our understanding 
of AM  symbiosis under stress conditions. Recently, lipids have 
been suggested to be  the indispensable carbon forms delivered 
from plant cells to AM  fungi (Jiang et  al., 2017; Luginbuehl 
et al., 2017), highlighting the central role of lipids in regulating 
AM  symbiosis. More recently, Feng et  al. (2020) demonstrated 
that decreased transfer of lipids from root cells to AM  fungi 
contributed to the inhibition of colonization and functionality 
of AM  fungi in response to low-pH stress. Therefore, now is 
the right time to evaluate the role of lipids in AM  symbiosis 
under various abiotic stress conditions. To address this topic, 
we  discuss the cytobiochemical changes in plants and 
physiological changes in AM fungi in response to abiotic stress 
and focus on lipid metabolism in symbiosis.

CYTOBIOCHEMICAL CHANGES IN 
PLANTS IN RESPONSE TO ABIOTIC 
STRESS

The optimal growth status of plants requires precise cellular 
homeostasis achieved by a delicate balance between multiple 
pathways in various cellular compartments (Miller et al., 2010). 

This coordination may, however, be  disrupted rapidly when 
plants are exposed to a series of abiotic stresses. As a consequence 
of adverse conditions, different cytobiochemical changes in 
plants emerge concomitantly. These changes mainly include 
ROS generation, membrane lipid peroxidation, and increases 
in abscisic acid (ABA), all of which exert dramatic and regulatory 
effects on AM  symbiosis.

ROS generation is the most significant event in plant cells 
subjected to abiotic stress; this generation occurs in several 
main organelles, e.g., chloroplasts, mitochondria, and 
peroxisomes, as well as in the plasma membrane and apoplast. 
ROS at high doses (ROS bursts) are capable of causing oxidative 
damage to many biomacromolecules (e.g., membrane lipids, 
proteins, RNA, and DNA), which ultimately results in cellular 
damage and even death (Apel and Hirt, 2004; Miller et  al., 
2010; You and Chan, 2015). In addition, at low doses, ROS 
function as signaling molecules in the induction of pathogen 
resistance by AM  fungi (Zhang et  al., 2013; Zhu et  al., 2015). 
The membrane structures of plant cells and subcellular organelles 
are mainly composed of lipids, e.g., polyunsaturated fatty acids, 
which are highly sensitive to ROS (Tsikas, 2017). Under abiotic 
stress conditions, excessive lipid peroxidation can alter the 
assembly, composition, structure, and dynamics (fluidity) of 
membranes, further leading to membrane damage. 
Polyunsaturated fatty acids, which are long-chain fatty acids 
with more than one double bond, are preferentially oxidized 
to the final form malondialdehyde, either by chemical reactions 
with ROS or by enzymatic reactions catalyzed by lipoxygenase 
in the lipid peroxidation process (Gaschler and Stockwell, 2017; 
Tsikas, 2017). In roots colonized by AM  fungi, the plasma 
membrane encapsulating arbuscules is highly specialized and 
is referred to as the periarbuscular membrane. However, the 
lipid peroxidation of the periarbuscular membrane has not 
yet been explored, let alone that of the arbuscular membrane. 
ABA is commonly known as a “stress hormone” and plays a 
crucial role in the plant response to abiotic stress (Fujii et  al., 
2009; Kim et  al., 2016; Huang et  al., 2017b). Under weakly 
stressing conditions, elevated ABA induces a mild increase in 
ROS (Jiang and Zhang, 2002). Intriguingly, AM  fungal 
colonization can also trigger an increase in ROS, which further 
induces localized and systemic resistance to pathogens (Zhu 
et  al., 2015). However, long-term and severe stress conditions 
can result in ROS bursts and cell damage.

ARBUSCULAR MYCORRHIZAL FUNGAL 
RESPONSES TO ABIOTIC STRESS

Similar to their host plants, AM  fungi also undergo various 
changes to acclimate abiotic stress. The adaptation of AM fungi 
to stressed conditions is mainly reflected by several different 
aspects, such as colonization, arbuscule formation, spore 
germination, and sporulation. In AM fungi, the hyphal membrane 
is composed of phospholipids (PLs), while spores contain a 
large amount of neutral lipids (NLs; Olsson and Johansen, 
2000). Consequently, any changes in these structures are linked 
to the dynamics of lipid metabolism.

Abbreviations: ABA, Abscisic acid; AM, Arbuscular mycorrhiza; DAGs, 
Diacylglycerols; DGAT, Acyl-CoA:diacylglycerol acyltransferase; DGDG, 
Digalactosyldiacylglycerol; EH, Extraradical hyphae; G3P, Glycerol-3-phosphate; 
IH, Intraradical hyphae; NLs, Neutral lipids; PA, Phosphatidic acid; PC, 
Phosphatidylcholine; PDAT, Phospholipid:diacylglycerol acyltransferase; PE, 
Phosphatidylethanolamine; PLs, Phospholipids; ROS, Reactive oxygen species; 
SEs, Sterol esters; TAGs, Triacylglycerols.
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Many studies have shown that abiotic stress has an overall 
negative effect on mycorrhizal colonization (Figure  1). Salinity-
alkalinity stress significantly inhibits the quantities of entry points 
on roots and vesicles inside roots (Ye et  al., 2019). Mycorrhizal 
frequency (F%) and intensity (M%) significantly decreases with 
increasing salinity (Krishnamoorthy et  al., 2014). Drought, low 
temperature, and heavy metals were found to suppress mycorrhizal 
colonization (Chen et  al., 2013; He et  al., 2017; Zhang et  al., 
2019). Acidic soil decreased F% by 4.39% and M% by 20.30% 
in pot experiments (Liu et  al., 2020), which is in accordance 
with previous results in axenic culture (Wang et al., 2017). Vesicle 
abundance at a pH of 4.5 was shown to be  approximately half 
of that at a pH of 6.5 (Feng et  al., 2020). Even so, Wang et  al. 
(2017) indicated that extraradical hyphae (EH) of Rhizophagus 
irregularis DAOM 197198 were more tolerant to low pH than 
were tomato roots in axenic culture. However, several studies 
showed that AM  fungal colonization was unaffected or was 
promoted by abiotic stress (Nakatani et  al., 2011; Li et  al., 2016; 
Mo et  al., 2016). Further analysis is needed because the results 
will vary depending on the timing of the observation.

Arbuscules are the central sites for nutrient exchange between 
two symbiotic partners and are therefore considered the core 
structures of AM  symbiosis (Harrison, 2012; Luginbuehl and 
Oldroyd, 2017). The life span and functional lifetime of arbuscules 
are only 7.5–8.5 and 2–3  days, respectively (Alexander et  al., 
1989; Kobae and Hata, 2010), and abiotic stress greatly impedes 
arbuscule formation (Figure 1; Feng et al., 2020; Liu et al., 2020). 
A dramatic decrease in arbuscule abundance has been reported 
under an array of abiotic stresses, such as heavy metal pollution 
(Zhang et  al., 2019), salt stress (Krishnamoorthy et  al., 2014;  

Ye et  al., 2019), aluminum toxicity (Göransson et  al., 2008), and 
low pH (Zhu et  al., 2007). It is worth noting that the decrease 
in arbuscule abundance is much greater than that in the abundance 
of other fungal structures. For instance, arbuscule abundance 
decreased by 93.27% in contrast to 20.30% for mycorrhizal 
intensity when the symbiosis was exposed to low pH (Liu et  al., 
2020). The authors classified arbuscule development into five 
stages and demonstrated that fewer juvenile arbuscules could 
develop fully and reach mature status, while mature arbuscules 
were promoted to become senescent and collapsing in response 
to low-pH or acidic soil conditions (Feng et  al., 2020; Liu et  al., 
2020). Gutjahr et  al. (2012) demonstrated that the half-size ABC 
transporters STR1 and STR2 were indispensable for arbuscule 
formation in rice. Intriguingly, arbuscules stopped development 
but did not collapse in a str/str2 mutant of Medicago truncatula, 
in which the transfer of lipids from host plants to AM  fungi 
was greatly inhibited (Zhang et al., 2010). This different behavior 
of arbuscules can be explained by the presence of abiotic stresses 
or not. In str mutant experiment without stress, only the transfer 
of lipids to AM  fungi is inhibited; however, low pH (abiotic 
stress) not only can inhibit the transfer of lipids to AM  fungi 
but also promote the sporulation (Wang et  al., 2017), which 
requires a huge amount of neutral lipids as storage substance 
and might drive the collapse of senescent arbuscules to release lipids.

Sporulation determines the spore density in the soil; however, 
AM  fungal sporulation has been less investigated than 
colonization thus far. Krishnamoorthy et  al. (2014) found that 
the spore density of Glomus, Paraglomus, Acaulospora, 
Entrophospora, Gigaspora, and Scutellospora exhibited a 
significantly negative correlation with soil salinity. Yang et  al. 

FIGURE 1 | Effects of abiotic stress on the intraradical and extraradical structures of AM fungi and their host plant root cells. Abiotic stress induces an ABA 
increase in host plants as well as decreased expression of RAM2 and STR/STR2, both of which are induced specifically by AM fungi and encode enzymes 
responsible for lipid biosynthesis and transfer from the roots to AM fungi (Bravo et al., 2017; Feng et al., 2020). Under abiotic stress, the accumulations of PLs and 
NLs are reduced in the intraradical phase, in parallel with decreased mycorrhizal colonization (e.g., arbuscule abundance, vesicle abundance, and colonization rate). 
In the extraradical phase, the accumulation of NLs in the hyphae and hyphal density is reduced in response to abiotic stress. Although the sporulation per hypha is 
accelerated by increased ABA (Liu et al., 2020), the total sporulation is inhibited due to the reduction in hyphal density. A, arbuscules; V, vesicles; IH, intraradical 
hyphae; EH, extraradical hyphae; S, spores; NLs, neutral lipids; PLs, phospholipids; ABA, abscisic acid; AM, arbuscular mycorrhiza.
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(2015) reported an overall trend that AM  fungal spore density 
was higher in heavy metal-contaminated soils than in 
noncontaminated soils. Moreover, elevated temperature was 
shown to decrease spore density and diameter (Zhang et  al., 
2016). More intriguingly, a period of drought stress before 
harvest is frequently practiced to promote sporulation in 
AM  fungal propagation systems (Selvakumar et  al., 2018).

LIPIDS AS KEY NUTRIENTS FOR 
ARBUSCULAR MYCORRHIZAL FUNGI IN 
RESPONSE TO ABIOTIC STRESS

Lipids are the most abundant compounds in AM  fungi; these 
lipids mainly include PLs and NLs, but there are also small 
amounts of other lipids (Bago et al., 2000; Olsson and Johansen, 
2000; Wewer et al., 2014). Moreover, AM fungi do not synthesize 
lipids de novo but receive lipids from their hosts (Jiang et  al., 
2017), indicating the significance of lipids as key nutrients in 
AM  symbiosis.

Phospholipids in the Membrane 
(Intraradical and Extraradical Hyphae, and 
Arbuscules)
The EH and intraradical hyphae (IH), particularly arbuscules, 
are characterized by large amounts of membrane area, which 
consists of PLs and phosphate-free lipids called glycolipids 
(Van Aarle and Olsson, 2003; Wewer et  al., 2014). As polar 
lipid fractions in AM fungi, PLs comprise phosphatidylcholine 
(PC), phosphatidylethanolamine (PE), phosphatidylinositol, 
phosphatidylserine, and phosphatidic acid (PA), while 
glycolipids comprise acylated sterol glucoside, glucosylceramide, 
and sterol glucoside (Wewer et  al., 2014). PLs account for 
approximately 1–2% of the total lipids in AM fungal biomass, 
but glycolipids are even more negligible (Jabaji-Hare, 1988; 
Gaspar et  al., 1994; Wewer et  al., 2014). PC is the most 
abundant component of PLs in EH (>60%) and colonized 
roots (>40%), and furthermore, lyso-PC is considered a 
signaling molecule during mycorrhization (Drissner et  al., 
2007; Wewer et  al., 2014). However, Gaspar et  al. (1997) 
found that the total contents of PC and PE continuously 
increased and that the relative contents of PC and PE were 
dynamic in the roots with AM fungal colonization. Compared 
with that of PE, the content of PC was greater in the first 
3 months, whereas the content of PE was greater in colonized 
roots after 4 months of AM fungal inoculation (Gaspar et  al., 
1997). At the molecular level, the expression of monomethyl-PE/
dimethyl-PE methyltransferase, which is involved in PC 
synthesis from PE, and lysophospholipid acyltransferase, which 
is involved in the interconversion of PC (or PE) and lyso-PC 
(or lyso-PE), were detected both in colonized roots and in 
EH (Wewer et  al., 2014).

The conversion of PLs to glycolipids is vital in the membranes 
of both plants and AM  during P deprivation to conserve P 
(Härtel et  al., 2000; Wewer et  al., 2011, 2014; Pant et  al., 
2015). Digalactosyldiacylglycerol (DGDG) decreases in parallel 

with an increase in PC and PE (Wewer et  al., 2014). Moreover, 
relatively low expression of the two DGDGs that encode DGDG 
synthases was observed in colonized roots and noncolonized 
roots under high-phosphate levels in Lotus japonicus due to an 
increased phosphate supply for PL synthesis (Wewer et al., 2014). 
Recently, Feng et  al. (2020) reported a significant decrease in 
AM  fungal PLs and an accumulation of NLs in colonized roots 
under low-pH stress (pH 4.5 vs. 6.5), highlighting the 
interconversion of lipid fractions in AM  fungi in response to 
abiotic stress.

Neutral Lipids in Storage Structures 
(Vesicles and Spores)
AM fungi accumulate large amounts of nonpolar storage lipids, 
i.e., NLs and triacylglycerols (TAGs), mainly in vesicles, 
extraradical spores, intraradical spores (in some species such 
as those of Glomus and Rhizophagus), IH, and EH (Gaspar 
et  al., 1994, 1997; Bago et  al., 2000; Wewer et  al., 2014). 
Vesicles are round, elliptical, or irregular in shape and are 
considered to be  the primary storage structures of AM  fungi 
inside roots (Jabaji-Hare et  al., 1984; Jabaji-Hare, 1988). Jabaji-
Hare (1988) found that NLs in spores and vesicles of several 
species of Glomus and Rhizophagus and in spores of Gigaspora 
margarita accounted for 96–98% of total lipids, while polar 
lipids accounted for 2–4% (Jabaji-Hare, 1988). A continuous 
decrease in NLs and an increase in PLs were observed in 
spores during germination (Gaspar et  al., 1994). During 
AM  fungal spore germination, lipid synthesis is largely or 
entirely confined to PL synthesis and, consequently, membrane 
production (Bago et  al., 1999). In AM  fungal extraradical 
structures, spores and hyphae accounted for 90.7 and 9.3% of 
the total biomass, respectively (Olsson and Johansen, 2000). 
TAGs are the predominant form of AM  fungal lipids; TAGs 
include 16:0 (palmitic acid) and 16:1ω5 (palmitvaccenic acid) 
acyl groups (Jabaji-Hare, 1988; Gaspar et  al., 1997; Bago et  al., 
2002; Wewer et  al., 2014; Roth and Paszkowski, 2017). Other 
nonpolar lipids, such as free fatty acids (9–19% of lipids), 
monoacylglycerols (<9% of lipids), sterol esters (SEs; <7% of 
lipids), and diacylglycerols (DAGs; <3% of lipids) were also 
detected in these storage structures (Jabaji-Hare, 1988).

Previous isotopic labeling experiments and advanced imaging 
technologies have shown that NLs are synthesized in IH and 
then transported to EH to sustain extraradical hyphal growth, 
the formation of new spores, and their subsequent germination 
(Pfeffer et  al., 1999; Bago et  al., 2002; Kobae et  al., 2014). A 
continuous mycorrhizal colonization experiment showed a higher 
accumulation of TAGs than of PLs in EH during the first 
3  months after AM  fungal inoculation, which accounted for 
more than 90% of the total lipids in the EH (Gaspar et  al., 
1997); however, other nonpolar lipids, such as DAGs, free 
sterols, SEs and PLs, were less abundant (Wewer et  al., 2014). 
In these processes, DAGs serve as the immediate precursor 
of TAGs, and SEs are involved in the regulation of membrane 
free sterol homeostasis (Bouvier-Navé et al., 2010). In contrast, 
the front fragment of growing EH contains fewer NLs than 
do the rear fragments, probably due to the consumption of 
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NLs for hyphal elongation and sporulation, which implies that 
continuous NL delivery is probably essential to maintain 
AM  fungal growth (Bago et  al., 2002; Kobae et  al., 2014). In 
general, the accumulation of NLs and their conversion to PLs 
showed different patterns in the growing hyphae and in senescent 
and sporulating hyphae (Figure  2; Bago et  al., 2002), with 
the latter probably accelerated by increased ABA in response 
to abiotic stress.

Potential Conversion of Phospholipids to 
Neutral Lipids in Arbuscular Mycorrhizal 
Fungi Under Abiotic Stress
Arbuscules are specialized IHs that account for a large 
proportion of IHs in terms of membrane surface area in 
colonized roots. Arbuscule abundance is strongly correlated 
with the accumulation of PLs across different AM  fungal 
species (Van Aarle and Olsson, 2003; Feng et  al., 2020). 
However, arbuscules are short lived, with a life span of 
7.5–8.5  days (Alexander et  al., 1989; Kobae and Hata, 2010). 
This poses a critical issue concerning the fate of PLs after 
the collapse of arbuscules. A double-staining experiment with 
vital staining of succinate dehydrogenase and lipid staining 
(Nile red) revealed that a large number of NLs mainly occurred 
in senescent arbuscules accompanied by waning vitality and 
function (Kobae et  al., 2014). In line with this result, Feng 
et  al. (2020) observed that there was a distinct negative 
relationship between arbuscule intactness and NL accumulation, 
as revealed by fungal cell wall staining (WGA-488) and lipid 
staining. Furthermore, more dynamic and direct evidence 
through a live imaging technique indicated that NLs were 

transported subsequently from IH to EH (Kobae et al., 2014). 
These observations support that PLs in IH, especially in 
arbuscules, are hydrolyzed and converted to NLs for recycling. 
Li et  al. (2019a) suggested that a purple acid phosphatase 
of plant origin was involved in the degradation of arbuscules; 
however, this was not supported by other experiments (Feng 
et al., 2020). Therefore, additional work is needed to elucidate 
the enzymatic mechanism involving the hydrolysis of PLs in 
collapsing arbuscules.

Arbuscules have a short life span, and furthermore, abiotic 
stress is capable of accelerating the senescence and collapse 
of arbuscules. Liu et  al. (2020) found that acidic soil resulted 
in more senescent and collapsed arbuscules in colonized roots. 
Consistent with this result, Feng et  al. (2020) visualized the 
lipid dynamics in root cells and found that NLs occurred 
only in senescent and collapsed arbuscule-containing cells. 
In this scenario, it is highly important to link lipid metabolism 
in AM  fungi with abiotic stress. Molecular analysis indicated 
that genes encoding a glycerol-3-phosphate acyltransferase 
(RAM2, involved in lipid biosynthesis) and ATP-binding 
cassette transporters (STR/STR2, involved in lipid transfer) 
in colonized roots are greatly inhibited by low pH (Feng 
et  al., 2020). At the physiological level, abiotic stress has 
been shown to induce ROS generation (Benabdellah et  al., 
2009) and the visual accumulation of ROS in different structures 
of AM  fungi (Fester and Hause, 2005), leading to membrane 
lipid peroxidation (malondialdehyde accumulation; González-
Guerrero et  al., 2007, 2010; Debiane et  al., 2011) and a 
decrease in the accumulation of PLs/PC in AM  fungi 
(Debiane et  al., 2011; Calonne et  al., 2014; Feng et  al., 2020). 

A

B

FIGURE 2 | The accumulation of NLs in extraradical hyphae in a growing hypha (A) and in a senescent or sporulating hypha (B). Under normal conditions, the life 
span of arbuscules is 7.5–8.5 days, during which time different stages occur, e.g., developing arbuscules (Ad), mature arbuscules (Am), and senescent arbuscules 
(As). The PLs in senescent arbuscules are subjected to hydrolysis and converted to NLs for recycling. In the extraradical phase, NLs accumulate but are 
subsequently consumed. In growing hyphae, NLs are converted to PLs at the front fragment of the hyphae for the synthesis of hyphal tips. In senescent or 
sporulating hyphae, NLs are transported to developing spores as storage substances. V, vesicles; IH, intraradical hyphae; EH, extraradical hyphae; EHT, extraradical 
hyphal tip; S, spore; TAG, triacylglycerol; NLs, neutral lipids; PLs, phospholipids.
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FIGURE 3 | Putative conversion of PLs to NLs in the AM fungal endoplasmic reticulum. Two main pathways include the partial Kennedy pathway, shown as the red 
dotted line (A), and the acyl editing pathway (B). Considering that PC and PE are the two most abundant species of PLs, the acyl editing pathway is likely the key 
pathway for converting PLs to NLs in AM fungi. The background represents the AM fungal endoplasmic reticulum. The purple, yellow, and green rectangles 
represent PLs, NLs, and enzymes, respectively. PA, phosphatidic acid; lyso-PA, lyso-phosphatidic acid; PC, phosphatidylcholine; lyso-PC, lyso-phosphatidylcholine; 
PE, phosphatidylethanolamine; lyso-PE, lyso-phosphatidylethanolamine; DAG, diacylglycerol; TAG, triacylglycerol; G3P, glycerol-3-phosphate; GPAT, acyl-CoA: 
glycerol-3-phosphate acyltransferase; LPAT, acyl-CoA:lyso-phosphatidic acid acyltransferase; PAP, phosphatidic acid phosphatase; DGAT, acyl-CoA:diacylglycerol 
acyltransferase; PDAT, phospholipid:diacylglycerol acyltransferase; LPCAT, acyl-CoA:lyso-phosphatidylcholine acyltransferase; PL, phospholipid; NL, neutral lipid; 
AM, arbuscular mycorrhizal.

Evidence of PL dynamics in response to abiotic stress is limited; 
however, the decrease in PLs is supported by experiments in 
other organisms. In green algae and Arabidopsis thaliana, for 
example, PLs decrease and are replaced by glycolipids in the 
membranes, in parallel with the dramatic accumulation in 
TAGs under P deficiency (Gong et  al., 2013; Iwai et  al., 2014; 
Pant et al., 2015). Moreover, abiotic stress impedes P acquisition 
by AM  fungal EH (Wang et  al., 2017), which may reduce the 
P source for PL synthesis in AM  fungi. Therefore, abiotic 
stress can accelerate PL degradation and TAG accumulation, 
namely, the conversion of PLs to NLs in AM  fungi (Calonne 
et  al., 2014; Feng et  al., 2020). This conversion can provide 
at least two benefits: the release of P for recycling under P 
starvation induced by abiotic stress and an increase in NLs 
for sporulation in response to abiotic stress.

How NLs are produced in collapsed arbuscules remains 
unknown. It is well acknowledged that a gene encoding cytosolic 
multidomain fatty acid synthase responsible for the de novo 
synthesis of the bulk of fatty acids is lost in the genome of 
Rhizophagus irregularis (Tisserant et  al., 2013; Wewer et  al., 
2014). Therefore, the transfer of lipids from plant cells to 
arbuscules is indispensable for AM  symbiosis (Jiang et  al., 
2017). Recently, axenic culture of R. irregularis indicated that 
EH can take up lipids directly from the media and that myristate 
is the most effective fatty acid to promote hyphal growth, while 
(S)-12-methyltetradecanoic acid promotes both hyphal growth 
and sporulation (Kameoka et  al., 2019; Sugiura et  al., 2019).  

These results highlight the significance of lipids in AM symbiosis. 
Under stress conditions, PLs in the hyphal membranes (including 
arbuscules) undergo hydrolysis and give rise to glycerol-3-
phosphate. Given the conversion of PLs to NLs and the 
accumulation of NLs in AM  fungi, as well as the synthesis 
of NLs in plants and other microbes (Dahlqvist et  al., 2000; 
Oelkers et  al., 2000; Arabolaza et  al., 2008; Banaś et  al., 2013), 
we  speculate that AM  fungi employ two main pathways to 
produce NLs by utilizing PLs (PC, lyso-PC, PE, PA, and lyso-PA) 
as substrates in the endoplasmic reticulum. In the partial 
Kennedy pathway, acyl-CoA is utilized for PA synthesis by 
esterification to the sn-2 positions of lyso-PA by acyl-CoA:lyso-PA 
acyltransferase. DAGs are subsequently synthesized by the 
dephosphorylation of PA phosphatase. Finally, DAGs are utilized 
for TAG synthesis with the participation of acyl-CoA by acyl-
CoA:diacylglycerol acyltransferase (DGAT; Figure  3A; Bates 
and Browse, 2012). In the acyl editing pathway, FAs provided 
by PC or PE and DAGs are utilized for TAG and lyso-PC 
synthesis by phospholipid:diacylglycerol acyltransferase (PDAT; 
Dahlqvist et  al., 2000; Oelkers et  al., 2000; Bates and Browse, 
2012). However, reesterification of lyso-PC by acyl-CoA:lyso-PC 
acyltransferase generates PC (Figure  3B; Millar et  al., 2000; 
Bates and Browse, 2012). Considering that PC and PE are the 
two most abundant species of PLs, we  infer that the acyl 
editing pathway is likely the key pathway involved in the 
conversion of PLs to NLs in AM fungi. The key genes encoding 
these proteins mentioned above are present in the genome of 
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R. irregularis (Tisserant et  al., 2013); however, more work is 
needed to explore this hypothesis. Although few studies have 
focused on the effects of abiotic stresses on these genes in 
AM  fungi, several of them are upregulated in plants and other 
microbes, which occurs simultaneously with the accumulation 
in NLs under abiotic stress (Mus et  al., 2013; Zienkiewicz 
et  al., 2016; Yuan et  al., 2017; Tan et  al., 2018). However, the 
functional characterization of these genes in AM  fungi under 
various abiotic stresses remains unexplored.

ABSCISIC ACID REGULATION

As a key “stress hormone,” ABA dramatically accumulates in 
plants to cope with abiotic stress (Fujii et  al., 2009; Kim 
et  al., 2016; Huang et  al., 2017b). Apart from its role in 
plant growth and development, ABA accumulation also directly 
or indirectly affects plant-associated microbes, such as 
phytopathogens (Asselbergh et al., 2008) and symbiotic partners, 
including AM  fungi (Liu et  al., 2019). Fungal sporulation is 
a crucial reproductive process and one of the mechanisms 
by which fungi respond to various adverse conditions, in 
many cases producing chlamydospores (Spraker et  al., 2016; 
Dijksterhuis 2018). Liu et  al. (2019) demonstrated for the 
first time that exogenous ABA was able to directly improve 
AM fungal sporulation during both asymbiotic and presymbiotic 
statuses, highlighting the direct effect of ABA on spores or 
germ tubes. In AM fungal propagation systems, several weeks 
of drought stress before harvest is generally believed to induce 
sporulation (Selvakumar et al., 2016, 2018). ABA accumulation 
is one of the main responses in plants to drought stress. 
Therefore, it is likely that there is a positive relationship 
between ABA and AM  fungal sporulation. Nevertheless, it 
is worth noting that the total spore number decreases under 
abiotic stress, whereas the sporulation per hypha increases 
(Debiane et  al., 2011), which is supported by the study by 
Wang et  al. (2017). This implies that ABA induces more 
efficient reproductive growth of AM fungi under abiotic stress. 
Sporulation involves a large consumption of NLs, which partly 
originate from the hydrolysis of PLs in arbuscules in response 
to abiotic stress.

However, in terms of different AM  fungal structures, the 
contents of ABA and ABA-GE as the storage form of ABA 
in EH were approximately 3-fold and 2.5-fold higher than 
those in AM  fungal spores, respectively (Esch et  al., 1994). 
Remarkably, the content of ABA in AM  fungi is more than 
one order of magnitude higher than that in plant roots 
(Esch et al., 1994). Pons et al. (2020) provided direct evidence 
that AM fungi can synthesize cytokinins, auxin, gibberellins, 
and ethylene but not ABA, which indicates that ABA in 
AM fungi is derived from plants. Therefore, functional genes 
responsible for ABA biosynthesis in AM fungi or transporters 
responsible for transporting ABA from the roots to AM fungi 
remain unexplored. Additionally, the allocation of ABA 
among different AM  fungal structures (e.g., intraradical vs. 
extraradical structures) under abiotic stress has not yet 
been investigated.

To date, no studies have focused on the relationship between 
ABA accumulation and the conversion of PLs to NLs in 
AM  fungi under abiotic stress. However, the biosynthesis of 
NLs induced by ABA has been reported in plants, with the 
plant-AM fungal interaction not considered. In the ABA signaling 
pathway, the transcription factors ABSCISIC ACID INSENSITIVE 
4 (ABI4) and ABI5 can synergistically trigger stress-induced 
DGAT1 expression and TAG accumulation (Yang et  al., 2011; 
Kong et  al., 2013). Under nitrogen limitation, ABI4 promotes 
TAG accumulation by upregulating the expression of DGAT1 
in Arabidopsis (Yang et  al., 2011). Recently, Tan et  al. (2018) 
demonstrated that DGAT1 is critical for freezing tolerance of 
plants, acting by balancing TAG and PA production in 
Arabidopsis. Additionally, the application of exogenous ABA 
resulted in an increase in DGAT1 expression and accumulation 
of NLs in Arabidopsis, which occurred simultaneously with 
the effects of salt and sorbitol stress (Kong et al., 2013). Various 
abiotic stresses, including cold, drought, salt, and osmotic stress, 
increased PDAT member expression and TAG accumulation 
in Camelina sativa (Yuan et  al., 2017). Multiple analyses and 
experiments have also shown that DGAT1- and PDAT1-mediated 
conversion of membrane lipids into TAGs was enhanced by 
abiotic stresses in both microalgae and Arabidopsis (Yoon et al., 
2012; Li et  al., 2014; Lee et  al., 2019). Based on this evidence, 
it is likely that ABA is capable of promoting the conversion 
of PLs to NLs in AM  fungi in parallel with the collapse of 
arbuscules under abiotic stress.

CONCLUSIONS AND PERSPECTIVES

To date, studies on lipid metabolism in AM  fungi in response 
to abiotic stress are quite rare, given that lipids are an essential 
component of AM fungi. In this review, we analyze the existing 
literature, especially studies recently published in this respect, 
and we  speculate that the synthesis and metabolism of lipids 
may play a key role in AM  fungi to acclimate to abiotic stress. 
In general, under abiotic stress, the expression of AM  fungus-
specifically induced genes responsible for lipid biosynthesis 
(RAM2) and transfer (STR/STR2) from the roots to AM  fungi 
dramatically decreases in parallel with a severe suppression of 
mycorrhizal colonization and especially a more severe suppression 
of arbuscule abundance. This may be attributed to the enormous 
demand for PLs during arbuscule formation. Concomitantly, 
vesicle formation is suppressed because NLs are required in 
large amounts for this process. Under abiotic stress conditions, 
arbuscules become senescent and collapse at a relatively fast 
rate, which is accompanied by the hydrolysis and conversion 
of PLs to NLs. Neutral lipids are exported outside through 
EH to sustain the formation of new spores, which more easily 
occurs under stress conditions. ABA may act as a signaling 
molecule during this process, which promotes sporulation in 
AM  fungi.

Most, if not all, relevant studies have concentrated on 
the plant side with respect to the symbiosis of AM; few 
studies have paid close attention to the fungal side. This 
may be  due to the impedance of pure cultures of AM  fungi. 
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Since some interesting work has recently highlighted pure 
cultures of AM fungi, especially those concerning the uptake 
of environmental lipids by fungal hyphae (Sugiura et  al., 
2019) and the promotive effects of ABA on sporulation 
(Liu et  al., 2019), now is the right time to devote increased 
effort to strengthen these efforts. For instance, it is essential 
to clarify whether the enzymes hydrolyzing PLs in senescent 
arbuscules originate from plants or AM  fungi. If they are 
of plant origin, the elaborate cooperation between two 
symbiotic partners and signaling is attractive. Second, it is 
of the utmost importance to explore where ABA in AM fungal 
structures originates from and what results in the different 
distribution of ABA in various AM  fungal structures, as 
revealed by Esch et  al. (1994). More importantly, whether 
the process by which NLs produced from the hydrolysis of 
PLs in collapsed arbuscules are transported to the extraradical 
spores instead of the intraradical vesicles is related to the 
different distribution of ABA in intraradical and extraradical 
fungal structures merits further study. Overall, more studies, 

especially those on the side of AM  fungi, are needed to 
provide insights into the lipid biology of AM  fungi.
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