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Autophagy is a catabolic process that takes place under both normal and adverse
conditions and is important for the degradation of various organelles and proteins that
are no longer needed. Thus, it can be viewed as both a constitutive recycling machinery
and an adaptation mechanism. Increase in the activity of autophagy can be caused by
multiple biotic and abiotic stress factors. Though intensive research in the past decade
has elucidated many molecular details of plant autophagy, the mechanisms of induction
and regulation of the process remain understudied. Here, we discuss the role of ATG8
proteins in autophagic signaling and regulation with an emphasis on the significance of
ATG8 diversification for adapting autophagy to the changing needs of plants.
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INTRODUCTION

Plants are unable to escape from unfavorable environmental conditions or damaging interactions
with other organisms. Hence, in order to survive, they need to adapt to the changes in their
surroundings as fast as possible. Due to these characteristics, it is important for plants to efficiently
acquire essential elements, produce and reuse metabolites, and optimize energy consumption by
recycling of cellular components.

One mechanism to degrade and recycle cytoplasmic material and provide building blocks in
eukaryotic cells is autophagy (Li and Vierstra, 2012; Liu and Bassham, 2012; Avin-Wittenberg
et al., 2018). Microautophagy occurs through invagination of the tonoplast engulfing cytoplasmic
material in autophagic bodies while macroautophagy, hereafter referred to as autophagy, involves
the formation of a cup-shaped phagophore which closes to form the autophagosome. Research
conducted in the yeast Saccharomyces cerevisiae identified the main players in autophagy and
revealed the detailed molecular mechanisms of autophagic degradation (Tsukada and Ohsumi,
1993; Noda et al., 1995; Ohsumi, 2001). Further studies with model organisms, including
Arabidopsis thaliana, demonstrated high degree of conservation for the autophagic proteins in
plants (Liu and Bassham, 2012).

The induction of autophagy in plants involves several protein kinases (Figures 1A,B). The
best studied example is the target of rapamycin (TOR) kinase which is a negative regulator of
autophagy and its downregulation or inhibition leads to constitutive activation of autophagy (Liu
and Bassham, 2010). TOR belongs to the TORC1 complex together with its target recognition
cofactor REGULATORY-ASSOCIATED PROTEIN OF mTOR (RAPTOR), and the stabilizer
LETHAL WITH SEC13 8 (LST8) (Shi et al., 2018). Once activated, the TOR kinase transfers the
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FIGURE 1 | Autophagy sensors and regulators with or without the involvement of the TOR kinase. (A) Sugars, mineral nutrients, amino acids, and ROS affect
autophagy. Glucose activates TOR while the lack of it inhibits the TOR kinase thus activating autophagy. Furthermore, SnRK1 kinase can be involved in sugar
sensing upstream of TOR. Low availability of nutrients activates autophagy with C and N starvation acting through TOR inhibition. P-deficiency stimulates autophagy
independently of TOR, although LST8 was shown to act as an intermediate. Lack of Fe, Zn, and Mn also activates autophagy but the participation of TOR is not
clear. Changes in the levels of branched chain amino acids, with or without the involvement of TOR have been reported to modulate TOR and autophagic activity in
mammals. However, the only well-studied amino acid in plants in this aspect is cysteine where the levels of the sulfur precursor affect the activity of the TOR kinase
itself, while the C/N precursor levels are perceived by GCN2 kinase. ROS can activate autophagy via TOR inhibition or directly influencing multiple ATG
genes/proteins downstream of the TOR kinase. (B) Phytohormones modulate the activity of TOR and/or autophagy. Auxin (NAA) stimulates TOR thereby inhibiting
the autophagy process. Brassinosteroids are also able to inhibit autophagy through TOR activation while autophagy itself can affect BR signaling by degrading
components of it. ABA is involved in an interplay with the TOR kinase by inhibiting its activity under stress, thereby promoting autophagy, while under favorable
conditions TOR suppresses ABA signaling. A direct connection between ABA and autophagy is indicated by the involvement of two ATG8-interacting proteins ATI1
and ATI2 in ABA-mediated germination and salt tolerance. The presence of less GA in autophagy mutants indicates its possible involvement in autophagy regulation
although the exact mechanisms have not been established. Ethylene stimulates autophagy by directly activating ATG8 homologs or via ROS. The exact relationships
of JA and CK with TOR and autophagy have not been established. SA stimulates autophagy involved in senescence and plant immunity possibly with the
involvement of ROS. NO can regulate hypoxia responses by S-nitrosylating various proteins including the master regulator of NO signaling S-nitrosoglutathione
reductase thus exposing its ATG8-interacting motif and targeting it for degradation. TOR, target of rapamycin; RAPTOR, regulatory-associated protein of mTOR;
LST8, lethal with sec 13 8; SnRK1, sucrose non-fermenting related kinase 1; GCN2, general control non-depressible 2; ROS, reactive oxygen species; ATG,
autophagy-related; NAA, naphthaleneacetic acid; 6-BA, 6-benzyladenine; GA3, gibberellic acid; JA, jasmonic acid; ABA, abscisic acid; SA, salicylic acid; ET,
ethylene; BR, brassinolide; NO, nitric oxide.

signals downstream by phosphorylating the ATG1/ATG13
complex thus stimulating autophagic vesiculation that involves
the decoration of the phagophore with phosphatidylinositol-3
phosphate (PI3P) and the delivery of lipids to the expanding
phagophore (Suttangkakul et al., 2011). The ubiquitin-like ATG8
is then processed by the cysteine protease ATG4, which leads
to the exposure of the c-terminal glycine of ATG8, allowing
its recruitment to the phagophore through the attachment of
the phospholipid phosphatidylethanolamine (PE) (Kirisako et al.,
2000). Following closure, the newly formed double membrane
delimited autophagosome is transported to the vacuole and fuses
with the tonoplast, subsequently releasing its single-membrane
content as an autophagic body into the vacuole.

Autophagy in plants was initially described as a system
for bulk recycling of cytoplasmic material (Bassham, 2009).
However, it is becoming increasingly evident that the process
can be highly selective and requires strict regulation on multiple
levels. An enormous body of studies of autophagy in plants
elucidated the functions of core components and has been
discussed in multiple excellent review articles (Ohsumi, 2001;

Marshall and Vierstra, 2018; Shi et al., 2018; Yoshimoto and
Ohsumi, 2018). Although some aspects of autophagy modulation
have been well-studied, the detailed mechanisms remain elusive.
In this review, we focus on regulation of autophagy mainly
through ATG8 diversification and specialization.

TOR KINASE AS A CENTRAL
MODULATOR OF ATG PROTEINS

Small molecules, mineral nutrients, reactive oxygen species
(ROS) and phytohormones can influence the activity of
autophagy and ATG proteins in plants in a TOR-dependent
manner. Amino acid availability and abundance of their
degradation products affect metabolic and developmental
processes (Hildebrandt et al., 2015) including autophagy (Meijer
et al., 2015). However, only cysteine has been described in
detail in plants, with sulfur availability being sensed by the
TOR kinase and the carbon/nitrogen (C/N) precursors by
GENERAL CONTROL NON-DEPRESSIBLE2 (GCN2) kinase
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(Dong et al., 2017) (Figure 1A). High levels of sulfur lead to
increased glucose levels, and subsequently activate TOR, whereas
reduced glucose levels during sulfur deficiency or impaired
photosynthesis inhibit TOR and activate autophagy (reviewed
in Fu et al., 2020). Glucose is the likely transmitter of the
signal between sulfur and TOR (Dong et al., 2017) but whether
it could convey the availability of other nutrients in the
context of autophagy is unclear. The mechanisms of GCN2
perception in plants are unknown, although GCN2 activation
by uncharged tRNAs appears to be universal in eukaryotes (Li
et al., 2013) (Figure 1A). Prolonged carbon starvation (Huang
et al., 2019) and phosphate deficit which causes ER stress
(Naumann et al., 2019) induce autophagy independently of TOR,
although recent research in Chlamydomonas suggests LST8, the
stabilizer of TOR, is involved in phosphate starvation response
(Couso et al., 2020).

The connection between autophagy and nitrogen metabolism,
transport, and remobilization has been explored by the Masclaux-
Daubresse lab and is covered in recent reviews (Masclaux-
Daubresse et al., 2017; Chen et al., 2018). We will only mention
that N depletion strongly inhibits TOR and activates autophagy,
although its deficit also leads to accumulation of sugars, including
glucose, which activates TOR and inhibits autophagy (Cao
et al., 2019). Zinc deficit has also been shown to induce
autophagy in Arabidopsis thaliana although the mechanisms
are unclear (Shinozaki et al., 2020). In mammalian cells, iron
is released from storage by Nuclear Receptor Coactivator4
(NCOA4) autophagy receptor mediated ferritin degradation in
the lysosome (ferritinophagy) (Mancias et al., 2014; Mancias et al.,
2015). In plants, multiple autophagy mutants of Arabidopsis have
impaired translocation of iron, zinc and manganese, to the seeds,
suggesting that deficit of these elements could induce autophagy
(Pottier et al., 2018) (Figure 1A).

Phytohormones have been shown to regulate the TOR kinase
and thus have the potential to affect TOR-dependent autophagy
(reviewed in Fu et al., 2020). For example, auxin inhibits stress-
induced autophagy by stimulating TOR activity (Schepetilnikov
et al., 2017) (Figure 1B) or blocking autophagosome formation
under certain stresses (Pu et al., 2017). Brassinosteroids (BRs)
use the TOR kinase to inhibit autophagy and enhance their
signaling through brassinazole-resistant (BZR)1 transcription
factor at the same time (Zhang et al., 2016) (Figure 1B). BZR1
itself was shown to activate the transcription of the autophagy
adaptor Neighbour of BRCA (NBR)1, promoting its own selective
degradation (Chi et al., 2020). Direct involvement of gibberellins
(GA) in the regulation of autophagy is unclear although lower
levels of GA were detected in the rice autophagy mutant osatg7-
1 (Kurusu et al., 2017). The stress hormone abscisic acid (ABA)
represses TOR activity (Wang et al., 2018), leading to autophagy
activation while TOR itself inhibits ABA signaling under
favorable environmental conditions. High levels of salicylic acid
(SA) have been associated with autophagy-mediated senescence
and programmed cell death (PCD) (Yoshimoto et al., 2009).
In Arabidopsis, SA also accumulates during flooding increasing
ROS levels, and stimulating autophagy (Chen et al., 2015). Both
SA and PCD are strongly associated with pathogen response and
plant immunity (Liu et al., 2016; Leary et al., 2019). Autophagy

regulation in the context of plant immunity is extensively covered
in other recent reviews (Üstün et al., 2017; Leary et al., 2019).

FINE-TUNING AUTOPHAGY THROUGH
ATG8

One of the proteins central to the autophagic process, the
ubiquitin-like ATG8, usually requires activation through post-
translational cleavage by the ATG4 protease at the c-terminus.
This process seems to be controlled for instance by ROS, that
were shown to activate ATG4 in Chlamydomonas (Pérez-Pérez
et al., 2012, 2016). Both ATG8 and ATG4 have more than one
homolog in most plant species and several ATG4 homologs have
been shown to interact preferentially with distinct ATG8 iso-
forms (Woo et al., 2014; Seo et al., 2016). These observations
imply that ATG8s and ATG4s could contribute to fine-tune
specific and efficient induction of autophagy.

ATG8 can interact with receptor and adaptor proteins
containing either ATG8-interacting motif [AIM/LIR; LIR-
docking site (LDS)] or Ubiquitin-interacting motif [UIM; UIM-
docking site (UDS)] (Marshall et al., 2019). UDS-interacting
adaptors are the proteasome degradation subunit Regulatory
particle non-ATPase (RPN)10 and the proteins from the Plant
Ubiquitin Regulatory X Domain (PUX) family, which have
diverse cellular functions (Marshall et al., 2015; Wen and
Klionsky, 2016). LDS-interacting are NBR1 and the ATI (ATG8-
interacting protein)1 and ATI2 proteins targeting plastid proteins
for degradation upon carbon starvation (Honig et al., 2012;
Michaeli et al., 2014). Known autophagy receptors are: the
Arabidopsis Orosomucoid (ORM) proteins 1 and 2, involved
in Flagellin-Sensing 2 (FLS2) receptor kinase degradation (Yang
et al., 2019); DSK2, targeting the brassenosteroid pathway
regulator BES1 for degradation (Nolan et al., 2017); the
Arabidopsis TSPO protein regulating the levels of PIP2;7
aquaporin on the cell surface (Hachez et al., 2014). Most recently,
a dehydrin in Medicago truncatula MtCAS31 was found to
promote autophagy under drought stress through interaction
with ATG8 (Li et al., 2019). Autophagy in the context of hypoxia
responses can be regulated by nitric oxide (NO) which can
S-nitrosylate various proteins including the master regulator of
NO signaling S-nitrosoglutathione reductase, thus exposing its
ATG8-interacting motif and targeting it for degradation (Zhan
et al., 2018). It is unclear whether the highly variable AIM/LIR
provides another layer of specificity in terms of different ATG8
iso-forms interacting with different variants of the motif.

Given the diversity of ATG8s in higher plants, it is difficult
to conclude on the importance of each iso-form based on
single knockout mutants due to functional redundancy. Different
ATG8s appear to be induced by varying stress factors or to
alleviate them although some overlap has been discovered
(Vanhee et al., 2011; Xia et al., 2012; Luo et al., 2017; Chen
et al., 2018; Li et al., 2019). The ability of different ATG8 iso-
forms to interact with different effectors implies the existence of
unique functions of the ATG8 homologs. Unfortunately, all the
functional data so far have been obtained from a handful of model
organisms and is not equally covering all the homologs. While it
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FIGURE 2 | ATG8 analysis. (A) Schematic representation of cleavable and non-cleavable ATG8 iso-forms in Arabidopsis. (B) The table lists the homologs in the
ATG8h-i group for a given species, the total number and the number of homologs with an exposed glycine. In some cases, the ATG8h-i group members have been
secondarily lost such as in C. annuum and Z. mays. (C,D) Phylogenetic tree of ATG8h-i homologs of selected mono- and eudicot species and gymnosperms and
orchids, respectively. Protein coding sequences were taken from Phytozome 12 (Goodstein et al., 2012) in (C) and from Gymno Plaza 1.0 (Proost et al., 2009) and
Orchidstra 2.0 (Chao et al., 2017) for (D). (C) Unicellular algae have a single ATG8, while mosses can have one or multiple homologs both groups clustering together
and completely separately from the ATG8h-i group of homologs of the higher plants. Some homologs of the ATG8h-i group have an exposed catalytic glycine
(marked with an asterisk) such as all the sequenced Brassicaceae species. ATG8h-i members with and without an exposed glycine could be in the same species.
The ATG8h-homologs are shown in blue and the ATG8i-homologs are depicted in green. The algae/mosses group is shown in black. In (C), all homologs with an
exposed catalytic glycine are marked with an asterisk and the entire segment of the tree is colored in orange and the cleavable iso-forms are colored in blue. (D) The
clades are indicated next to the tree, while the homologs with an exposed G are marked with an asterisk. The Evolutionary analysis was conducted using
the Maximum Likelihood method and General Time Reversible model (Nei and Kumar, 2000) for both (C,D). The bootstrap consensus tree inferred from 1000 replicates

(Continued)
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FIGURE 2 | Continued
is taken to represent the evolutionary history of the taxa analyzed (Felsenstein, 1985). Branches corresponding to partitions reproduced in less than 50% bootstrap
replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to
the branches and the ones equal to or above 60% are indicated by a bold black line (Felsenstein, 1985). Initial trees for the heuristic search were obtained
automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the maximum composite likelihood (MCL) approach,
and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites [5
categories (+ G, parameter = 0.9115)]. The rate variation model allowed for some sites to be evolutionarily invariable ([ + I], 15.22% sites). This analysis involved 45
and 19 protein coding nucleotide sequences with 335 and 309 positions in the final dataset for (C) and (D) respectively. Evolutionary analyses were conducted in
MEGA X (Kumar et al., 2018; Stecher et al., 2020). (E,F) Relative abundance of ATG8 transcript and protein, respectively, based on a dataset from Mergner et al.
(2020) (data file 41568_2020_2094_MOESM4) containing experimental data for 30 different tissues and in both (E) and (F) non-transformed values were used for
generating the graphical representation. Transcript abundance was estimated using TPM (transcript per million) and protein abundance estimation was based on
iBAQ (intensity-based absolute quantification). ATG8 protein iso-forms a, d, and f can be found in every tissue examined. Values are for selected organs, tissues, and
developmental stages: SD – dry seed; RT – root; CT – cotyledon; LFP – rosette leaf 7 proximal part; LFD – rosette leaf 7 distal part of the leaf; CLLF – cauline leaf 1;
PT – petal; CP – carpel; P – pollen; EB – embryo; SCLF – senescent leaf.

is essential that more in vivo and in planta data are acquired, in
the next section we use existing resources such as available plant
genomes together with transcriptomics and proteomics data to
explore ATG8 specificities in the plant kingdom.

SIGNIFICANCE OF THE ATG8 DIVERSITY

ATG8 proteins have shown a tendency toward increase
in number of iso-forms and diversification in multicellular
organisms. Yeast and algae have a single homolog while in
the genomes of higher plants, multiple homologs can be
found (Kellner et al., 2017). The nine iso-forms (ATG8a-i) of
Arabidopsis have been investigated more in depth revealing that
they belong to three separate groups – a-d, e-g, and h-i (Seo et al.,
2016; Kellner et al., 2017). A characteristic of many members of
the ATG8h-i group is that they have an exposed catalytic glycine
residue, and do not require cleavage by the ATG4 protease for
activation (Figure 2A) (Seo et al., 2016; Kellner et al., 2017).

Analyzing several model and crop species showed that the
presence of ATG8h-i group members is not strictly associated
with the total number of ATG8 homologs in each species
(Figure 2B). For example, in maize (Zea mays), none of the
four ATG8s belong to the ATG8h-i group, while one of the
four rice (Oryza sativa) homologs is cleavage-free. Additionally,
while Medicago (Medicago truncatula) and soybean (Glycine
max) have two ATG8h-i iso-forms each, only one in Medicago
is cleavage-free. The rapeseed (Brassica napus) has six h-i
homologs, all ending with a glycine (G) and as the plant is a
recent alopolyploid (Lu et al., 2019), it could serve as a model
to study ATG8 diversification and mechanisms of retention.
While Brassicaceae species have only ATG8h-i iso-forms with an
exposed glycine, some ATG8i-homologs from other taxonomic
groups have additional amino acids at the C-terminus. The
cleavage-free and cleavage-requiring forms separate from each
other as shown by Maximum likelihood analysis (Figure 2C).
It is yet to be established whether this exposed glycine residue
provides any advantage to the ATG8 protein that possesses it.
If cleavage free iso-forms are constitutively active, they might
be important for fast induction of autophagy under stress
conditions. However, involvement in a developmental process
cannot be excluded based on the current understanding of the
iso-forms which prompted further analyses of the ATG8 family.

Exploring several gymnosperm genomes indicated, that while
acquisition of multiple ATG8 homologs can be associated with
multicellularity, the non-cleavable forms appeared together with
seeds. Interestingly, the gymnosperms homologs with an exposed
G belong to the a-d group (Figure 2D) and the limited number
makes it difficult to conclude on their significance. Analyzing
additional mono- and dicots such as the primitive Amborella
trichopoda (Amborellaceae family) (Endress and Igersheim, 2000)
and members of theOrchidaceae family, showed that cleavage free
ATG8s exist in each case and with only two exceptions belong
to the h-i group (Figure 2D). Whether the mass appearance
of cleavage free ATG8s can be associated with any of the
characteristics new to seed plants remains to be investigated. It
is however established, that autophagy plays an important role in
male reproduction in plants (reviewed in Norizuki et al., 2020)
and in rice, endosperm development (Sera et al., 2019). However,
the current advances in ATG8s do not allow conclusions on
specific functions of the homologs to be made. A step in the
right direction would be investigating the possible unique roles
of ATG8 iso-forms.

EXPRESSION AND ABUNDANCE OF
ATG8s

In order to estimate the potential for diversity of function of the
ATG8s, we next analyzed data from two recent large-scale studies
dealing with transcriptional regulation and with proteomics,
respectively, conducted in Arabidopsis. The first study identified
225 transcription factors (TFs) by yeast one-hybrid screen able
to bind the promoters of four ATG8 genes, namely ATG8a, b, e,
and h (Wang et al., 2019) and thus having the potential to activate
their transcription. Surprisingly, only 19 of those TFs were shared
by all four genes. The ATG8e promoter interacted with 71 unique
TFs. Transcriptional activation by phytohormones such as ET
can affect the expression of various ATG genes which makes it
essential for survival during submergence in Arabidopsis (Chen
et al., 2015; Hartman et al., 2019), most likely mediating the
switch from hypoxia-associated fermentation to degradation of
amino acids and fatty acids (Okuda et al., 2011; Zhu et al.,
2018) (Figure 1B). ET is also able to stimulate the expression
of ATG8 homologs specifically in autophagy-dependent pollen
development in petunia (Petunia hybrida) likely through ROS
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signaling or direct binding to their promoters (Okuda et al., 2011;
Zhu et al., 2018). It is however currently unknown whether ET
has identical affinity toward all ATG8 promoters.

Apart from the evidence for differential transcriptional
regulation of the ATG8 homologs, differences in protein levels
have recently been documented by large scale quantitative
transcriptome and proteome analysis of 30 different tissues
(Mergner et al., 2020). While all ATG8 genes seem to be expressed
in every analyzed tissue (Figure 2E), only AtATG8a, d, and f
protein iso-forms are ubiquitously present (Figure 2F). Notably,
in root, petal, carpel and senescing leaves all ATG8 proteins can
be found and ATG8a appears to be the predominant iso-form
in all tissues (Figure 2F) (Mergner et al., 2020). The AtATG8h
protein is very strongly expressed in pollen and dry seed,
reflecting high mRNA levels in the same tissues, but completely
missing in rosette and cauline leaves. The other member of the
clade, AtATG8i, also has the highest relative protein abundance
in senescent leaves but is also strongly present in pollen and
dry seed, and cotyledons also contain relatively high levels.
One possible explanation for the discrepancies in transcript and
protein abundance of the ATG8 could be different turnover rates
of the proteins. It also remains to be established to what extent the
exposed c-terminal glycine could offer an advantage in different
autophagy inducing conditions and whether the h and i iso-forms
would require some other type of activation.

DISCUSSION

The presence of multiple regulation targets providing grounds
for activity modulation of autophagy could be considered as an
indicator that such intricate regulatory system is in fact necessary.
It is without a doubt, that understanding the molecules and
signals affecting the autophagy machinery would contribute to
the elucidation of autophagy induction and regulation.

One of the most upstream targets of autophagy modulation,
the TOR kinase, has recently featured in a phosphoproteomic

screen combined with targeted proteomics analysis of interacting
proteins, in Arabidopsis thaliana, identifying potential upstream
and downstream components of the TOR network (Van Leene
et al., 2019) that could be investigated together with many non-
protein molecules in relation to autophagy regulation.

Increase in number of iso-forms and diversification of ATG8
in plants along the course of evolution might reflect the need
to accommodate the requirements of the increased complexity
of flowering species. It is possible that iso-form specific or
clade-specific ATG8 functions exist or that certain homologs
are more abundant in autophagosomes under given conditions,
in specific tissues and organs or during certain developmental
stages. Additionally, exploring the specificity of the ATG8
interactions and the significance of the cleavage free iso-forms,
also by obtaining more functional data could further clarify the
diversity of the ATG8 homologs in plants and contribute to the
understanding of autophagy induction and regulation. In this
line of thought, clarifying the molecular mechanisms regulating
ATG4 and ATG8 would provide more insight into the process of
fine-tuning autophagy.
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