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Industrial hemp (Cannabis sativa L.) is a diploid (2n = 20), dioecious plant that is grown 
for fiber, seed, and oil. Recently, there has been a renewed interest in this crop because 
of its panoply of cannabinoids, terpenes, and other phenolic compounds. Specifically, 
hemp contains terpenophenolic compounds such as cannabidiol (CBD) and cannabigerol 
(CBG), which act on cannabinoid receptors and positively regulate various human 
metabolic, immunological, and physiological functions. CBD and CBG have an effect on 
the cytokine metabolism, which has led to the examination of cannabinoids on the 
treatment of viral diseases, including COVID-19. Based on genomic, transcriptomic, and 
metabolomic studies, several synthetic pathways of hemp secondary metabolite production 
have been elucidated. Nevertheless, there are few reports on hemp metabolic engineering 
despite obvious impact on scientific and industrial sectors. In this article, recent status 
and current perspectives on hemp metabolic engineering are reviewed. Three distinct 
approaches to expedite phytochemical yield are discussed. Special emphasis has been 
placed on transgenic and transient gene delivery systems, which are critical for successful 
metabolic engineering of hemp. The advent of new tools in synthetic biology, particularly 
the CRISPR/Cas systems, enables environment-friendly metabolic engineering to increase 
the production of desirable hemp phytochemicals while eliminating the psychoactive 
compounds, such as tetrahydrocannabinol (THC).

Keywords: cannabinoid, CRISPR/Cas, Cannabis sativa, metabolic engineering, RNA interference

INTRODUCTION

There is evidence of the historical use of industrial hemp (Cannabis sativa L.) in human 
civilization for both its phytochemical and lignocellulosic biomass properties. Hemp’s native 
origin appears to be  Eurasia with distribution around the world primarily as a fiber crop 
(Frassinetti et al., 2018). The emergence of petrochemical-derived polymer fiber sources decreased 
the demand for hemp; however, its use as a food and feed supplement has increased because 
it contains essential fatty acids (omega-6 and omega-3), easily digestible proteins (albumin and 
edestin) and enhanced levels of the amino acid arginine, which has indications for cardiovascular 
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health (Bonini et  al., 2018). Recently, more attention has been 
given to its rich repertoire of pharmaceutical compounds (Izzo 
et  al., 2009; Degenhardt et  al., 2017).

To date, more than 540 phytochemicals have been reported 
in hemp (Andre et  al., 2016). Of these, cannabidiol (CBD) is 
generally most abundant and promising phytochemical as it 
has shown potential as a therapeutic agent in preclinical models 
of central nervous system diseases (Hill et  al., 2012). Unlike 
tetrahydrocannabinol (THC), which has been associated with 
numerous side effects (Russo, 2011), CBD has an extremely 
safe profile in humans (Pertwee, 2008; Zuardi, 2008). Recently, 
the FDA has approved CBD (epidiolex) as an anticonvulsant 
drug (Brown and Winterstein, 2019). Additionally, hemp produces 
other cannabinoids and terpenes that exhibit a wide array of 
pharmacological properties (McPartland and Russo, 2001; Izzo 
et  al., 2009; Russo, 2011). Since there is an increased demand 
for hemp-derived medicinal products, it is imperative to adapt 
biotechnological methodologies to generate new hemp strains 
with significant quantities of phytochemicals of medical interest.

Synthetic pathways for representative cannabinoids and 
terpenes have been elucidated (Figure  1), but the metabolic 
engineering of the pathway genes, enzymes, and metabolite 
regulation remains to be  studied (Bonini et  al., 2018). Thus, 
the development of an efficient regeneration and stable 
transformation system is essential. In this review, we  present 
the strategies of target gene selection for hemp metabolic 
engineering. Challenges and opportunities to utilize transient 
and stable gene expression approaches are also discussed 
toward achieving a reliable metabolic engineering system 
in hemp.

STRATEGIES OF TARGET GENE 
SELECTION FOR ENHANCING 
PHYTOCHEMICAL YIELD IN HEMP

Manipulation of single that genes encode biosynthetic enzymes 
attempt to target genes that regulate the supply of precursors 
for the synthetic pathway that usually regulate flux into the 
pathway (targeting precursor-synthesizing gene), or rate-limiting 
step enzyme coding genes (targeting phytochemical pathway 
gene). Genetic engineering now permits more explicit 
manipulation of these metabolic fluxes (O’Connor, 2015), where 
we  suggest that the native Cannabis host represents an ideal 
platform for this commercialization that is currently limited 
by the limitations of applicability of current biotechnological tools.

Targeting Phytochemical Pathway Gene
A focus on rate-limiting step is particularly effective for 
demonstrating function, as it permits confirming biochemistry 
in the absence of a background. This is exemplified in work 
of Sirikantaramas et  al. (2004) who introduced the 
tetrahydrocannabinolic acid synthase (THCAS) gene in tobacco 
to synthesize THCA from cannabigerolic acid (CBGA), which 
was exogenously through roots. With this strategy, the 
composition of cannabinoids can be modified to more desirable 
such as high cannabidiolic acid (CBDA) or CBGA contents 
by overexpression of CBDA synthase (CBDAS) or aromatic 
prenyl transferase/PT4, respectively. Knockout of THCA by 
silencing THCA synthase (THCAS) will be  expected, given 
the fact that other plant-derived prenyl-compounds are difficult 

FIGURE 1 | Biosynthetic pathways for cannabinoids and terpenoids in hemp. CBCA, cannabichromenic acid; CBDA, cannabidiolic acid; CBGA, cannabigerolic 
acid; DMAPP, dimethylallyl diphosphate; FPP, farnesyl diphosphate; GGPP, geranylgeranyl pyrophosphate; GPP, geranyl diphosphate; HMBPP, (E)-4-hydroxy-3-
methyl-but-2-enyl pyrophosphate; IPP, isopentenyl diphosphate; MEP, methylerythritol phosphate; MVA, mevalonate; THCA, tetrahydrocannabinolic acid. Created 
with BioRender.
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to isolate from psychoactive THCA due to the structural 
similarity (Valliere et  al., 2019). The quantity of CBGA will 
also be  increased by simultaneous silencing of THCAS and 
CBDAS. Besides, silencing of both THCAS and CBDAS will 
expedite the production of minor cannabinoid, 
cannabichromenic acid (CBCA) which is difficult and expensive 
for pharmacological studies in clinical trials because of low 
abundance (Gülck and Møller, 2020).

Targeting Precursor Synthesizing Gene
Enzyme capacity for metabolism would be reasonably matched 
to the substrate availability for a pathway. Therefore, the ability 
to increase product formation with targeting phytochemical 
pathway gene will logically be quickly limited by the metabolite 
flux of upstream precursors (Balcke et al., 2017). In this scenario, 
metabolic engineering to increase precursor of synthetic pathway 
has been demonstrated to progressively increase downstream 
products (Ku et  al., 2020). For the engineering of cannabinoid 
synthesis genes, the supply of the high amount of 
geranyldiphosphate (GPP), which is a substrate to synthesize 
CBGA is essential. GPP is produced from isopentenyl diphosphate 
(IPP) in plastid (Figure  1), thus the overexpression of GPP 
synthase or activating MEP-pathway genes that resulted in 
higher IPP concentration in the plastid will be useful (Schachtsiek 
et al., 2018). Olivetolic acid, which is other substrate for CBGA 
synthesis, is formed from hexanoyl CoA by both tetraketide 
synthase and olivetolic acid cyclase. According to Stout et  al. 
(2012), the concentration of hexanoyl-CoA paralleled the 
accumulation of the CBDA, which indicates that the synthesis 
of hexanoyl-CoA will be  rate-limiting step in cannabinoid 
biosynthesis. Thus, overexpression of two isoforms for acyl-
activating enzyme (AAE) 1 and 3 will lead to increase the 
supply of hexanoyl-CoA. Importantly, comprehensive gene 
expression was studied in nine Cannabis strains with different 
phytochemical content, which revealed crosstalk between 
cannabinoid and terpene accumulation (Zager et  al., 2019). 
Further study will provide an insight to understand which 
precursors need to be supplied in excess to increase the synthesis 
and accumulation of target metabolites.

Pathway Activation
Unlike microbial metabolite pathways that are often polycistronic, 
the genes for plant secondary metabolites are scattered throughout 
the vast plant genomes. The manipulation of genes that are 
linked though transcription factors provides a means to upregulate 
a pathway, but circumventing the signal transduction that 
precedes coordinated regulation such as a pathogen defense 
response. This strategy has been applied to many plant secondary 
metabolites, including anthocyanins in Arabidopsis (Liu et  al., 
2018; Outchkourov et  al., 2018), flavonoids in tomato (Stracke 
et  al., 2007; Luo et  al., 2008), and alkaloids in Catharanthus 
roseus (Van Moerkercke et  al., 2015; Pan et  al., 2019) by 
upregulation of transcription factors. In Cannabis, van Bakel 
et  al. (2011) identified several dozen transcription factors that 
are likely to play roles in the regulation of the THC synthesis 
pathway. Additionally, Marks et  al. (2009) demonstrated the 

function of two MYB-domain transcription factor that seem 
to regulate the cannabinoid synthesis in the Cannabis trichome. 
These transcription factors are targets to activate cannabinoid 
synthesis. Notably, cannabinoid synthesis is expedited by UV 
light application or heavy metal (Zhang and Björn, 2009; Husain 
et  al., 2019). The elucidation of signal transduction triggered 
by these elicitors may lead to the discovery of positive and 
negative regulators of signal transduction, which will be  the 
target genes for hemp metabolic engineering.

Alternative Platforms for Hemp 
Phytochemical Production
The nature of metabolic engineering introduces the opportunity 
to not only examine a native production platform for a 
biochemical, but also the potential to move that biosynthesis 
into an alternative host. Microbial platforms have served as 
elegant platforms for the elucidation of plant metabolite function 
(Pyne et  al., 2019), and will likely be  extremely valuable in 
elucidating yet unknown enzymatic conversions in hemp 
cannabinoids. For higher value, and immediate market-driven 
production, platforms such as this can be  expected to provide 
specific metabolites in hemp. Recently, CBDA was synthesized 
in yeast via the introduction of the MEP pathway, GPP pathway, 
hexanoic acetate pathway, and CBDA synthesis pathway (Zirpel 
et  al., 2017; Luo et  al., 2019). On the other hand, heterologous 
production in other plant species is still a challenge. It is not 
unusual for heterologous metabolite production platforms to 
lack physiological requirements for the high productivity that 
can be  observed in native systems (Schachtsiek et  al., 2018). 
In cannabinoid synthesis, toxicity effects must be  considered, 
as several cannabinoid pathway metabolites such as CBGA 
and THCA cause cell death via apoptosis in host plant 
(Sirikantaramas et al., 2005). In hemp, olivetolic acid synthesized 
in cytosol is transferred to plastid, where olivetolic acid and 
geranyl-PP are converted into CBGA, which is finally released 
to apoplast (Gülck and Møller, 2020). It will be  critical to 
elucidate the mechanism underlying transport and accumulation 
of metabolites and apply it to better hemp phytochemical 
production in other plant species commercially (Table  1). 
Looking toward the future of hemp “designer lines” to produce 
various phytochemicals, we  now focus the remainder of this 
review on the challenge of advancing biotechnological methods 
of plant transformation and regeneration as it applies to hemp.

Transgenic Gene Delivery Systems
Tissue Culture and Stable Transformation
To establish an efficient transformation system, the development 
of a hemp regeneration protocol is critical. Until recently, a 
variety of explants such as leaf, hypocotyl, cotyledon, stem, 
axillary bud, petioles, and shoot tips were tested with the 
combination of different auxins and cytokinins for the purpose 
of direct or indirect regeneration (Table  2). Lata et  al. (2009a) 
demonstrated the induction of high-frequency shoot regeneration 
from nodal segments containing axillary buds using thidiazuron 
(TDZ). Lata et  al. (2010) obtained the highest shoot induction 
rate at 0.5  μM TDZ in callus, whereas Chaohua et  al. (2016) 
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demonstrated the highest shoot induction at 2.0  μM TDZ in 
the cotyledon. Wielgus et al. (2008) tested various combinations 
of plant growth regulators and obtained regenerated plants on 
MS medium containing benzoic acid herbicide: DICAMBA. 
A cytokinin meta-topolin was also effective for shoot regeneration 
from nodal explants (Lata et  al., 2016a). In vitro propagation 
has also been studied in C. sativa and reviewed by Lata et  al. 
(2017). Recently, Kodym and Leeb (2019) established a photo-
autotropic micropropagation system and obtained a 97.5% 
rooting rate from the in vitro generated shoot tip cuttings.

Subsequently, a few successful Cannabis transformation 
systems were reported by Lata et  al. (2017). Suspension cell 
culture and hairy roots were transformed via Agrobacterium, 
whereas the transformed tissues were not regenerated (Feeney 
and Punja, 2003). Hypocotyl was inoculated with Agrobacterium, 
and the shoot was produced in MS media containing 
6-benzylaminopurine and zeatin, which resulted in complete 
hemp transgenic plant (Sirkowski, 2012, United  States Patent 
application 20120311744A1). Nevertheless, Cannabis regeneration 
and stable transformation are still limited to specific varieties, 
and a reliable transformation protocol has not been established 
(Salentijn et  al., 2019), partially because of limited breeding 
that could establish homogenous lines.

It is worth highlighting that plant mechanism underlying 
somatic embryogenesis (SE) and subsequent regeneration system 
has been elucidated, and key regulators of plant cell totipotency 
were identified (Figure  2; Horstman et  al., 2017; Méndez-
Hernández et al., 2019). Upregulation of morphologic regulator 
(MR) genes has promoted regeneration rate in both 
monocotyledonous species (Lowe et  al., 2016; Mookkan et  al., 
2017; Hoerster et  al., 2020) and dicotyledonous species (Deng 
et  al., 2009; El Ouakfaoui et  al., 2010; Florez et  al., 2015). 
The alteration of gene expression on hemp MR would open 
the door to enhance SE and facilitate the acquisition of 
regenerated and transformed hemp plants and developing a 
synthetic seed technology for commercialization of hemp clones.

Genome-Editing Technologies
The CRISPR-Cas system currently emerged as a genome 
editing tool with the simplicity of target design, high efficiency 
of editing, multiplex knock-in/out ability, and low cost 
(Jaganathan et  al., 2018). In plant metabolic engineering, 
CRISPR/Cas-mediated engineering is robust and convenient 
to generate knockouts of target genes via the DNA repair 
pathway: nonhomologous end-joining (NHEJ). Because of 
its ability to perform simultaneous gene knockouts, this 

TABLE 1 | Companies who have utilized genetic modification techniques to produce cannabinoids on an industrial scale.

Company and location Product detail

Canopy Growth Corp.; Smiths Falls, Canada Largest legal Cannabis company in the world and has partnerships/acquired the following companies: 
Ebbu; Spectrum Therapeutics; Canopy Innovation Lab; Storz & Bickel; Ebba, Battelle, Apollo, and 
Scientus.

Ebbu; 
Evergreen, CO, United States

Developed CRISPR–Cas9 to produce plants that secrete only CBD and only CBG.

Zenabis; 
Vancouver, Canada

Sells both recreational and medical Cannabis and have the following subset companies: Vida, Zen Craft 
Grow, Namaste, Blazery, and Re-Up.

Farmako; 
Frankfurt, Germany

Turned to Zymomonas mobilis bacterium to make 180 cannabinoids, including THC and CBD to use in 
Cannabis-based drug therapies.

Ginkgo Bioworks;  
Boston, MA, United States

Synthetic-biology company that worked with the Croncos Group to manufacture pure CBD and other 
cannabinoids in yeast.

Croncos Group; 
Toronto, Canada

Focuses on advancing Cannabis research, technology, and product development. Has a brand portfolio 
that includes PEACE NATURALS, COVE, SPINACH, Lord Jones and PEACE+.

Librede; 
Carlsbad, CA, United States

Synthetic-biology company with patent to use yeast (Saccharomyces cerevisiae) to synthesizing 
cannabinoids from sugars while being sustainable.

Demetrix;  
Emeryville, CA, United States

Uses Saccharomyces cerevisiae controlled fermentation to produce rare cannabinoids.

Maku Technologies; Durham, North Carolina, United States Focuses on producing rare, natural cannabinoids in yeast to increase research on cannabinoids.
InMed Pharamaceuticals; Vancouver, Canada Produces enzymes with Escherichia coli biofermentation to yield cannabinoids through the process of 

biotransformation and other purification stages. The cannabinoids can also be converted to other rare 
cannabinoids.

Renew Biopharma;  
San Diego, CA, United States

Uses Chlamydomonas reinhardtii to produce cannabinoids and uses the cannabinoids to target certain 
receptors that contribute to brain inflammation and chronic pain. Has a patent for the NphB enzyme in 
cannabinoid synthesis.

Teewinot Life Sciences; Tampa, Florida, United States Has a patent for a bioreactor designed to grow cannabinoid-producing microorganisms called 
CannSynthesis. Can produce 25 minor cannabinoids and are developing a library of cannabinoid 
analogs.

Trait Biosciences Toronto, Canada Identified a gene that when expressed in Cannabis leads to increased trichome production and 
upregulation of cannabinoids. Creates water-soluble cannabinoids, customizes cannabinoid profiles, and 
produces THC-free hemp.

InPlanta Biotechnology; Lethbridge, Canada Focuses on growing Cannabis with specific CBD/THC/terpenoid contents and breeding high CBD 
hemp.

Dewey Scientific;

Pullman, WA, United States

Offers scientific insights to Cannabis producers to increase efficiencies and crop yields while decreasing 
crop inputs by looking at molecular biology and traditional breeding.
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system can be used to eliminate undesired multiple branching 
pathways (Alagoz et  al., 2016; Sun et  al., 2017). Recent 
advances in multiplex genome-editing tools have made it 
possible to delete six tomato genes by expressing 12 gRNAs 
via the expression of a single CRISPR vector (Čermák and 
Curtin, 2017). This multiplex mutation system will be  highly 
useful for hemp metabolic engineering too, for instance, 
simultaneous knocking down of THCAS and CBDAS to 
increase the synthesis of minor cannabinoids with potential 
pharmaceutical values that are present in hemp but have 
not been studied because of their low quantity.

Although many CRISPR tools are most effective for the 
knockout of endogenous genes, the overexpression of endogenous 
genes via homology-directed repair (HDR) is still a challenge 
in many plant species (Hahn et  al., 2018). Targeting a 
cis-regulatory element is thus a viable alternative. A cis-regulatory 
element is a noncoding DNA region that contains binding 

sites for transcription factors or other proteins that control 
transcription. Recent research has demonstrated the enormous 
potential of editing cis-regulatory elements to regulate optimal 
gene expression denominated as “fine-tuning” (Shrestha et  al., 
2018; Wolter et al., 2019). Moreover, editing untranslated region 
(UTR) is also a useful approach for fine-tuning genes of interests 
given the fact that UTRs play an important role in the regulation 
of protein synthesis (Si et  al., 2020).

Base editing has emerged as a newly developed technique 
that enables direct, irreversible conversion of one base pair to 
another without disruption of a gene or requiring a donor 
template (Mishra et  al., 2020). Base editors such as cytosine 
base editor and adenine base editor are basically composed 
of cytosine or adenosine deaminase domain, respectively, and 
catalytically inactive CRISPR–Cas9 domain (Kang et  al., 2018). 
The base-editing system can generate a single-base change or 
single nucleotide polymorphisms (SNP), thereby facilitating 

TABLE 2 | Overview of previously reported tissue culture and stable transformation work in Cannabis sativa.

Explant Variety Reference

Seedlings Unknown Veliky and Genest, 1972
Root, hypocotyl, leaves, male, and female floral parts Unknown Itokawa et al., 1975
Leaves, bracts, anthers, and maturing leaves Mexican drug-type (152) and Turkish fiber-type (150) Hemphill et al., 1978
Epicotyls C. sativa var. indica Heitrich and Binder, 1982
Embryo, leaf, and stem Unknown Loh et al., 1983
Seedlings Unknown Hartsel et al., 1983
Stem, cotyledon, and root Unknown Fisse and Andres, 1985
Leaf THC dominant strain from South Africa Braemer and Paris, 1987
Leaf Carmagnola, Fibranova, Uniko, and Kompolti Mandolino and Ranalli, 1999
Seedlings Fedora 19 and Felina 34 Mackinnon et al., 2000
Stem and leaves Anka, Uniko-B, Felina-34, and Kompolti Feeney and Punja, 2003
Internodes, axillary buds, and petioles Silesia, Fibrimon-24, Novosadska, Juso-15, and  

Fedrina-74
Slusarkiewicz-Jarzina et al., 2005

Roots, leaves, and stem Beniko, Bialobrzeskie, and Silesia Plawuszewski et al., 2006
Leaves, flowers, and 4 days old seedlings Four-Way Raharjo et al., 2010
Cotyledon, stem, and root Bialobrzeskie, Beniko, and Silesia Wielgus et al., 2008
Nodal segments containing axillary buds MX-1 Lata et al., 2009a
Nodal segments with axillary buds MX-1 Lata et al., 2009b
Shoot tips Changtu Wang et al., 2009
Leaf Skunk Flores-Sanchez et al., 2009
Leaf MX-1 Lata et al., 2010
Nodal segments with an axillary bud MX-1 Lata et al., 2012
Hypocotyl Futura77, Delta-llosa, Delta405, CAN0111,  

and CAN0221
Wahby et al., 2013

Cotyledon and Epicotyl Iranian Cannabis Movahedi et al., 2015
Internodes Long-ma No.1 Jiang et al., 2015
Stem and leaves Anka Feeney and Punja, 2015
Leaf and hypocotyl Iranian Cannabis Movahedi et al., 2016a
Leaf and hypocotyl Iranian Cannabis Movahedi et al., 2016b
Cotyledons Dioecious hemp from Changsha, China Chaohua et al., 2016
Nodal segments with axillary buds MX-1 Lata et al., 2016a
Nodal segments MX-1 Lata et al., 2016b
Hypocotyl, cotyledons, and leaves Futura77, Delta-llosa, and Delta405 Wahby et al., 2017
Leaf Canda, Joey, Landrace, Futura, and CFX-2 

(Cherry × Workhorse)
Thacker et al., 2018

Seedlings Futura Gabotti et al., 2019
Hypocotyl segments Bialobriezskie, Tygra, Fibrol, Monoica,  

and USO-31
Smýkalová et al., 2019

Hypocotyl Ferimon, Felina32, Fedora17, USO31, and Finola Galán-Ávila et al., 2020
Seedlings BA-1, BA-2, BA-41, BA-49, BA-61, and BA-71 Page et al., 2020
Leaf GRC, RTG, U22, U31, U37, U38, U42, U61, U82, and U91 Monthony et al., 2020
Nodal and tip cuttings Epsilon 68 Wróbel et al., 2020
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plant breeding and basic research (Monsur et  al., 2020). In 
Cannabis, more than 14,000 SNPs were genotyped in both 
drug type and fiber type strains (Sawler et  al., 2015). Among 
them, several SNPs that are associated with Cannabinoid contents 
have been identified (Rotherham and Harbison, 2011; Onofri 
et  al., 2015; Borna et  al., 2017). These SNPs can be  good 
targets for hemp metabolic engineering via base editing with 
the aim of altering the property of cannabinoid content.

It is important to note that these three editing methods: 
CRISPR/Cas mediated gene mutation via NHEJ, fine-tuning of 
gene expression via cis-regulatory elements, and base editing 
follow a cisgenic approach (Holme et al., 2013; Hou et al., 2014) 
and therefore, do not introduce any exogenous genes. Consequently, 
it is easier to obtain public acceptance for commercializing hemp 
products obtained via these methods, especially for hemp 
consumers that are usually averse to products obtained from 
genetically modified plants (Schluttenhofer and Yuan, 2017).

Of the three methods discussed, the CRISPR/Cas9 system 
shows the broadest utility, and it would be  very beneficial to 

introduce CRISPR/Cas to hemp metabolic engineering for the 
following four reasons:

 1. Hemp is a diverse and polymorphic species (Weiblen 
et  al., 2015), and due to genome duplication, the gene 
copy number is high on many of hemp genes including 
phytochemical synthesis genes (van Bakel et  al., 2011), 
which require more studies to identify functional genes. 
This makes genetic engineering more complex in this 
plant. On the contrary, CRISPR/Cas9 enables the knockout 
of several homologous genes via a single editing step 
(Jacobs et  al., 2017).

 2. Most hemp varieties do not self-pollinate; it is not feasible 
to obtain homozygous plants by self-pollination. However, 
CRISPR makes it possible to mutate or modify the  
gene of interest in both alleles at one editing step such 
that homozygous plants can be  obtained in T0  
editing generation. Shen et  al. (2017) demonstrated that 
high efficiencies of site-specific double-stranded breaks 

A

B

FIGURE 2 | A schematic strategy of transgenic and transient gene delivery system. These gene delivery systems aim to alter gene expression in hemp female 
flower, where cannabinoids and terpenes are preferentially synthesized and stored. (A) Transgenic gene delivery systems. Specialized metabolites and their 
precursor synthesis genes, transcription factor genes, and other hemp genes related to the supply of energy and reducing power might be engineered by 
introducing conventional binary vectors or CRISPR/Cas vectors. Hemp SE might be activated by the overexpression of positive regulator genes such as BBM and 
WUS2 or the downregulation of negative regulator genes such as CLAVATA3. (B) Three transient gene delivery systems. To overcome the instability of dsRNA, clay 
nanoparticles, liposomes, viruses, or bacteria might be used for the effective delivery of dsRNA. For successful agroinfiltration, vacuum infiltration is likely to be more 
efficient than syringe infiltration based on our preliminary experiments. Created with BioRender. CRISPR/Cas-mediated genome editing is likely to be most powerful 
method for hemp metabolic engineering.
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allowed the isolation of mutants carrying homozygous 
mutated alleles of eight targeted genes simultaneously 
in rice.

 3. In hemp, there is no established protocol for mutagenesis 
(Salentijn et  al., 2019). Bielecka et  al. (2014) showed that 
isolation of mutants from chemical mutagenesis screen is 
possible, but extremely difficult due to the anemophilous 
and dioecious nature of hemp. Genome editing technology 
allows for very specific gene editing and makes it easy 
to evaluate the effect of off-target gene modification. 
Therefore, this technology provides precision that is not 
possible with mutation breeding such as EMC mediated 
mutation that resulted in hundreds of unexpected mutations 
(Henry et al., 2014). Furthermore, a reverse genetic approach 
using the CRISPR/Cas mediated mutants will drastically 
accelerate the study of the function of synthetic pathway 
genes of specialized metabolites as there is gene silencing 
tools such as VIGS in hemp are just started to be developed 
by Schachtsiek et  al. (2019).

 4. Lastly, CRISPR/Cas system will drastically shorten the 
hemp breeding time. The methods commonly used in 
hemp breeding are “mass selection,” “cross-breeding,” 
“inbreeding,” and “hybrid breeding” (Clarke and Merlin, 
2016), and creating unique Cannabis strains via these 
traditional methods is time-consuming and takes both 
patience and persistence. Indeed, conventional Cannabis 
breeding has expanded to include the diverse composition 
of elite varieties, ranging from plants with no THCA to 
those with high concentrations of CBDA or terpenes 
(Russo, 2019). However, CRISPR/Cas-based editing system 
is able to carry out pyramiding multiple desirable traits 
such as phytochemical properties, degree of monoecy, 
length of vegetative cycle, and resistance to diseases and 
pest (Salentijn et  al., 2019) in one editing step, which is 
not feasible or takes at least 10  years in conventional 
breeding (Schluttenhofer and Yuan, 2017).

Transient Gene Delivery Systems
Transient Gene Expression Via Agroinfiltration
Agroinfiltration is a prominent methodology for temporarily 
expressing a gene of interest easily and rapidly. This technology 
was first explored in molecular studies, including transient 
reporter gene expression, promoter analysis, and protein-
protein interactions (Norkunas et  al., 2018). Optimization 
of agroinfiltration has become a technique to produce 
vaccines, enzymes for industrial use, and secondary 
metabolites (Lai and Chen, 2012; Chen and Lai, 2013; Gleba 
et  al., 2014; Reed and Osbourn, 2018). Agroinfiltration 
thereby provides an alternative method for stable 
transformation (Andrews and Curtis, 2005; Chen and Lai, 
2015). Nevertheless, strong transient gene expression achieved 
via agroinfiltration is limited to some model crops, and 
agroinfiltration protocols for many agronomically important 
crops have only recently been optimized (King et  al., 2015). 
Most recently, Deguchi et  al. (2020) optimized the proper 
concentration of surfactant and antioxidants for Agrobacterium 

vacuum infiltration and achieved gene overexpression and 
silencing in hemp trichome. Schachtsiek et  al. (2019) 
inoculated Agrobacterium carrying VIGS-vectors to Cannabis 
mature leaf which led to the reduction of 70% of gene 
expression in phytoene desaturase and magnesium chelatase 
subunit I. Enhanced efficiency of transient expression will 
not only pave the way for metabolic engineering but will 
also contribute to successful Agrobacterium inoculation into 
explants for stable transformation.

Topical Application of dsRNA
RNA interference (RNAi) is a gene regulation mechanism 
that induces the silencing of gene expression at the 
transcriptional or posttranscriptional level in eukaryotes 
(Petrick et  al., 2013). In plants, this silencing mechanism 
has been used to confer resistance against pests and diseases 
by genetic transformation (Koch and Kogel, 2014). More 
recently, the topical application of dsRNA has emerged as 
an alternative to the generation of genetically modified plants. 
A prerequisite for the success of this technology is the 
efficient delivery of dsRNA to the plant. There have been 
several methods developed for achieving this, but the two 
most useful approaches are the soaking of the plant root 
and spray application on the surface of the plant (Andrade 
and Hunter, 2016). The topical application of dsRNA can 
be  designed and tested much faster than the stable 
transformation of plants, which makes these approaches 
suitable for recalcitrant plants to stable transformation like 
hemp. Furthermore, double-stranded RNAs are present 
naturally in plants and normally degraded within a few 
days, rendering this technology more environment-friendly 
than others (Wang et  al., 2011). Therefore, it is apt for 
hemp consumers that demand organic products and 
environmental sustainability of the crop. To date, this transient 
gene silencing approach has been successfully applied to 
control insects, fungi, and viruses (Koch et  al., 2016; Mamta 
and Rajam, 2017; Dalakouras et  al., 2019).

Attempts to convert the topical application of dsRNA 
to phytochemical production represent a new challenge. 
There are some reports from private companies regarding 
the development of RNAi spray and soaking protocols for 
Cannabis metabolic engineering, but the details of this 
technology have not been disclosed. The challenging task 
of identifying important targets in secondary metabolite 
pathways has been overcome with bioinformatic information 
such as hemp genomic and transcriptomic sequences, and 
a global map of metabolic pathways provided by the Kyoto 
Encyclopedia of Genes and Genomes (KEGG; Kanehisa and 
Goto, 2000). The instability of the naked dsRNA applied 
on plants is another barrier, but this could be  rectified  
by using clay nanoparticles, liposomes, viruses, or bacteria 
as potential dsRNA carriers for spray application to achieve 
a longer-term gene-silencing effect (Joga et al., 2016; Mitter 
et  al., 2017). Even if dsRNA technology has limited  
field applicability due to economic considerations, it could 
provide an exceptional tool for plant improvement in 
experimental settings.
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DISCUSSION

To date, production of improved hemp through the genetic 
engineering has been limited due to low shooting and rooting 
efficiency. However, newly emerging biotechniques are anticipated 
to overcome this barrier. The most powerful approach is likely 
to involve manipulation of MR to enhance the developmental 
pathway of somatic embryogenesis. Introduction of genes into 
the hemp genome does not appear to be limiting as for example 
the creation of “hairy roots;” however, the transition of that 
cell into a viable plant requires a major reprogramming of 
plant cell development. Using appropriate surfactant and 
antioxidant reagents, Agrobacterium infection to hemp explant 
became no longer a difficult step via vacuum infiltration 
(Deguchi et al., 2020). Once somatic embryogenesis is achieved 
by altering the transient expression of morphologic regulator 
genes, hemp explants would regenerate at a high rate and 
be available for further genetic modifications with value added 
traits. If highly efficient somatic cell conversion can be achieved, 
this technological advance can even be  applied to rapid 
propagation of enhanced hemp phenotypes with some 
technologies now advancing to synthetic seeds. Interestingly, 
Maher et al. (2020) demonstrated that MRs worked compatibly 
with the CRISPR/Cas system in various dicot species.

Recently, hemp phytochemical pathway genes have been 
extensively studied via omics approaches (Braich et  al., 2019; 
Vincent et  al., 2019; Gao et  al., 2020). However, the 

characterization of function on most of phytochemical pathway 
genes remains to be studied. Advancement of molecular biology 
tools and the establishment of a hemp transformation system 
will not only achieve a diverse of hemp new varieties with 
improved quality and/or quantity of phytochemicals but also 
further intensify the investigation of other minor cannabinoid 
and terpene synthesis genes as well as several representative 
cannabinoid synthesis genes to expand the pharmacological 
potential of the hemp biochemical production platform.
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