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Accurately describing the light response curve of electron transport rate (J–I curve) and allocation of electron flow for ribulose biphosphate (RuBP) carboxylation (JC–I curve) and that for oxygenation (JO–I curve) is fundamental for modeling of light relations of electron flow at the whole-plant and ecosystem scales. The non-rectangular hyperbolic model (hereafter, NH model) has been widely used to characterize light response of net photosynthesis rate (An; An–I curve) and J–I curve. However, NH model has been reported to overestimate the maximum An (Anmax) and the maximum J (Jmax), largely due to its asymptotic function. Meanwhile, few efforts have been delivered for describing JC–I and JO–I curves. The long-standing challenge on describing An–I and J–I curves have been resolved by a recently developed An–I and J–I models (hereafter, Ye model), which adopt a nonasymptotic function. To test whether Ye model can resolve the challenge of NH model in reproducing J–I, JC–I and JO–I curves over light-limited, light-saturated, and photoinhibitory I levels, we compared the performances of Ye model and NH model against measurements on two C3 crops (Triticum aestivum L. and Glycine max L.) grown in field. The results showed that NH model significantly overestimated the Anmax and Jmax for both species, which can be accurately obtained by Ye model. Furthermore, NH model significantly overestimated the maximum electron flow for carboxylation (JC-max) but not the maximum electron flow for oxygenation (JO-max) for both species, disclosing the reason underlying the long-standing problem of NH model—overestimation of Jmax and Anmax.
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Introduction

Light intensity (I) is one of the most important environmental drivers affecting electron flow and its allocation for carboxylation versus oxygenation of ribulose biphosphate (RuBP). At I levels before reaching saturation intensity, the non-rectangular hyperbolic model (hereafter, NH model) is a sub-model which is widely used to characterize the light-response curve of electron transport rate (J–I curve) and to estimate the maximum J (Jmax) in C3 photosynthesis model (e.g., Farquhar et al., 1980; Farquhar and Wong, 1984; von Caemmerer, 2000; Farquhar et al., 2001; Long and Bernacchi, 2003; von Caemmerer et al., 2009; Bernacchi et al., 2013; Bellasio et al., 2015; Busch and Sage, 2017; Walker et al., 2017; Cai et al., 2018) and in C4 photosynthesis model (Berry and Farquhar, 1978; von Caemmerer and Furbank, 1999; von Caemmerer, 2013). At light saturation, Jmax is estimated by the C3 photosynthesis model (Farquhar et al., 1980; von Caemmerer, 2013; Farquhar and Busch, 2017). Accurate estimation of Jmax is important for understanding photosynthesis of C3 and C4 species. Jmax is a key quantity to represent plant photosynthetic status under different environmental conditions when the net photosynthesis rate (An) is limited by the regeneration of RuBP, associated with the partitioning of electron flow through photosystem II (PSII) for RuBP carboxylation (JC) versus that for RuBP oxygenation (JO) (Farquhar et al., 1980; Long and Bernacchi, 2003).

By simulating light-response curves of photosynthesis (An–I curve), NH model has been widely used to obtain key photosynthetic characteristics (e.g., the maximum net photosynthetic rate, Anmax; light compensation point when An = 0, Ic; dark respiration rate, Rd) for various species under different environmental conditions (e.g., Ögren & Evans, 1993; Thornley, 1998; Ye, 2007; Aspinwall et al., 2011; dos Santos et al., 2013; Mayoral et al., 2015; Sun et al., 2015; Park et al., 2016; Quiroz et al., 2017; Yao et al., 2017; Xu et al., 2019; Yang et al., 2020; Ye et al., 2020). Significant difference between observed Anmax values and that estimated by NH model for various species has been widely reported (e.g., Chen et al., 2011; dos Santos et al., 2013; Lobo et al., 2014; Ogawa, 2015; Sun et al., 2015; Quiroz et al., 2017; Poirier-Pocovi et al., 2018; Ye et al., 2020). This long-standing challenge has been resolved by an An–I model, which adopts a nonasymptotic function and can accurately reproduce An–I curve over light-limited, light-saturated and photoinhibitory I levels (Ye et al., 2013) (hereafter, Ye model).

Recently, Buckley and Diaz-Espejo (2015) proposed that NH model would overestimate Jmax due to its asymptotic function. A robust model which can accurately reproduce the observed J–I curve, and obtain Jmax, is urgently needed (Buckley and Diaz-Espejo, 2015). Furthermore, the light response of J partitioning for RuBP carboxylation and oxygenation (JC–I and JO–I curves), and the key quantities to describe the curves (e.g., the maximum JC, JC-max, and the maximum JO, JO-max, as well as their corresponding saturation light intensities) are rarely studied. Meanwhile, for the first time, we compared the performances of the two models in reproducing JC–I and JO–I curves.

This study aimed to fill these important gaps using an observation-modeling intercomparison approach. We firstly measured leaf gas exchange and chlorophyll fluorescence over a wide range of I levels for two C3 species [winter wheat (Triticum aestivum L.) and soybean (Glycine max L.)]. We then incorporated Ye model to reproduce An–I, J–I, JC–I, and JO–I curves and return key quantities defining the curves, and evaluated its performance against NH model and observations.



Materials and Methods


Plant Material and Measurements of Leaf Gas Exchange and Chlorophyll Fluorescence

The experiment was conducted in the Yucheng Comprehensive Experiment Station of the Chinese Academy of Science. The detailed descriptions about soil and meteorological conditions in this experiment station were referred to Ye et al. (2019; 2020). Winter wheat was planted on October 4th, 2011 and the measurements were conducted on April 23th, 2012. Soybean was sown in on May 6th, 2013, and the measurements were performed on 27th July, 2013. Using the Li-6400-40 portable photosynthesis system (Li-Cor, Lincoln, NE, USA), measurements on leaf gas exchange and chlorophyll fluorescence were simultaneously performed on mature fully-expanded sun-exposed leaves in sunny days. J was calculated as J = ΦPSII × I × 0.5 × 0.84, where ΦPSII is the effective quantum yield of PSII (Genty et al., 1989; Krall and Edward, 1992).

For soybean, An–I curves and J–I curves were generated from applying different light intensities in a descending order of 2000, 1800, 1600, 1400, 1200, 1000, 800, 600, 400, 200, 150, 100, 80, 50, and 0 μmol m-2 s-1. For winter wheat, the light intensity gradient started from 1800 μmol m-2 s-1 as the maximum, in alignment with environmental light availability from October to April. At each I step, CO2 assimilation was monitored until a steady state was reached before logging a reading. Ambient CO2 concentration in the cuvette (Ca) was kept constant at 380 μmol mol-1. Leaf temperature in the cuvette was kept at about 30°C for winter wheat and 36°C for soybean, respectively. The observation-modeling intercomparison was conducted within each species.



An–I and J–I Analytical Models

NH model describes J–I curve as follows (Farquhar and Wong, 1984; von Caemmerer, 2000; von Caemmerer, 2013):

 

where αe is the initial slope of J–I curve, θ is the curve convexity, I is the light intensity, and Jmax is the maximum electron transport rate.

NH model describes An–I curve as follows (Ögren and Evans, 1993; Thornley, 1998; von Caemmerer, 2000):



where α is the initial slope of An–I curve, Anmax is the maximum net photosynthetic rate, and Rd is the dark respiration rate when I = 0 μmol m-2 s-1. NH model cannot return the corresponding saturation light intensities for Jmax or Anmax due to its asymptotic function.

The model developed by Ye et al. (2013, 2019; hereafter, Ye model) describes J–I curve as follows:



where αe is the initial slope of J–I curve, and βe and γe are the photoinhibition coefficient and light-saturation coefficient of J–I curve, respectively.

The saturation irradiance corresponding to the Jmax (Ie-sat) can be calculated as follows:



Using Ye model, Jmax can be calculated as follows:



Ye model describes An–I curve as follows (Ye, 2007; Ye et al., 2013):



where α is the initial slope of An–I curve, β and γ are the photoinhibition coefficient and light-saturation coefficient of An–I curve, respectively.

The saturation irradiance corresponding to Anmax (Isat) can be calculated as follows:



Using Ye model, Anmax can be calculated as follows:





JC and JO Estimation and JC –I and JO –I Analytical Models

Combining measurements of gas exchange and chlorophyll fluorescence was a reliable and easy-to-use technique widely used to determine JO and JC (e.g., Peterson, 1990; Comic and Briantais, 1991). In C3 plants, carbon assimilation and photorespiration are two closely linked processes catalyzed by the key photosynthetic enzyme—RuBP carboxylase/oxygenase. Photorespiration is considered as an alternative sink for light-induced photosynthetic electron, and as a process helping consume extra photosynthetic electrons under high irradiance or other stressors limiting CO2 availability at Rubisco (Stuhlfauth et al., 1990; Valentini et al., 1995; Long and Bernacchi, 2003). When the other alternative electron sinks are ignored or kept constant, the electron flow is mainly allocated for RuBP carboxylation and RuBP oxygenation (e.g. Farquhar et al., 1980; von Caemmerer, 2000; Farquhar et al., 2001; Long and Bernacchi, 2003; von Caemmerer et al., 2009; Bernacchi et al., 2013; von Caemmerer, 2013), and JC and JO can be respectively calculated as follows (Valentini et al., 1995):





where Rday is the day respiration rate, and following Fila et al. (2006), Rday = 0.5 Rd. In this study, JC and JO values calculated from Eqs. 9 and 10 were viewed as experimental observations—to be compared with modelled values derived from NH model and Ye model, respectively.

Using the same J–I modeling framework by Ye model, the light response of JC (JC–I) can be described as follows:



where αC is the initial slope of JC–I curve, and βC and γC are two coefficient of JC–I curve. The maximum JC (JC-max) and the saturation irradiance corresponding to the JC-max (IC-sat) can be calculated as follows:





Using the same J–I modeling framework by Ye model, the light response of JO (JO–I) can be described as follows:



where αO is the initial slope of JO–I curve, and βO and γO are two coefficient of JO–I curve. The maximum JO (JO-max) and the saturation irradiance corresponding to the JO-max (IO-sat) can be calculated as follows:





Meanwhile, NH model can describe the JC–I and JO–I curves as follows:



where αC is the initial slope of JC–I curve, θ is the curve convexity, and JC-max is the maximum JC, and



where αO is the initial slope of JO–I curve, θ is the curve convexity, and JO-max is the maximum JO. NH model—Eqs. 17 and 18—cannot return the corresponding saturation light intensities for JC-max or JO-max due to its asymptotic function.



Statistical Analysis

Statistical tests were performed using the statistical package SPSS 18.5 statistical software (SPSS, Chicago, IL). One-Way ANOVA was used to examine differences between parameter values estimated by NH model, Ye model and observed values of each parameter (Anmax, Isat, Jmax, Ie-sat, JC-max, IC-sat, JO-max, IO-sat, etc.). Goodness of fit of the mathematical model to experimental observations was assessed using the coefficient of determination (R2 = 1 – SSE/SST, where SSE is the error sum of squares, and SST is the total sum of squares).




Results


Light Response of An and J

Soybean and winter wheat exhibited an immediate and rapid initial increase of An (α) and J (αe) with the increasing I (Figure 1 and Table 1). The increase of An and J continued until I reached the cultivar-specific maximum values (Anmax and Jmax) at their corresponding saturation light intensities (Isat and Ie-sat) (Figure 1 and Table 1). Both NH model (Eqs. 1 and 2) and Ye model (Eqs. 3 and 6) showed high level of goodness of fit (R2) to experimental observations of two species (Figure 1 and Table 1). However, compared with observations, NH model significantly overestimated Anmax and Jmax (P < 0.05) for both soybean and winter wheat (Table 1). In contrast, Anmax and Jmax values returned by Ye model were in very close agreement with the observations for both species (Table 1).




Figure 1 | Light response curves of net photosynthetic rate (A, B), electron transport rate (C, D), electron flow for RuBP carboxylation (E, F) and the electron flow for RuBP oxygenation (G, H) for winter wheat (Triticum aestivum L.) and soybean (Glycine max L.), respectively, over the irradiance range from 0 to 2000 μmol m−2 s−1. Solid curves were fitted using Ye model, and dash curves were fitted using NH model. Values are means ± standard errors (n = 3).




Table 1 | Fitted (Ye model and NH model) and measured values (Obs.) of parameters defining the light-response curve of photosynthesis (An–I curve), electron transport rate (J–I curve), electron transport rate for RuBP carboxylation (JC–I curve), and electron transport rate for RuBP oxygenation (JO–I curve) for wheat and soybean species, respectively.





Light Response of JC and JO

Both species exhibited an immediate and rapid initial increase of JC (αC) with the increasing I (Figure 1 and Table 1). The increase of JC continued until I reached the cultivar-specific maximum values (JC-max) at the corresponding saturation light intensity (IC-sat) (Figure 1 and Table 1). Both Ye model (Eq. 11) and NH model (Eq. 17) showed high level of goodness of fit (R2) to experimental observations of both species (Figure 1 and Table 1). However, compared with observations, NH model significantly overestimated JC-max (P < 0.05) for both soybean and winter wheat (Table 1). In contrast, JC-max values returned by Ye model were in very close agreement with the observations for both species (Table 1).

Compared to the light-response rapidness of JC, JO exhibited a much slower initial increase (αO) with the increasing I (Figure 1 and Table 1). No species showed significant difference between the observed value of JO-max and that estimated by Ye model (Eq. 14) or NH model (Eq. 18) (Table 1). Both models showed high level of goodness of fit (R2) to experimental observations of both species (Figure 1 and Table 1).




Discussion

Assessed with an observation-modeling intercomparison approach, the results in this study highlight the robustness of Ye model in accurately reproducing An–I, J–I, JC–I, and JO–I curves and returning key quantities defining the curves, in particular: Anmax, Jmax, JC-max, and JO-max. On the contrary, the NH model significantly overestimates Anmax, Jmax, and JC-max (Table 1). For the first time, our study discloses the previously widely reported overestimation of Jmax (and Anmax) by the NH model is linked to its overestimation of JC-max but not JO-max.

The overestimation of Anmax by NH model found in this study is consistent with the previous reports (e.g., Calama et al., 2013; dos Santos et al., 2013; Lobo et al., 2014; Ježilová et al., 2015; Mayoral et al., 2015; Ogawa, 2015; Park et al., 2016; Quiroz et al., 2017; Poirier-Pocovi et al., 2018; Ye et al., 2020). The accurate returning of Anmax by Ye model found in this study is consistent with previous studies using Ye model for various species under different environmental conditions (e.g., Wargent et al., 2011; Zu et al., 2011; Xu et al., 2012a; Xu et al., 2012b; Lobo et al., 2014; Xu et al., 2014; Song et al., 2015; Chen et al., 2016; Ye et al., 2019; Yang et al., 2020; Ye et al., 2020). The robustness of Ye model has also been validated for microalgae observations, including four freshwater and three marine microalgae species (Yang et al., 2020). The Ye model reproduced the An–I response well for all microalgae species, and produced Isat closer to the measured values than those by three widely used models for microalgae (Yang et al., 2020). Meanwhile, the overestimation of Jmax by NH model found in this study supports Buckley and Diaz-Espejo (2015) in highlighting the demerit of the asymptotic function (i.e. NH model).

One key novelty of the present study is its evaluation of both asymptotic and nonasymptotic functions in describing the light response of electron flow allocation for carboxylation and oxygenation respectively (i.e. JC–I and JO–I curves). To the best of our knowledge, this is the first study which has experimentally evidenced the robustness of a nonasymptotic function (Eqs. 3, 11, 14) in accurately (1) reproducing J–I, JC–I, and JO–I curves and (2) returning Jmax, JC-max, and JO-max values, as well as their corresponding the saturation light intensities. These novel findings are of significance for our understanding of light responses of plant carbon assimilation and photorespiration—both are catalyzed by RuBP carboxylase/oxygenase.

The findings, and the approach of bridging experiment and modeling, in the present study remain to be tested for (1) species of different plant function types and/or climatic origin, which could exhibit different response patterns (Ye et al., 2020) and (2) plant response to interaction of multiple environmental factors (e.g., temperature, rainfall pattern, soil type) involving fluctuating light. The explicit and consistent modeling framework and parameter definitions on light responses (i.e. An–I, J–I, JC–I, and JO–I)—combined with the simplicity and robustness—allows for future transparent scaling-up of leaf-level findings to whole-plant and ecosystem scales.



Conclusions

Ye model can accurately estimate Anmax, Jmax, and JC-max which the NH model would overestimate. Adopting an explicit and transparent analytical framework and consistent definitions on An–I, J–I, JC–I, and JO–I curves, this study highlights the advantage of Ye model over NH model in terms of (1) its extremely well reproduction of J–I, JC–I, and JO–I trends over a wide I range from light-limited to light-inhibitory light intensities, (2) accurately returning the wealth of key quantities defining J–I, JC–I, and JO–I curves, particularly Jmax, JC-max, JO-max, and their corresponding the saturation light intensities (besides Anmax and Isat of An–I curve), and (3) being transparent in disclosing that the previously widely reported but poorly explained problem of NH model—overestimation of Jmax (and the maximum plant carboxylation capacity)—is linked to its overestimation of JC-max but not JO-max. Besides, NH model cannot obtain their saturation light intensities corresponding to Jmax, Anmax, JC-max, and JO-max due to its asymptotic function. This study is of significance for both experimentalists and modelers working on better representation of photosynthetic processes under dynamic irradiance conditions.
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