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MicroRNAs (miRNAs) play important roles in various aspects of plant physiology and
metabolism. The expression level of miR164c is negatively correlated with seed vigor
in rice (Oryza sativa L.); however, the mechanism of seed vigor regulation by miR164c
remains unknown. Anti-aging capacity is an important indicator of seed vigor. Here,
we report an miR164c-guided gene/protein interaction network that regulates the anti-
aging ability of rice seeds. Seeds of the wild-type (WT) rice cultivar “Kasalath” and its
transgenic derivatives, miR164c-silenced line (MIM164c) and miR164c overexpression
line (OE164c), with significant differences in anti-aging capacity, showed significant
differences in gene and protein expression levels. The differentially expressed genes
(DEGs) or proteins were significantly enriched in six metabolic functional categories
related to seed vigor, including “stress response,” “protein processing in endoplasmic
reticulum (ER),” “embryo development,” “serine-type endopeptidase inhibitor,” “energy
metabolism,” and “other.” Differences in the expression levels of genes or proteins
related to energy metabolism, serine endopeptidase, and stress response in seeds
under normal storage conditions may be associated with anti-aging capacity. The
results of gene/protein interaction analyses suggest that miR164c first targets PSK5,
and the PSK5 protein then interacts with the ubiquitin-associated gene RPS27AA,
which simultaneously impacts the genes/proteins in the six above-mentioned functional
categories. Expression levels of some of the key genes and proteins in the interaction
network were verified by real-time fluorescence quantitative PCR (RT-qPCR) and multiple
reaction monitoring mass spectrometry (MRM-MS), respectively. Thus, the present
study provides new insights into the miRNA-mediated gene and protein interaction
network that regulates seed vigor.

Keywords: Oryza sativa L., seed vigor, miR164c, transcriptome, proteome, regulatory network

INTRODUCTION

Seeds are often used to preserve plant germplasm and also as a food source. Seed vigor is a
comprehensive indicator of seed quality, which not only determines the germination potential of
seeds under diverse field conditions but also affects the ability of plants to resist environmental
stresses and to maximize the production potential (Rajjou et al., 2012). Seed vigor is formed
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gradually during development and usually reaches a peak at
physiological maturity. However, seed vigor gradually decreases
under natural storage conditions via the natural aging process.
The rate of seed aging indicates the speed of decline of seed
vigor. The anti-aging capacity of seeds is directly correlated with
seed vigor: the stronger the anti-aging capacity, the longer the
seeds will maintain high vigor. Therefore, anti-aging capacity
is essential for the longevity of seeds during storage. Since the
natural aging of seeds is a relatively slow process, it is difficult
to measure changes in seed vigor over a short duration of
time. Therefore, artificial aging is usually used to accelerate the
speed of seed vigor decline and to evaluate the storage tolerance
of seeds by imitating the natural aging process (Freitas et al.,
2006). To induce artificial aging, seeds are exposed to a high
temperature (approximately 41◦C) and high relative humidity
(RH; 100%) for a designated duration. Then, a germination test
is carried out to examine changes in seed vigor (Arc et al.,
2011; Dantas et al., 2019). Aging affects several physiological and
biochemical processes within the seed, including reactive oxygen
species (ROS) metabolism, malondialdehyde (MDA) content,
lipid peroxidation, membrane permeability (Mira et al., 2011;
Chen et al., 2016), nucleic acid stability, and protein expression
and modification (Rajjou and Debeaujon, 2008; Kranner et al.,
2011). However, the molecular basis of anti-aging in seeds
remains unclear.

MicroRNAs (miRNAs) are endogenous, 21–24 nt long
non-coding RNAs found in plants, animals, and some
microorganisms. The main role of miRNAs is to silence the
target mRNAs by pairing with complementary bases, resulting in
either degradation of target mRNAs or inhibition of translation
(Bartel, 2009, 2018). The regulatory roles of miRNAs are evident
in almost every aspect of plant physiological and metabolic
processes, including growth, development, and biotic and abiotic
stress responses (Khraiwesh et al., 2012; Sun, 2012). Additionally,
miRNAs have been reported to affect seed vigor. In rice (Oryza
sativa L.), the expression of miR164c is negatively correlated
with seed vigor (Zhou et al., 2020). However, the mechanism
underlying miR164c-mediated regulation of rice seed vigor or
anti-aging capacity has not yet been determined.

With the recent progress in functional genomics research
and advances in high-throughput technologies, including RNA-
sequencing (RNA-seq) and tandem mass tags (TMTs), it is
possible to infer transient gene expression in cells or tissues
at the whole-genome level, determine the gene and protein
networks that regulate a particular biological phenomenon or
process, screen potential key regulatory genes, and develop new
approaches for crop improvement at the molecular level (Ge
et al., 2003; Kumar et al., 2016). The transcriptome and proteome
refer to the entire set of RNAs and proteins, respectively,
generated in cells (cell populations), tissues, organs, or organisms
under specific physiological conditions (Wilkins, 2009). The
genome of a wild-type (WT) organism is usually stable and
consistent; however, the transcriptome and proteome can easily
change during growth and development, and under different
environmental stimuli or stresses. To date, there have been
several reports on the transcriptomic and proteomic analyses
of seed vigor. For example, it has been shown that heat

shock proteins (HSPs), late embryogenesis abundant proteins
(LEAs), and seed storage proteins are closely related to seed
vigor (Rajjou et al., 2008; Catusse et al., 2011). Another study
showed that energy metabolism-related proteins, proteolytic
enzymes, endosperm proteins, and glycolytic-related enzymes
show significant changes in seeds upon artificial aging treatment,
suggesting that these proteins are related to seed vigor (Zhang
et al., 2016). Despite the above reports, the mechanism of
miRNA-mediated regulation of seed vigor remains unknown.

Rice is one of the most widely cultivated crops in the world
and represents the staple food of nearly 50% of the global
population, especially in Asian countries. Rice is the third highest
yielding crop after corn and sugarcane (UN Food and Agriculture
Organization, 2017). Given its small genome and abundant
genetic resources, rice is considered a model monocot (Ishibashi
et al., 2018). However, the vitality of rice seeds, especially hybrid
rice seeds, decreases easily during natural storage, which has
huge adverse effects on food production and economic benefits
(Ishibashi et al., 2018). To date, no effective strategy has been
developed to increase the longevity of rice seeds. Therefore,
understanding the molecular regulatory mechanism of rice seed
vitality is critical, as it would help to guide the development of
genetic engineering methods to improve storage tolerance and
maintain high vitality of rice seeds, which has important social
and economic implications for humankind.

In the present study, high-throughput RNA-seq and high-
resolution mass spectrometry using TMTs were performed to
determine the transcriptome and proteome, respectively, of the
seeds of the WT rice cultivar “Kasalath” and its transgenic
derivatives, MIM164c (miR164c-silenced line) and OE164c
(miR164c-overexpression line). Functional enrichment analyses
were conducted to screen genes/proteins potentially related to
the anti-aging capacity of rice seeds. To verify the accuracy of
omics data, real-time fluorescence quantitative PCR (RT-qPCR)
and multiple reaction monitoring mass spectrometry (MRM-
MS) were used to determine the expression level of genes and
proteins, respectively, in seeds before and after artificial aging.
The MERLIN iterative algorithm and String database were used
to predict the gene/protein interaction network that regulates
miR164c-guided seed vigor. Overall, our data provide new
insights into the miRNA-mediated gene and protein interaction
network that regulates seed vigor.

MATERIALS AND METHODS

Plant Materials
Rice (O. sativa L.) cultivar “Kasalath” (WT), miR164c-silenced
line L13-1-2-1 (MIM164c; hereafter referred to as ST), and
miR164c overexpression line L4-1-3-1 (OE164c; hereafter
referred to as OT) were used in this study. Both transgenic
lines were generated in “Kasalath” background by the Plant
Development and Molecular Laboratory of Hunan Normal
University, China, as described previously (Zhou et al., 2020).
The ST and OT seeds used in this study were in the T5
generation. In order to enable an assessment of significance,
quantitative analyses using omics (transcriptomics, proteomics),
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seed morphological phenotype and germination, and qPCR were
performed with a minimum of three independent biological
replicates per genotype.

Artificial Aging Treatment and
Germination Test
Healthy WT and transgenic seeds of the same size and at the same
maturity level were treated with high temperature (43 ± 2◦C)
and RH (100%) for 8 days, and then tested for germination, as
described previously (Zhou et al., 2020).

RNA Extraction
Embryos were excised from each seed sample and ground to a fine
powder in liquid nitrogen. The ground tissue was transferred to a
pre-chilled 1.5-mL Eppendorf tube, and total RNA was isolated
using the TRIzol R© Reagent (Life Technologies, Carlsbad, CA,
United States), according to the manufacturer’s instructions.

Transcriptome Sequencing
The quality of the isolated total RNA was monitored by
electrophoresis using 1% agarose gels. RNA purity was checked
using the NanoPhotometer R© spectrophotometer (IMPLEN,
Westlake Village, CA, United States), and RNA concentration
was measured using the Qubit R© RNA Assay Kit in the Qubit R©

2.0 Fluorometer (Life Technologies). The integrity of total RNA
was assessed using the RNA Nano 6000 Assay Kit of the
Bioanalyzer 2100 system (Agilent Technologies, Santa Clara,
CA, United States). Sequencing libraries were prepared using
NEBNext R© UltraTM RNA Library Prep Kit for Illumina R© (NEB,
Ipswich, MA, United States), according to the manufacturer’s
recommendations, and index codes were added to identify
each sample. Briefly, mRNA was purified from 3 µg total
RNA using oligo-d(T) magnetic beads. The purified mRNA was
fragmented at an elevated temperature using divalent cations in
the NEBNext First Strand Synthesis Reaction Buffer (5×). First-
strand cDNA was synthesized using random hexamer primers
and M-MuLV Reverse Transcriptase (RNase H−). Second-
strand cDNA synthesis was subsequently performed using DNA
Polymerase I and RNase H. The remaining overhangs were
converted into blunt ends using exonuclease/polymerase. The
cDNA fragments were 3′ adenylated and then ligated to the
NEBNext Adaptor with a hairpin loop structure. To select
cDNA fragments ranging in length from 150 to 200 bp, samples
were purified using the AMPure XP system (Beckman Coulter,
Beverly, MA, United States). Then, 3 µL USER Enzyme (NEB)
was incubated with size-selected, adaptor-ligated cDNAs for
15 min at 37◦C and then at 95◦C for 5 min. Subsequently, PCR
was performed using Phusion High-Fidelity DNA polymerase,
Universal PCR primers, and Index (X) Primer. The PCR products
were purified using the AMPure XP system, and library quality
was assessed on the Agilent Bioanalyzer 2100 system.

Clustering of index-coded samples was performed on a cBot
Cluster Generation System using TruSeq PE Cluster Kit v3-
cBot-HS (Illumina, San Diego, CA, United States), according to
the manufacturer’s instructions. After cluster generation, library

preparations were sequenced on the Illumina Hiseq platform, and
125–150 bp paired-end reads were generated.

RNA-seq Data Analysis
Raw sequence reads in FASTQ format were first processed using
in-house Perl scripts. Reads containing adapter sequences and
poly-Ns, as well as low-quality reads, were removed from the raw
data to obtain clean reads. The Q20 (base call accuracy = 99%)
and Q30 (base call accuracy = 99.9%) quality scores and GC
contents of clean reads were calculated. All subsequent analyses
were performed using high-quality clean reads.

Reference genome and gene model annotation files were
downloaded from the Rice Annotation Project Database (RAP-
DB) website1. Index of the reference genome was built using
Bowtie v2.2.3, and paired-end clean reads were aligned to the
reference genome using TopHat v2.0.12.

HTSeq v0.6.1 was used to count the number of reads
mapped to each gene. Then, values of FPKM (fragments per
kilobase of transcript sequence per million base pairs) of
each gene were calculated based on the length of the gene
and read counts mapped to the gene, as described previously
(Trapnell et al., 2010).

Differential gene expression analysis of two treatments (aged
and unaged seeds) for each of the three genotypes (WT, ST, and
OT; three biological replicates per treatment) was performed
using the DESeq R package (1.18.0). The resulting P-values
were adjusted using the Benjamini–Hochberg approach for
controlling the false discovery rate (FDR). Genes with an adjusted
P-value < 0.05 were designated as differentially expressed.

The Kyoto Encyclopedia of Genes and Genomes (KEGG)
database was used to identify enriched pathways. A two-tailed
Fisher’s exact test was performed to test the enrichment of
the differentially expressed genes (DEGs) against all identified
genes using the R package clusterProfiler. The pathway with
a corrected P-value < 0.05 was considered significant. These
pathways were classified into hierarchical categories according to
the KEGG website.

Protein Extraction
Total protein was extracted from the excised embryos. Briefly,
embryos were first ground in liquid nitrogen for 30 min and
then sonicated three times on ice using a high-intensity ultrasonic
processor (Scientz) in lysis buffer [8 M urea, 2 mM EDTA, 10 mM
dithiothreitol (DTT; Sigma), and 1% Protease Inhibitor Cocktail
(Sigma–Aldrich)]. The debris was removed by centrifugation at
20,000 × g at 4◦C for 10 min. Protein was precipitated with cold
15% trichloroacetic acid (TCA) at−20◦C for 4 h. The sample was
centrifuged at 12,000 × g at 4◦C for 3 min, and the supernatant
was discarded. The protein pellet was washed three times with
cold acetone, and then redissolved in a buffer containing 8 M
urea and 100 mM tetraethylammonium bromide (TEAB; pH 8.0).
Protein concentration was determined using the 2-D Quant Kit
(GE Healthcare), according to the manufacturer’s instructions.

1ftp://ftp.ensemblgenomes.org/pub/plants/release-40/gff3/oryza_sativa
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Protein Digestion, TMT Labeling, and
High-Performance Liquid
Chromatography (HPLC) Fractionation
Protein digestion and TMT labeling were conducted according
to the method of Wang et al. (2018). The protein sample was
then fractionated by high-pH reversed-phase high-performance
liquid chromatography (HPLC) using an Agilent 300 Extend C18
column [5 µm particle size, 4.6 mm internal diameter (i.d.),
250 mm length]. Briefly, peptides were first separated into 80
fractions with a gradient of 2–60% ACN in 10 mM ammonium
bicarbonate (pH 9.0) over 80 min. Then, peptides were combined
into 18 fractions and dried by vacuum centrifugation.

Liquid Chromatography-Tandem Mass
Spectrometry (LC-MS/MS) Analysis
Peptides were dissolved in 0.1% formic acid (FA; Fluka) and
then directly loaded onto a reversed-phase pre-column (Acclaim
PepMap 100, Thermo). Peptide separation was performed using
a reversed-phase analytical column (Acclaim PepMap RSLC,
Thermo). The gradient comprised an increase from 5 to 25%
solvent B (0.1% FA in 98% ACN) in 26 min, 25 to 40% B in 8 min,
40 to 80% B in 3 min, and then holding at 80% B for the last 3 min,
all at a constant flow rate of 350 nL/min on an EASY-nLC 1000
ultra performance liquid chromatography (UPLC) system.

Peptides were subjected to an NSI source, followed by MS/MS
in Q ExactiveTM (Thermo) coupled with UPLC online. Intact
peptides were detected in the orbitrap at a resolution of 70,000.
Peptides were selected for MS/MS using the NCE setting of 28,
and ion fragments were detected in the orbitrap at a resolution
of 17,500. A data-dependent procedure that alternated between
one MS scan followed by 20 MS/MS scans was applied for the
top 20 precursor ions above a threshold ion count of 1E4 in the
MS survey scan, with 30.0 s dynamic exclusion. The electrospray
voltage applied was 2.0 kV. Automatic gain control (AGC) was
used to prevent overfilling of the orbitrap, and 5E4 ions were
accumulated to generate the MS/MS spectra. MS scans were
performed at a mass-to-charge ratio (m/z) ranging from 350 to
1,800, and the fixed first mass was set at 100 m/z.

Proteome Data Analysis
The resulting MS/MS data were processed using MaxQuant
with an integrated Andromeda search engine (v.1.5.2.8). Tandem
mass spectra were searched against the transcriptome database.
Trypsin/P was specified as the cleavage enzyme, allowing up to
two missed cleavages. Mass error was set to 10 ppm for precursor
ions and 0.02 Da for fragment ions. Carbamidomethylation of
cysteine (Cys) residues was specified as a fixed modification, and
oxidation of methionine (Met) and acetylation of the protein
N-terminus were specified as variable modifications. To perform
protein quantification, TMT 6-plex was selected in Mascot. The
FDR was adjusted to <1% at the protein, peptide, and peptide-
spectrum match (PSM) level.

To ensure that the sample preparation met the standard
requirements, the mass error of all identified peptides was first
checked. The distribution of mass error should be approximately
zero and the concentration of most of the peptides should be

<10 ppm, which enable the mass accuracy of MS data to fit the
requirements. Then, the length of peptides was verified; most
peptides should be 8–16 amino acids (aa) in length, which is
consistent with the property of tryptic peptides.

Gene Ontology (GO) annotation of the proteome was derived
from the UniProt-GOA database2. First, the identified protein
ID was converted to UniProt ID and then mapped to GO
IDs. If any of the identified proteins could not be annotated
using the UniProt-GOA database, the InterProScan soft was
then used to annotate the GO function, based on protein
sequence alignment. Then, proteins were classified into three
GO categories: Biological Process, Cellular Component, and
Molecular Function. In each category, the enrichment of the
differentially expressed proteins (DEPs) against all identified
proteins was determined using the two-tailed Fisher’s exact test.
Correction for multiple hypothesis testing was carried out using
the standard FDR control methods. The GO with a corrected
P-value < 0.05 was considered significant.

The KEGG database was used to identify enriched pathways,
and statistical analysis was conducted as described above for GO
categories. The KEGG pathways were classified into hierarchical
categories according to the KEGG website.

Functional enrichment (GO and KEGG)-based clustering
of different protein groups was used to explore the potential
relationships among different protein groups. All protein groups
obtained after functional enrichment analysis, along with their
P-values, were first collated and then filtered for categories
enriched in at least one of the protein groups with P-value < 0.05.
This filtered P-value matrix was transformed by the function
x = −log10(P-value). Finally, these x values were z-transformed
for each functional category. The z scores were then clustered
by one-way hierarchical clustering (Euclidean distance, average
linkage clustering). Cluster membership was visualized using
a heat map constructed with the heatmap.2 function in the
gplots R package.

MapMan was used to analyze the proteome data according
to the method of Klie and Nikoloski (2012). First, the mapping
file of the annotation result was obtained by submitting
nucleotide sequences of the transcriptome profiling results
to Mercator4 v1.03. Then, DEPs together with the MapMan
ontology information of corresponding genes were selected, and
a two-tailed Fisher’s exact test was employed for each comparison
group to test the enrichment of DEPs against all mapped proteins.
The MapMan terms with a corrected P-value < 0.05 were
considered significant.

Correlated Proteome and Transcriptome
Quantification
In proteome profiling, proteins with a quantitative ratio above
1.3 or below 0.77 (1/1.3) were deemed significantly differentially
expressed. In transcriptome profiling, genes with a fold-change
(FC) > 1.2 and corrected P-value < 0.05 were deemed
significantly differentially expressed. To obtain further biological
information, functional enrichment of genes/proteins in different

2http://www.ebi.ac.uk/GOA/
3https://plabipd.de/portal/mercator4
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crosstalk categories was analyzed. GO and KEGG pathway
enrichment clustering analyses were performed using the same
method as in protein profiling.

Network Analysis
The modular regulatory network learning with per gene
information (MERLIN) algorithm (Roy et al., 2013) was used
to infer the regulatory network of the genes-of-interest in
transcriptome profiling. The transcriptome data obtained in
this study and those downloaded from the National Center
Biotechnology Information (NCBI) were used. The data matrix
comprised 164 samples from 13 experiments. First, FPKM of the
genes were transformed into transcripts per million reads (TPM),
and the mean expression level of each gene was calculated.
Then, the expression levels of genes were zero-mean transformed.
Genes were retained for the MERLIN algorithm only if (1) their
expression value varied by at least ± 1 from the mean in at least
five samples and (2) they were in the list of DEGs and DEPs
in the transcriptome and proteome data, respectively, obtained
in the present study. A total of 30 sub-sets were created from
the amended data matrix, each of which contained 50% of the
samples selected randomly from the complete matrix. Data from
each sub-set were used to infer a MERLIN interaction. In the
final MERLIN network, each edge (which indicates the relation
between two genes) appeared at least 18 times in the 30 sub-sets
(confidence = 60%).

To further predict interactions, the DEPs in the proteome (P),
proteins corresponding to the target genes of miR164c (T), and
proteins corresponding to the DEGs in the transcriptome that
interact with P or T in the above MERLIN interactions, were
used as the input in the String database v11.04, with medium
confidence (40%). Target genes of miR164c were mostly obtained
via psRNATarget5 and from the results of degradome sequencing
of WT, ST, and OT (unpublished data).

Finally, the MERLIN and String network were integrated, and
the Cytoscape v3.7.1 software was used to develop an interaction
network comprising miR164c target genes as well as DEGs
and DEPs. All genes and proteins in the interaction network
were ranked by six ranking methods using cytoHubba of the
Cytoscape v3.7.1 software. The top 10 genes/proteins obtained
by each ranking method were compared, and those common
among all six methods were termed as hub genes/proteins
(Sang et al., 2018).

MRM-MS Analysis
To extract protein, seed embryos were ground to a fine powder
in liquid nitrogen and extracted with lysis buffer [7 M urea,
2 M thiourea, 4% CHAPS, and 40 mM Tris-HCl (pH 8.5)],
containing 1 mM PMSF and 1 mM EDTA (final concentration).
The further procedures for protein preparation were the same as
the method of Liu et al. (2018).

To digest the proteins, 100 µg of total protein was sampled
and digested with Trypsin Gold (Promega, Madison, WI,
United States) at a trypsin:protein mass ratio of 1:30 at 37◦C

4https://string-db.org/
5http://plantgrn.noble.org/psRNATarget/

for 16 h. After trypsin digestion, peptides were dried by vacuum
centrifugation and reconstituted in 0.5 M TEAB.

To conduct LC-MRM-MS, samples were digested with
trypsin, as described above, and spiked with 50 fmol
β-galactosidase for data normalization. MRM analyses were
performed on a QTRAP 5500 mass spectrometer (SCIEX,
Framingham, MA, United States) equipped with an LC-20AD
nano HPLC system (Shimadzu, Kyoto, Japan). The mobile phase
consisted of solvent A (0.1% aqueous FA) and solvent B (98%
ACN in 0.1% FA). Peptides were separated on a C18 column
(0.075 × 150 mm column, 3.6 µm) at a flow rate of 300 L/min.
Peptide samples were then eluted at a gradient of 5–30% solvent
B for 38 min and 30–80% solvent B for 4 min, followed by a hold
at 80% solvent B for 8 min. The QTRAP5500 mass spectrometer
was used at an electrospray voltage of 2,400 V, nebulizer gas of
23 psi, and dwell time of 10 ms. To maximize specificity, several
MRM transitions were monitored using unit resolution in both
Q1 and Q3 quadrupoles.

For transition selection, a spectral library of MS/MS data
was generated on TripleTOF5600 (AB SCIEX, Foster City,
CA, United States) and searched using Mascot v2.3 (Matrix
Science, London, United Kingdom) against the rice database
(122,753 entries) downloaded from the UniProt Knowledgebase
(UniProtKB). The data file was imported into the Skyline
software where a library was built. To develop the MRM method,
peptides were selected according to the following criteria: (1)
peptide sequence was unique in the UniProtKB rice database; (2)
maximum peptide m/z < 1,250 (limitation of the Quadrupole
scan), and peptide length = 5–40 aa; (3) no Met residues in
peptides; (4) carbamidomethylation of Cys residues, without
variable modification in peptides; and (5) no missed cleavage by
trypsin. Initially, six transitions per peptide were monitored to
ensure specificity according to the following criteria: (1) fragment
ions were in the form of b- or y-ions; (2) precursor ion charge
was 2, 3, or 4, and the fragment ion charge was 1 or 2. The
predicted retention time of targeted peptides was observed with
an iRT strategy. The pooled peptides were digested as described
above and subjected to preliminary selective reaction monitoring
(SRM) assays to determine where the proteins were detected.

To validate the MRM method, chromatograms of all
transitions generated on QTRAP5500 (SCIEX) were input into
Skyline. The MRM method was considered successful for a given
protein only if the protein produced at least one unique peptide
with the following characteristics: (1) identified with MS/MS
spectral library cut-off score > 0.95; (2) showed more than five
fragment ions with the same elution profile and the same ratio
as the spectral library; and (3) showed an accurate retention time
(less than± 2 min deviation from the predicted retention time).

To analyze the LC-MRM-MS data, the Skyline software was
used to integrate the raw file generated by QTRAP 5500. An iRT
strategy was used to predict the retention time of a given peptide
against a spectral library. All transitions for each peptide were
used for quantitation, unless interference was observed from the
matrix. A spike of β-galactosidase was used for label-free data
normalization. MSstats with the linear mixed-effects model was
used for data analysis. Three technical replicates were performed
for each sample. The P-value was adjusted to control the FDR at
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a cut-off of 0.05. All proteins with a P-value < 0.05 and FC > 1.5
were considered statistically significant.

RT-qPCR Assay
The RT-qPCR assay was conducted as described previously (Zhou
et al., 2020). Forward primers used for miRNA genes, and primers
used for other genes, are listed in Supplementary Table S4. The
expected size of the amplified fragments varied from 80 to 200 bp.
Three technical replicates were performed for each sample.
Statistical analysis was performed using Piko Real Software 2.0,
and a paired t-test was performed to compare expression levels.

RESULTS

Anti-aging Capacity and miR164c
Expression Level Differ Among WT, ST,
and OT Seeds
The germination rates of unaged “Kasalath” (WT), MIM164c
(ST), and OE164c (OT) seeds were 96.7, 98, and 98.7%,
respectively, thus showing no significant differences
(Figures 1A,C). However, after 8 day of artificial aging, the
germination rates of all three genotypes decreased significantly
to 64.7, 80, and 51.3%, respectively (Figures 1B,C). Thus, aged
seeds of the three genotypes showed significantly different
germination rates (P < 0.01), along with morphological
differences (Figures 1B,C). Additionally, the expression level of
miR164c in the aged seeds of all three genotypes was significantly
higher than that in the corresponding unaged seeds (P < 0.001).
On the other hand, compared with WT seeds, the expression
level of miR164c was significantly lower in ST seeds (P < 0.01)
and higher in OT seeds (P < 0.05 for unaged seeds; P < 0.001
for artificially aged seeds), irrespective of the aging treatment.
These results are consistent with those of a previous report
(Zhou et al., 2020).

Differences in the Transcriptome and
Proteome of WT, ST, and OT Seeds
The transcriptome is a collection of all RNA molecules in a cell
or group of cells, which reflects the expression status of the entire
genome. The transcriptome data and quality of WT, ST, and OT
seeds are shown in Supplementary Table 1. The HTSeq software
and “union” model were used to analyze the gene expression
level. A total of 91,992 genes were obtained (Supplementary
Table 2), of which approximately 75,000 genes showed FPKM
values ranging from 0 to 1; approximately 7,000 genes showed
FPKM values in the range of 3–15; between 1,580 and 1,864 genes
showed FPKM values > 60.

The number of genes differentially expressed between WT and
ST seeds (WTvsST), and between WT and OT seeds (WTvsOT),
was 3,529 and 4,134, respectively, of which 2,041 genes were
common to both groups (Figure 2A). Cluster analysis showed
that the expression patterns of the DEGs differed greatly among
the three genotypes (Figure 2B), suggesting that the differential
expression of miR164c among these genotypes likely has an
important impact on these genes.

The results of KEGG pathway enrichment analysis of the
DEGs are shown in Figure 2C. In total, 10 different pathways
were significantly enriched (P < 0.05): eight in STvsWT, three
in OTvsWT, and one in STvsOT. Among these pathways,
“spliceosome” and “porphyrin and chlorophyll metabolism”
were common between the STvsWT and OTvsWT groups.
Notably, the “protein processing in endoplasmic reticulum (ER)”
KEGG pathway was the most significantly enriched and the
only enriched pathway among DEGs identified in the STvsWT
comparison. The ER is the main site of intracellular protein
processing, protein folding, and transport of newly synthesized
proteins to the Golgi apparatus. Studies show that HSPs in the ER
can help to maintain standard protein folding and regulate plant
defense response against abiotic stresses (Lindquist and Craig,
1988; Xu et al., 2005). Moreover, HSPs in the ER can enhance
the anti-aging capacity of seeds (Rajjou and Debeaujon, 2008).
In this study, the seeds of MIM164c possessed the highest anti-
aging capacity. Therefore, genes in this ER-related pathway may
play key roles in the regulation of the anti-aging capacity of seeds.

Protein is the primary bearer of life activities. To further
investigate the molecular basis of the differences in the anti-
aging capacity of WT, ST, and OT seeds, proteomic analyses were
performed using the TMT method. A total of 4,066 proteins were
identified, of which 3,604 proteins had quantitative information.
The repeatability analysis of each sample showed that the protein
quantification results were reliable (Figure 3A). In this study,
proteins with FC > 1.3 or < 0.77, and P-value < 0.05, were
considered as differentially expressed. Based on these criteria, the
number of DEPs was 77 (29 up-regulated and 48 down-regulated)
in STvsWT, 113 (51 up-regulated and 62 down-regulated) in
STvsOT, and 56 (23 up-regulated and 33 down-regulated) in
OTvsWT (Figure 3B). Cluster analysis of DEPs showed that
only a few proteins showed similar levels between ST and OT
seeds (Figure 3C), indicating that the differential expression of
miR164c in two transgenic lines may contribute to differences in
protein expression.

KEGG enrichment analysis showed that the DEPs
identified above were significantly (P < 0.05) enriched in
six pathways, namely, “metabolic pathways” (osa01100),
“starch and sucrose metabolism” (osa00500), “biosynthesis
of secondary metabolites” (osa01110), “protein processing
in ER” (osa04141), “galactose metabolism” (osa00052), and
“phagosome” (osa04145) (Figure 4A). Among these pathways,
the enrichment of three pathways was consistent with the results
of the transcriptome KEGG enrichment analysis (Figure 2C):
“protein processing in ER” significantly (P < 0.05) enriched
in the down-regulated proteins in both STvsWT and STvsOT
groups; “phagosome,” a pathway related to cell phagocytosis,
significantly (P < 0.05) enriched in the up-regulated proteins in
both STvsWT and STvsOT groups; and “galactose metabolism,”
an energy metabolism-related pathway, significantly (P < 0.05)
enriched in the up-regulated proteins in the STvsWT group.

In addition to KEGG analysis, GO enrichment analysis
of the DEPs in the STvsOT, STvsWT, and OTvsWT groups
was also performed (Figures 4B–D). The GO terms were
categorized under three broad categories: Biological Process,
Cellular Component, and Molecular Function. In the STvsOT,
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FIGURE 1 | Analysis of seed morphological phenotypes and miR164c expression levels in the seeds of the wild-type rice cultivar “Kasalath” (WT),
miRNA164c-silenced line (MIM164c; ST), and miR164c overexpression line (OE164c; OT) before and after artificial aging. (A,B) Morphological phenotypes of
germinating seeds. (C) Seed germination rates. (D) miR164c expression levels. Photographs shown in A and B were taken on the third day of germination. Data
represent mean ± SD (n = 3). Significant differences in seed germination rates and miR164c expression levels among the different rice genotypes were determined
using Tukey’s test (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001). In D, the expression level of miR164c in unaged WT seeds was defined as 1.

STvsWT, and OTvsWT groups, according to−log10(Fisher’s exact
test P-value), DEPs were significantly enriched in 33 GO terms
(including 13 terms in the Biological Process category, four terms
in Cellular Component, and 16 terms in Molecular Function);
31 GO terms (15 terms in Biological Process, nine terms in
Cellular Component, and seven terms in Molecular Function);
and 32 GO terms (eight terms in Biological Process, 15 terms
in Cellular Component, and nine terms in Molecular Function),
respectively. In each GO category, the terms enriched in the
up-regulated and down-regulated proteins showed significant
differences among the STvsOT, STvsWT, and OTvsWT groups.
For example, compared with STvsWT and OTvsWT, most terms
were enriched in the Molecular Function category in STvsOT. It
is worth noting that each enriched term in this category in the
STvsOT group contained both up-regulated and down-regulated
proteins, and the number of up-regulated proteins was greater
than that of down-regulated proteins (Supplementary Figure 1).
All of these GO terms, except “molecular function regulator,”
were mainly related to peptidase activity with high significance.
On the other hand, the same down-regulated peptidase-related
GO terms were also enriched in the Molecular Function category
in OTvsWT, but none of these terms were enriched in STvsWT.
These results suggest that the differential expression of miR164c
alters the physiological and metabolic status of seeds of the three
rice lines at the protein level.

Next, we used MapMan, a plant gene annotation
database, to annotate genes corresponding to the DEPs
identified in this study. MapMan pathway enrichment
was performed at Levels 1–3 for all DEPs with FC ≥ 1.3
(Figure 5). To obtain as much enrichment information
as possible, the P-value of the DEPs was not considered
during MapMan enrichment analysis. The results showed

that the DEPs were significantly enriched (Fisher’s
exact test P-value < 0.05) in a total of 68 pathways,
among which, according to −log10(Fisher’s exact test
P-value), the top 10 pathways in descending order were
as follows: “stress.abiotic.heat,” “DNA.synthesis/chromatin
structure.histone,” “stress,” “transport.metabolite transporters
at the envelope membrane,” “stress.abiotic,” “major CHO
metabolism.degradation.sucrose,” “DNA.synthesis/chromatin
structure,” “protein.targeting.chloroplast,” “S-assimilation.sulfite
redox,” “PS.lightreaction.photosystem II.” More than half
of these pathways were potentially related to the anti-aging
capacity of seeds. For example, “stress” and “stress.abiotic.heat”
pathways were significantly enriched among the down-
regulated proteins in both STvsOT and STvsWT groups; the
“transport.metabolite transporters at the envelope membrane”
pathway was significantly enriched among the up-regulated
and down-regulated proteins in STvsOT and OTvsWT,
respectively; “CHO metabolism.degradation.sucrose,” a major
pathway related to energy metabolism, was significantly
enriched among the up-regulated proteins in STvsOT; and
two pathways potentially related to gene expression regulation,
namely, “DNA.synthesis/chromatin structure.histone” and
“DNA.synthesis/chromatin structure,” were significantly
enriched among the down-regulated proteins in both STvsOT
and STvsWT groups.

Correlation Analysis Between the Seed
Transcriptome and Proteome
In the transcriptome, up-regulated genes with FC > 1.2, down-
regulated genes with FC < 1/1.2, and all genes with the
corrected P-value < 0.05 were designated as DEGs. In the
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FIGURE 2 | Analysis of the transcriptome of ST and OT seeds relative to that of WT seeds (three biological replicates per genotype). (A) Venn diagram. (B) Cluster
analysis. In B, the greater the intensity of the red color, the higher the gene expression; and the greater the intensity of the blue color, the lower the gene expression.
(C) Heat map showing the results of KEGG pathway enrichment analysis of genes differentially expressed between WT, MIM164c (ST), and OE164c (OT) seeds.

proteome, up-regulated proteins with FC > 1.3 and down-
regulated proteins with FC < 1/1.3 were designated as DEPs.
Based on the correlation between the DEGs and DEPs in
STvsWT and OTvsWT groups, the genes/proteins were divided
into eight categories: (1) up-regulated in both the transcriptome
and proteome; (2) down-regulated in both the transcriptome
and proteome; (3) down-regulated in the transcriptome but up-
regulated in the proteome; (4) up-regulated in the transcriptome
but down-regulated in the proteome; (5) up-regulated in the
transcriptome but unchanged in the proteome; (6) down-
regulated in the transcriptome but unchanged in the proteome;
(7) unchanged in the transcriptome but up-regulated in the

proteome; and (8) unchanged in the transcriptome but down-
regulated in the proteome. A total of 1,097 genes/proteins
were identified in these eight categories in the STvsWT group
(Figure 6), of which 92.3% belonged to four categories (520
genes/proteins in category #5, 313 in #6, 73 in #7, and 107
in #8). In OTvsWT, a total of 1,181 genes/proteins were in
the eight categories (Figure 6), and 94.8% of these belonged
to categories #5 (460), #6 (482), #7 (72), and #8 (106). These
results indicate that the transcription level of an overwhelming
majority of genes is not consistent with their translation
level, implying that gene transcription and translation might
be relatively independent; this was supported by previous
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FIGURE 3 | Proteome analysis of WT, ST, and OT seeds (three biological replicates per genotype). (A) Reproducibility of the proteome data. (B) Number of DEPs.
(C) Cluster analysis of DEPs.

FIGURE 4 | Heat map showing the results of KEGG and GO enrichment analyses of DEPs in WT, ST, and OT seeds. (A) KEGG enrichment analysis. The greater the
intensity of the red color, the greater the degree of enrichment. GO enrichment analyses of DEGs identified in STvsOT (B), STvsWT (C), and OTvsWT (D)
comparisons.
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FIGURE 5 | Clustering analysis of the results of MapMan pathway enrichment of genes corresponding to the DEPs identified in the WT, ST, and OT seeds. The
darker the color, the more significant the degree of enrichment. The DEPs were selected based only on fold-change (FC > 1.3 or < 1/1.3), and not on the basis of
the P-value.

studies (Gygi et al., 1999; Maier et al., 2009; He et al.,
2016).

We further performed GO function and KEGG pathway
enrichment analyses on DEGs/DEPs identified in the
abovementioned eight categories and then clustered the
enriched terms or pathways (Figure 7). Since the Biological
Process category contained too many levels, only Level 6 and
Level 7 GO terms were considered in this category; however, all
levels were considered in the Molecular Function and Cellular
Component categories. In Biological Process, 17 and nine GO
terms were enriched in STvsWT and OTvsWT, respectively, of
which six terms are common to both groups (Figure 7A). In

Cellular Component, 19 and 22 GO terms were enriched in
STvsWT and OTvsWT, respectively, with no common GO terms
(Figure 7B). In Molecular Function, 14 and 22 GO terms were
enriched in OTvsWT and STvsWT, respectively, of which six GO
terms were common to both groups (Figure 7C). The results of
KEGG pathway enrichment analysis showed that five and nine
pathways were enriched in STvsWT and OTvsWT, respectively,
of which two pathways were common to both groups; however,
one of the two common pathways varied greatly in enrichment
between STvsWT and OTvsWT (Figure 7D).

To identify genes/proteins relevant to the anti-aging capacity
of seeds, based on the transcriptome–proteome correlation
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FIGURE 6 | Number of DEGs/DEPs in each of the eight transcriptome–proteome correlation categories. Up-Up: up-regulated in both proteome and transcriptome;
Down-Down: down-regulated in both proteome and transcriptome; Up-Down: up-regulated in proteome and down-regulated in transcriptome; Down-Up:
down-regulated in proteome and up-regulated in transcriptome; -Up: unchanged in proteome and up-regulated in transcriptome; -Down: unchanged in proteome
and down-regulated in transcriptome; Up-: up-regulated in proteome and unchanged in transcriptome; Down-: down-regulated in proteome and unchanged in
transcriptome.

analysis, six significantly enriched common GO terms, but
with significantly different enrichment between STvsWT and
OTvsWT groups, were noteworthy in the Molecular Function
category (Figure 7C): “endopeptidase inhibitor activity,”
“endopeptidase regulator activity,” “peptidase regulator activity,”
“peptidase inhibitor activity,” “serine-type endopeptidase
inhibitor activity,” and “nutrient reservoir activity.” All of these
GO terms, except “nutrient reservoir activity,” were peptidase-
related, and the DEGs and DEPs enriched in these five GO
terms belonged to category #5 in STvsWT; however, in OTvsWT,
the expression correlation between these DEGs and DEPs was
diverse. In addition, among these five GO terms, “serine-type
endopeptidase inhibitor activity” was the most significantly
enriched, with genes/proteins up-regulated in the transcriptome
and down-regulated in the proteome of OTvsWT (Figure 7C),
which was consistent with the results of GO enrichment analysis
of DEPs in STvsOT and OTvsWT (Figures 4B,D). Genes in
the “serine-type endopeptidase inhibitor activity” GO term
were up-regulated in the transcriptome in both STvsWT and
OTvsWT groups, indicating that ST and OT seeds showed higher
expression level of serine endopeptidase inhibitor-related genes
than WT seeds. However, compared with the WT, the level
of proteins corresponding to these genes showed significant
differences between the two transgenic lines, i.e., unchanged in
ST seeds and down-regulated in OT seeds. We speculate that the
difference in the expression level of serine-type endopeptidase
inhibitory-related proteins between ST and OT seeds was
mainly caused by different regulatory mechanisms guided
by the differential expression of miR164c between the two
transgenic lines.

The significantly enriched GO terms that were unique and
accounted for a larger proportion of all GO terms in each of
the two groups, STvsWT and OTvsWT, were mainly found in
the Cellular Component category (Figure 7B). Among these GO
terms, seven mitochondrial-related terms were notably enriched
and accounted for more than one-third of all 22 significantly
enriched GO terms in OTvsWT, including “mitochondrial

envelope,” “mitochondrial membrane,” “mitochondrial protein
complex,” “mitochondrial inner membrane,” “mitochondrion,”
“mitochondrial membrane part,” and “mitochondrial part.” The
expression of all genes in these GO terms was unchanged in the
transcriptome, while all proteins in these GO terms were down-
regulated in the proteome. However, these genes/proteins were
not significantly enriched in the STvsWT group. This result is
consistent with the GO enrichment result of the DEPs in the
mitochondria-related terms, and the MapMan enrichment result
of the TCA-related pathway in OTvsWT (Figures 4D, 5). The
mitochondria-related proteins were significantly down-regulated
in OTvsWT, indicating that the energy metabolism of OT seeds
may be abnormal to some degree.

In the KEGG pathway enrichment results (Figure 7D),
two significant enriched pathways, “proteasome” and “protein
processing in ER,” were common to both STvsWT and OTvsWT
groups. However, the “proteasome” pathway showed very similar
correlation categories between STvsWT and OTvsWT, while
the “protein processing in ER” pathway showed highly distinct
categories between STvsWT and OTvsWT (#6 in OTvsWT and
#2 in STvsWT). The significant down-regulation of ER-related
proteins in the STvsWT group was consistent with the results
of KEGG enrichment analysis of the DEGs in the transcriptome
(Figure 2C) and the DEPs in the proteome (Figure 4A). We
speculate that the differential expression of ER-related proteins
between ST and OT seeds was mainly caused by different
regulatory mechanisms guided by the differential expression of
miR164c between the two transgenic genotypes.

Key Genes/Proteins Associated With the
Anti-aging Capacity of Rice Seeds
Through the transcriptome and proteome functional enrichment
analyses and transcriptome–proteome correlation analysis of
WT, ST, and OT seeds, some key KEGG/MapMan pathways and
GO terms that may be related to the anti-aging capacity of rice
seeds were obtained. These included GO terms such as “serine
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FIGURE 7 | Clustering analysis of the results of functional enrichment of DEGs/DEPs identified by transcriptome–proteome correlation analysis. The common GO
terms and KEGG pathways in the STvsWT and OTvsWT groups are underlined by the same color. The darker the red color, the more significant the degree of
enrichment. (A–C) The GO categories Biological Process, Cellular Component, and Molecular Function, respectively. (D) represents the KEGG pathway enrichment
of DEGs.

endopeptidase,” “embryo development,” “energy metabolism,”
and “protein folding”; KEGG pathways such as “ER protein
processing,” “energy metabolism,” “phagosomes,” and “other”;
and MapMan pathways such as “stress and energy metabolism.”
All DEPs could be divided into six categories, based on

their function: “stress response,” “ER,” “embryo development,”
“serine-type endopeptidase inhibitor,” “energy metabolism,”
and “other.” The “other” category included difficult-to-classify
proteins such as the unfolded protein-related protein and
phagosome-related protein (Supplementary Table 3). Cluster
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FIGURE 8 | Functional cluster heat map showing the expression levels of DEPs in WT, ST, and OT seeds.

analysis was performed based on the expression levels of these
proteins (Figure 8). The results showed that the expression
patterns of energy metabolism-related proteins were similar
between ST and WT seeds, and the expression levels of these
proteins were higher in ST and WT seeds than in OT seeds.
Expression patterns of most proteins related to “stress response,”
“ER protein processing,” “embryo development,” and “other”
functions were similar between OT and WT seeds, and their
expression levels were higher in OT and WT seeds than in ST
seeds. Additionally, most serine endopeptidase inhibitor- and
sucrose synthase-related proteins in the “energy metabolism”
category were expressed in seeds in the following order:
ST > WT > OT; this is consistent with the anti-aging capacity
of rice seeds. However, the expression level of proteins related
to embryo development followed the order OT > WT > ST,
which was exactly opposite to the anti-aging capacity of seeds. We
further compared the relative expression levels of the six key types
of DEGs/DEPs between seeds of the three rice genotypes using
the transcriptome and proteome data (Supplementary Figure 2).
The results showed that, irrespective of the transcriptome or
proteome, the most consistent differences in expression between
the three seed types were in serine endopeptidase inhibitor- and
energy metabolism-related genes/proteins. Thus, we speculate

that differences in the expression levels of serine endopeptidase
inhibitor- and energy metabolism-related proteins may be
associated with the anti-aging capacity of rice seeds.

Protein involved in stress response, ER protein processing,
protein folding, and embryo development (LEA proteins in
this study; Supplementary Table 3) are collectively referred to
as stress-related proteins (Lindquist and Craig, 1988; Cuming,
1999; Xu et al., 2005; Kalemba and Pukacka, 2008; Rajjou and
Debeaujon, 2008). Most of these proteins were expressed to
higher levels in OT and WT seeds than in ST seeds (Figure 8).
This implies that under the unaged condition, high expression
of stress-related proteins in seeds may be unfavorable for
maintenance of high vigor.

Interaction Between miR164c Target
Genes and DEGs/DEPs
How miR164c interacts with genes/proteins in the six major
functional categories to regulate seed vigor was not clear. Here,
we investigated the interaction between the miR164c target genes
and DEGs/DEPs identified in this study using the MERLIN
algorithm, a highly accurate and iterative algorithm based on
gene expression.
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The MERLIN algorithm mainly performs regulatory
predictions between the genes to be analyzed (Target genes) and
the regulatory factors (Factor) that affect gene expression (such
as transcription factors and kinases), based on massive gene
expression data (Roy et al., 2013). In this study, transcriptomes
of 164 rice samples (including the transcriptome obtained
in this study plus transcriptomes downloaded from NCBI)
were used as the data matrix. The DEGs in the transcriptome
and genes corresponding to the DEPs in the proteome in the
present study, as well as the target genes of miR164c, were
considered as Target genes. Genes corresponding to the DEPs in
the proteome, genes related to gene expression regulation (such
as those encoding transcription factors and phosphorylation,
acetylation, methylation, and ubiquitination enzymes) in
the transcriptome, as well as target genes of miR164c, were
considered as Factors. Altogether, 6,178 Target genes and 719
Factors were used as the input for the MERLIN algorithm. The
results revealed 811 interactions among 331 Factors and 769
Target genes. Additionally, the String database predicted 1,049
interactions among 385 proteins. In the integrated MERLIN
and String network, 14 miR164c target genes and more than
400 DEGs/DEPs were identified in the seeds of the three rice
genotypes (Figure 9 and Supplementary Table S5).

The network included 76.7% (indicated in bold in
Supplementary Table 3) of all the proteins in the six
categories obtained by the functional enrichment analysis
of the transcriptome and proteome. Some of the proteins in
each functional category were closely interrelated, including a
number of common proteins in the “stress response,” “ER,” and
“other” (unfolded protein-related) categories; this is consistent
with the result of protein expression cluster analysis (Figure 8).
The network also shows that the serine endopeptidase inhibitors
were closely associated with embryo development- and energy
metabolism-related proteins.

In the network, five hub genes including RPS27AA, RPL5A,
RACK1B, OS10G0569200, and OS08G0559200 were selected
using six ranking methods in cytoHubba. Among these genes,
RPS27AA was ranked as the first gene in the results of three out
of six methods (Table 1). RPS27AA was also the hub node in the
network confirmed by String and MERLIN algorithm together
(Figure 9). RPS27AA was identified as a DEG in the STvsOT
group. RPS27AA is related to ubiquitination, and interacts with
two miR164c target genes (OsTIL1 and Os06g0622500), and
simultaneously connects DEPs related to energy metabolism
and protein folding in “other” functional categories, which then
interact with proteins in the other four functional categories
(“stress response,” “ER,” “serine endopeptidase inhibitor,” and
“embryo development”). Figure 10 is a simplified diagram
showing the RPS27AA-mediated interactions between miR164c
target genes and genes/proteins in the six functional categories. It
is puzzling that neither TIL1 nor Os06g0622500, which interacts
with RPS27AA in the network, was differentially expressed;
however, another target gene of miR164c, PSK5, which does
not interact directly with RPS27AA in the network, showed
differential expression in the transcriptome of seeds of the three
rice genotypes. Additionally, TIL1 showed interaction with PSK5,
which positively regulates the anti-aging capacity of rice seeds

(Zhou et al., 2020). This raises the questions of how PSK5
interacts with RPS27AA to regulate seed vigor, and whether TIL1
is involved in this regulation. The network analysis reveals clear
relationships among the six types of functions, indicating that the
proteins may play potential roles in the anti-aging ability of the
rice seeds. Given their pivotal role in connecting miR164c with
genes/proteins in the six functional categories, we designated
PSK5, RPS27AA, OsJ_23767, and Os10G0488100 as the core
genes (Figure 10).

Verification of RNA-seq Data
To verify the reliability of RNA-seq data, the expression of 11
DEGs with different functions was analyzed by RT-qPCR using
the same batch of seeds as was used for RNA-seq. Of these 11
genes, 10 were included in the gene/protein interaction network
and belonged to the six functional categories identified above
(Figure 9). The RT-qPCR results of seven genes were consistent
with the RNA-seq data, indicating that our transcriptome data are
reliable (Figure 11). The RT-qPCR results of the other four genes
were inconsistent with the RNA-seq data, possibly because of the
difference between the sensitivity of the two methods (Zhao et al.,
2012; Ke et al., 2014).

Expression levels of the above mentioned 10 genes were
significantly affected by the artificial aging treatment (Figure 12),
further implying that these genes may be related to the anti-aging
capacity of rice seeds.

PSK5 is one of the target genes of miR164c. RT-qPCR assay
of unaged seeds showed that the expression level of PSK5 was
highest in WT seeds and lowest in OT seeds, indicating that PSK5
expression was inhibited by genetic transformation, regardless
of whether the transformation was for miR164c silencing or
miR164c overexpression, but the inhibitory effect of miR164c
overexpression was more severe than that of miR164c silencing.
Following the artificial aging treatment, the expression level of
PSK5 decreased in the seeds of all genotypes; however, PSK5
expression was highest in ST seeds and lowest in OT seeds
(Figure 12A). These results were consistent with the differences
in the seed anti-aging capacities of the three genotypes and
opposite to the expression levels of miR164c in these genotypes
(Figure 1D). On the other hand, the expression level of RPS27AA
in unaged ST and WT seeds was significantly higher than that in
unaged OT seeds, and artificial aging exacerbated this difference
(Figure 12B). The expression level of RPS27AA, OsJ_23767,
and Os10G0488100 significantly increased in ST seeds and
significantly decreased in OT seeds after artificial aging. Although
up to 14 target genes of miR164c were involved in the interaction
network, only PSK5 showed differential expression among the
three rice lines. Whether the other miR164c target genes are
involved in the regulation of seed vigor remains unclear.

Expression analysis of three energy metabolism-related genes
(OsJ_23767, Os05G0302700, and Os08t0250200; Figures 12C–
E), an unfolded protein-related gene (Os10G0488100;
Figure 12H), and a stress response-related gene (Os06G0503400;
Figure 12I) by RT-qPCR showed that all five genes were
significantly up-regulated in artificially aged ST seeds
relative to unaged ST seeds. Moreover, among artificially
aged seeds, the expression level of these five genes was
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FIGURE 9 | Interaction between miR164c target genes and DEGs/DEPs identified in the transcriptome and proteome of WT, ST, and OT seeds. Colors of different
boxes and the text within each box represent the major functional categories of genes or proteins. Colored nodes represent different types of regulation. Node
shapes represent different types of genes or proteins. The node size represents the degree of nodes; the bigger the node size, the higher the degree. DEPs were
identified based on the value of FC alone (>1.3 or <1/1.3). DEGs were identified using thresholds for FC (>1.2 or <1/1.2) as well as the P-value (<0.05).

TABLE 1 | Ranking of hub genes in the gene/protein interaction network using cytoHubba.

Rank Ranking methods in cytoHubba†

MCC MNC Degree EPC Closeness Radiality

1 RACK1B RPS27AA RPS27AA OS06G0608300 RPS27AA OS06G0608300

2 RPL5A OS06G0608300 OS06G0608300 OsJ_13577 OS06G0608300 RPS27AA

3 OS08G0559200 OsJ_13577 DJC43 RPS27AA OsJ_13577 RACK1B

4 OS07G0224000 OS04G0107900 OsJ_13577 RPL5A OS04G0107900 OS08G0559200

5 OsJ_33893 RPL5A OS04G0107900 OS10G0569200 RACK1B DJC43

6 RPS27AA DJC43 RACK1B OsJ_25910 DJC43 RPL5A

7 OS10G0569200 RACK1B OS08G0559200 RACK1B RPL5A OsJ_13577

8 OS07G0124500 OS10G0569200 RPL5A OS07G0224000 OS08G0559200 OS04G0107900

9 OsJ_32984 OS08G0559200 OS10G0569200 OS08G0559200 OS10G0569200 OsJ_25910

10 OsJ_25910 OsJ_33893 OS07G0124500 OS04G0107900 OsJ_25910 OS10G0569200

†Genes indicated in bold represent hub genes identified within the top 10 list by each of the six ranking methods in cytoHubba.
MCC, maximal clique centrality; MNC, maximum neighborhood component; Degree, node connect degree; EPC, edge percolated component; Closeness, closeness
centrality; Radiality, reachability to other nodes.

higher in ST seeds and lower in OT seeds relative to the
WT. Differences in the expression levels of these five genes
among the artificially aged seeds of the three rice genotypes
were highly consistent with those of PSK5. These results
suggest that miR164c regulates seed vigor via its target

gene PSK5, which interacts with RPS27AA to affect the
downstream genes.

Expression levels of two serine endopeptidase inhibitor-
related genes, Os07g0214300 and Os07g0222006, increased in
ST and OT seeds after artificial aging; however, both these
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FIGURE 10 | Schematic showing the effect of miR164c on rice seed vigor via RPS27AA in the functional gene/protein interaction network. Solid straight lines
represent strong interaction, and dashed lines represent weak interaction. The color of the outer frame of each node is the same as that of the functional proteins in
Figure 9. Blue lines represent the interactions confirmed both by the MERLIN algorithm and String database.

genes were expressed to a lower level in WT seeds, regardless
of the aging treatment (Figures 12F,G). This indicates that
T-DNA transformation may increase the expression of these
genes, and the stress of aging may further enhance this
increase, especially in OT seeds. Compared with WT seeds
(aged or unaged), the expression level of the ER-related gene
Os02G0782500 (Figure 12J) was lower in ST seeds and higher
in OT seeds, indicating that the expression of Os02G0782500
was inhibited by the silencing of miR164c and promoted
by the overexpression of miR164c, but the stress of aging
significantly suppressed its expression in seeds of all genotypes.
This result is consistent with the expression level of the
corresponding stress response- and ER-related proteins shown in
Figure 8.

Verification of TMT Data
To verify the TMT data, the expression of 60 randomly
selected 1.2-fold changed DEPs was verified by MRM-MS. Of
these 60 proteins, 16 were successfully quantified by MRM-MS
(Figure 13), and the results of 12 of the 16 proteins (75%)
were consistent with the proteomics data, indicating that our
proteomics data are reliable. The reason that most of the DEPs
could not be quantitatively verified by MRM-MS may be the strict
analysis conditions and workflow of MRM. This also shows that
MRM-MS analysis has certain limitations for the verification of
proteomics results.

Of the 16 proteins successfully quantified by MRM-
MS, three proteins (Os06t0503400-01, Os05t0302700-01, and
Os02t0782500-01) were members of the gene/protein interaction
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FIGURE 11 | Validation of the RNA-seq data of 11 DEGs by RT-qPCR. Data represent mean ± SD (n = 3).

FIGURE 12 | RT-qPCR assay of the expression level of 10 genes in WT, ST, and OT seeds before and after artificial aging. (A–C,H) Core genes in the interaction
network in Figure 9. (C–E) Genes related to energy metabolism. (F,G) Genes corresponding to serine-type endopeptidase inhibitors. (H–J) Stress-related genes.
Data represent mean ± SD (n = 3). Significant differences in gene expression levels among the three rice genotypes were determined by Tukey’s test (∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001). The expression level of each gene in unaged WT seeds was defined as 1.

network (Figure 9). The expression of genes corresponding to
these three proteins was also verified by RT-qPCR. Compared
with unaged seeds, the expression level of Os05G0302700
and Os02G0782500 was up-regulated and down-regulated,
respectively, in the aged seeds of all three rice genotypes, whereas
Os06G0503400 was up-regulated in aged ST seeds and down-
regulated in aged WT and OT seeds (Figure 12). Bioinformatics
analyses showed that Os06t0503400-01, Os05t0302700-01, and
Os02t0782500-01 are stress response-, energy metabolism-, and
ER-related proteins, respectively. The results of MRM-MS assay
showed that expression levels of both Os06t0503400-01 and
Os02t0782500-01 in all three types of rice seeds increased
significantly after aging, indicating that the two proteins may
participate in the regulation of the anti-aging capacity of rice
seeds. However, the expression level of Os05t0302700-01 did
not change significantly with aging (Figure 14C), suggesting

that this protein may have little to do with the regulation of
seed anti-aging capacity. The difference between the results
of RT-qPCR and MRM-MS for the three genes/proteins
further illustrates the different regulatory mechanisms of gene
transcription and translation.

DISCUSSION

The decline in the seed vigor of rice cultivars, especially hybrid
cultivars, during storage is a serious problem (Gao et al., 2016).
Investigation of the molecular basis of seed vigor or anti-
aging capacity in rice will facilitate the development of new
technologies that can prolong the longevity of rice seeds. The
regulatory roles of miRNAs in plants are evident in almost all
aspects of physiology, including the response to various stresses
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FIGURE 13 | Comparison of the quantitative data of 16 rice seed proteins between MRM-MS and TMT assays. Data represent the mean of three technical
replicates. Asterisk (∗) indicates the significant difference (a linear mixed-effects model was used for MRM data and a paired t-test for TMT data) in the protein
expression level between transgenic and WT seeds (P < 0.05). The expression level of each protein in WT seeds was defined as 1.

FIGURE 14 | Quantitative results of three key proteins in aged and unaged WT, ST, and OT seeds by MRM-MS. Data represent the mean of three technical
replicates. A linear mixed-effects model was used to determine significant differences in protein expression levels among the three rice genotypes (∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001). The expression level of each protein in unaged WT seeds was defined as 1.

such as nutrient deficiency, drought, and cold (Khraiwesh et al.,
2012; Sun, 2012). Identification of the regulatory mechanisms of
miRNAs will help to improve the yield and stress resistance of
crops (Djami-Tchatchou et al., 2017).

Studies show that miRNAs affect seed vigor in rice, and the
expression level of miR164c is negatively correlated with rice seed
vigor (Zhou et al., 2020). Our results confirmed the differences in
the anti-aging capacities and miR164c expression levels among
WT, ST, and OT seeds (Figure 1). Moreover, using transcriptomic
and proteomic approaches, we elucidate the miR164c-guided
gene/protein interaction network involved in the regulation of
rice seed vigor (Figures 9, 13).

Six Types of Proteins May Be Involved in
the Regulation of the Anti-aging
Capacity of Rice Seeds
Many studies have shown that ER-related proteins, LEA proteins,
and protein folding-related proteins are involved in stress
responses and play important roles in maintaining seed vigor
during storage (Lindquist and Craig, 1988; Cuming, 1999; Xu
et al., 2005; Kalemba and Pukacka, 2008; Rajjou and Debeaujon,
2008; Kaur et al., 2015). The results of transcriptome and

proteome analyses of WT, ST, and OT seeds indicated that six
types of DEPs may be involved in the regulation of anti-aging
capacity, including stress-related proteins, ER-related, embryo
development-related, serine-type endopeptidase inhibitor, energy
metabolism-related, and “other” proteins (such as unfolded
protein-related protein and phagosome-related protein). The
results of clustering analysis showed that these proteins possessed
two characteristics. First, most proteins associated with stress
response, such as ER-related protein, embryo development-
related protein, and “other” proteins (unfolded protein-related),
showed exceptionally low expression levels in ST seeds compared
with WT and OT seeds. Second, the expression level of most
proteins related to serine endopeptidase inhibitors and energy
metabolism in ST seeds and WT seeds was higher than that in OT
seeds (Figure 8). These results suggest that compared with WT
seeds, active energy metabolism, inactive serine endopeptidase,
and low expression of stress-related proteins in non-aged seeds
contributed to the higher anti-aging capacity of ST seeds,
while abnormal energy metabolism, active serine endopeptidase,
and high expression of stress-related proteins in unaged seeds
accelerated the aging of OT seeds.

Studies have shown that proteins related to stress response,
ER, and embryo development (LEA proteins), as well as
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unfolded proteins (in the “other” category in this study), are
all associated with stress response to a certain extent (Lindquist
and Craig, 1988; Cuming, 1999; Xu et al., 2005; Kalemba and
Pukacka, 2008; Rajjou and Debeaujon, 2008). In the present
study, the expression level of the stress response-related protein
(Os06t0503400-01) and ER-related protein (Os02t0782500-01)
increased significantly in seeds of all three rice genotypes after
artificial aging (Figures 14A,B). Molecular chaperones such as
proteins involved in protein folding or misfolding and ER-
associated degradation (ERAD) are related to unfolded proteins
and are reported to play important roles in the response to ER
stress, which occurs when the level of unfolded or misfolded
proteins increases because of environmental stress-induced
increase in the redox level, calcium concentration, or ATP level
in the ER lumen (Hetz and Papa, 2018). An accumulation of
unfolded proteins in the ER and mitochondria triggers stress
responses or unfolded protein responses (UPRs), potentially
triggering cell death and many aging-related neurodegenerative
diseases (Schröder and Kaufman, 2005; Xu et al., 2005;
Bernales et al., 2012). In the present study, gene/protein
interaction analyses showed that three types of proteins (stress
response-related, ER-related, and unfolded protein binding-
related proteins in the “other” category) closely interacted with
each other (Figure 9). The proteomics data showed that the
expression level of stress-related proteins in unaged ST seeds
was much lower than that in WT and OT seeds (Figure 8).
Under aging stress, the expression of stress-related genes,
such as Os06t0503400, increased in ST seeds but decreased in
WT and OT seeds, which possess lower anti-aging capacity
than ST seeds (Figure 12I), implying that the early high-level
expression of some of the stress-related proteins in unaged seeds
may be detrimental to their anti-aging capacity. Nonetheless,
further research is needed to understand the intrinsic anti-aging
mechanism of rice seeds.

The primary function of peptidase is to hydrolyze proteins
involved in various biochemical processes. Abnormal, damaged,
and short-lived regulatory proteins need to be hydrolyzed to
prevent negative effects. The degradation of storage proteins in
seeds provides nutrients for seed germination (Fontanini and
Jones, 2002). Studies show that serine endopeptidase proteins
[such as root-starvation-induced protease (RSIP)] are involved
in the stress response (James et al., 1996; Park and Kwak, 2008).
Furthermore, serine endopeptidases also act as de novo proteases
and are responsible for the initial degradation of the seed storage
proteins (Qi et al., 1992; Hosokawa et al., 1999; Müntz et al.,
2001). In this study, serine endopeptidase inhibitors and energy
metabolism-related proteins showed close association with the
gene/protein network (Figures 9, 10), and the expression pattern
of these two types of proteins measured by the TMT method
showed the strongest correlation with the RNA-seq results
(Supplementary Figure 2). Additionally, the expression levels of
most energy metabolism-related proteins (12 out of 17) in ST
and WT seeds were higher than those in OT seeds (Figure 8);
however, the serine endopeptidase activity was highest in OT
seeds (based on the lowest expression of seven out of 10 serine
endopeptidase inhibitors) (Figure 8). These results suggest that
OT seeds potentially have an abnormal energy metabolism and
higher serine endopeptidase activity, unlike ST and WT seeds.

Gene/Protein Network of miR164c
Regulates the Anti-aging Capacity of
Rice Seed
Network analyses of all kinds of omics data have been widely
used to explain various molecular mechanisms in plants, animals,
and microbes (Rual et al., 2005; Rolland et al., 2014; Marx
et al., 2016). The String database is commonly used to predict
the protein–protein interaction network (Szklarczyk et al.,
2019). On the other hand, the MERLIN algorithm is used to
predict gene regulatory networks, based on gene expression data
(Siahpirani and Roy, 2017). However, data processing using
the MERLIN algorithm involves complex steps and is time-
consuming, and is therefore seldom used in omics studies (Marx
et al., 2016). Moreover, most of the previous omics studies
on seed vigor focused mainly on the identification of specific
genes or proteins, and rarely focused on gene/protein network
analysis (Daniel, 2017; Li et al., 2018; Aragão et al., 2019;
Wei et al., 2020). In this study, an interaction network that
describes the association between miR164c target genes and
DEGs/DEPs was predicted by an integrative analysis using the
MERLIN algorithm and String database (Figure 9). The results
showed that one of the miR164c target genes, PSK5, potentially
interacts with a ubiquitin-related hub gene,RPS27AA, which then
interacts with genes in six major functional categories. RT-qPCR
analyses verified the expression levels of 10 closely interacting
genes in the network, including four core genes (RPS27AA,
PSK5, OsJ_23767, and Os10G0488100) and six functional genes
(Os08g0250200, Os07g0214300, Os07g0222000, Os06g0503400,
Os03g0296400, Os05g0302700), all of which were significantly
affected by the artificial aging treatment (Figure 12). Expression
levels of some of the proteins corresponding to these genes
were also determined by the MRM-MS assay (Figure 14). The
relationship between the expression of key genes in this network
and the anti-aging capacity of seeds was verified.

Overall, our results suggest that miR164c first regulates
the expression level of the target gene PSK5 and then affects
the expression of the core gene RPS27AA, which further
interacts with functional genes such as those related to “energy
metabolism,” “endopeptidase inhibitor,” “embryo development,”
“stress response,” “ER,” and “other,” leading to differences in seed
anti-aging capacity among the three rice genotypes (Figure 10A).
Thus, our results provide new insights into the role of miRNAs in
the regulation of seed vigor.
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Rolland, T., Taşn, M., Charloteaux, B., Pevzner, S. J., Zhong, Q., Sahni, N., et al.
(2014). A proteome-scale map of the human interactome network. Cell 159,
1212–1226. doi: 10.1016/j.cell.2014.10.050

Roy, S., Lagree, S., Hou, Z. G., Thomson, J. A., Stewart, R., and Gasch, A. P. (2013).
Integrated module and gene-specific regulatory inference implicates upstream

signaling networks. PLoS Comput. Biol. 9:e1003252. doi: 10.1371/journal.pcbi.
1003252

Rual, J.-F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N.,
et al. (2005). Towards a proteome-scale map of the human protein–protein
interaction network. Nature 437, 1173–1178. doi: 10.1038/nature04209

Sang, L., Wang, X. M., Xu, D. Y., and Zhao, W. J. (2018). Bioinformatics
analysis of aberrantly methylated-differentially expressed genes and pathways
in hepatocellular carcinoma. World J. Gastroenterol. 24, 2605–2616.

Schröder, M., and Kaufman, R. J. (2005). The mammalian unfolded protein
response. Annu. Rev. Biochem. 74, 739–789. doi: 10.1146/annurev.biochem.73.
011303.074134

Siahpirani, A. F., and Roy, S. (2017). A prior-based integrative framework for
functional transcriptional regulatory network inference. Nucleic Acids Res.
45:e21. doi: 10.1093/nar/gkw1160

Sun, G. L. (2012). MicroRNAs and their diverse functions in plants. Plant Mol. Biol.
80, 17–36. doi: 10.1007/s11103-011-9817-6

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J.,
et al. (2019). STRING v11: protein–protein association networks with increased
coverage, supporting functional discovery in genome-wide experimental
datasets. Nucleic Acids Res. 47, D607–D613. doi: 10.1093/nar/gky1131

Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren,
M. J., et al. (2010). Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell differentiation. Nat.
Biotechnol. 28, 511–515. doi: 10.1038/nbt.1621

UN Food and Agriculture Organization, (2017). Crops/Regions/World
list/Production Quantity (pick lists), Rice (paddy), 2014. Rome: Corporate
Statistical Database (FAOSTAT).

Wang, Z. K., Zhang, R., Liu, F. J., Jiang, P., Xu, J., Cao, H. J., et al. (2018). TMT-
based quantitative proteomic analysis reveals proteomic changes involved in
longevity. Proteomics Clin. Appl. 13:e1800024. doi: 10.1002/prca.201800024

Wei, J. P., Liu, X. L., Li, L. Z., Zhao, H. H., Liu, S. S., Yu, X. W., et al. (2020).
Quantitative proteomic, physiological and biochemical analysis of cotyledon,
embryo, leaf and pod reveals the effects of high temperature and humidity stress
on seed vigor formation in soybean. BMC Plant Biol. 20:1–15. doi: 10.1186/
s12870-020-02335-1

Wilkins, M. (2009). Proteomics data mining. Expert Rev. Proteomics 6, 599–603.
doi: 10.1586/epr.09.81

Xu, C. Y., Bailly-Maitre, B., and Reed, J. C. (2005). Endoplasmic reticulum stress:
cell life and death decisions. J. Clin. Invest. 115, 2656–2664. doi: 10.1172/
JCI26373

Zhang, Y. X., Xu, H. H., Liu, S. J., Li, N., Wang, W. Q., Møller, I. M., et al. (2016).
Proteomic analysis reveals different involvement of embryo and endosperm
proteins during aging of Yliangyou 2 hybrid rice seeds. Front. Plant Sci. 7:1394.
doi: 10.3389/fpls.2016.01394

Zhao, Z. G., Tan, L. L., Dang, C. Y., Zhang, H., Wu, Q. B., and An, L. (2012).
Deep-sequencing transcriptome analysis of chilling tolerance mechanisms of
a subnival alpine plant, Chorispora bungeana. BMC Plant Biol. 12:222. doi:
10.1186/1471-2229-12-222

Zhou, Y., Zhou, S. Q., Wang, L. P., Wu, D., Cheng, H. L., Du, X., et al. (2020).
miR164c and miR168a regulate seed vigor in rice. J. Integr. Plant Biol. 62,
470–486. doi: 10.1111/jipb.12792

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Huang, Zhou, Shen, Zhou, Wang and Jiang. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 21 November 2020 | Volume 11 | Article 589005

https://doi.org/10.1016/j.fgb.2014.04.004
https://doi.org/10.1016/j.bbagrm.2011.05.001
https://doi.org/10.3389/fgene.2012.00115
https://doi.org/10.1007/s10725-010-9512-7
https://doi.org/10.1002/pmic.201600140
https://doi.org/10.1007/s11105-018-1115-x
https://doi.org/10.1007/s11105-018-1115-x
https://doi.org/10.1146/annurev.ge.22.120188.003215
https://doi.org/10.3390/ijms19124004
https://doi.org/10.1016/j.febslet.2009.10.036
https://doi.org/10.1016/j.febslet.2009.10.036
https://doi.org/10.1038/nbt.3681
https://doi.org/10.1007/s11738-011-0719-7
https://doi.org/10.1007/s11738-011-0719-7
https://doi.org/10.1093/jexbot/52.362.1741
https://doi.org/10.1093/jexbot/52.362.1741
https://doi.org/10.1016/j.cbpb.2008.08.004
https://doi.org/10.1016/j.cbpb.2008.08.004
https://doi.org/10.1104/pp.99.2.725
https://doi.org/10.1016/j.crvi.2008.07.021
https://doi.org/10.1016/j.crvi.2008.07.021
https://doi.org/10.1146/annurev-arplant-042811-105550
https://doi.org/10.1146/annurev-arplant-042811-105550
https://doi.org/10.1104/pp.108.123141
https://doi.org/10.1016/j.cell.2014.10.050
https://doi.org/10.1371/journal.pcbi.1003252
https://doi.org/10.1371/journal.pcbi.1003252
https://doi.org/10.1038/nature04209
https://doi.org/10.1146/annurev.biochem.73.011303.074134
https://doi.org/10.1146/annurev.biochem.73.011303.074134
https://doi.org/10.1093/nar/gkw1160
https://doi.org/10.1007/s11103-011-9817-6
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1038/nbt.1621
https://doi.org/10.1002/prca.201800024
https://doi.org/10.1186/s12870-020-02335-1
https://doi.org/10.1186/s12870-020-02335-1
https://doi.org/10.1586/epr.09.81
https://doi.org/10.1172/JCI26373
https://doi.org/10.1172/JCI26373
https://doi.org/10.3389/fpls.2016.01394
https://doi.org/10.1186/1471-2229-12-222
https://doi.org/10.1186/1471-2229-12-222
https://doi.org/10.1111/jipb.12792
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	Elucidation of the miR164c-Guided Gene/Protein Interaction Network Controlling Seed Vigor in Rice
	Introduction
	Materials and Methods
	Plant Materials
	Artificial Aging Treatment and Germination Test
	RNA Extraction
	Transcriptome Sequencing
	RNA-seq Data Analysis
	Protein Extraction
	Protein Digestion, TMT Labeling, and High-Performance Liquid Chromatography (HPLC) Fractionation
	Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Analysis
	Proteome Data Analysis
	Correlated Proteome and Transcriptome Quantification
	Network Analysis
	MRM-MS Analysis
	RT-qPCR Assay

	Results
	Anti-aging Capacity and miR164c Expression Level Differ Among WT, ST, and OT Seeds
	Differences in the Transcriptome and Proteome of WT, ST, and OT Seeds
	Correlation Analysis Between the Seed Transcriptome and Proteome
	Key Genes/Proteins Associated With the Anti-aging Capacity of Rice Seeds
	Interaction Between miR164c Target Genes and DEGs/DEPs
	Verification of RNA-seq Data
	Verification of TMT Data

	Discussion
	Six Types of Proteins May Be Involved in the Regulation of the Anti-aging Capacity of Rice Seeds
	Gene/Protein Network of miR164c Regulates the Anti-aging Capacity of Rice Seed

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


