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Improving leaf rust and stripe rust resistance is a central goal in wheat breeding. The
objectives of this study were to (1) elucidate the genetic basis of leaf rust and stripe
rust resistance in a hybrid wheat population, (2) compare the findings using a previously
published hybrid wheat data set, and (3) contrast the prediction accuracy with those of
genome-wide prediction. The hybrid wheat population included 1,744 single crosses
from 236 parental lines. The genotypes were fingerprinted using a 15k SNP array
and evaluated for leaf rust and stripe rust resistance in multi-location field trials. We
observed a high congruency of putative quantitative trait loci (QTL) for leaf rust resistance
between both populations. This was not the case for stripe rust resistance. Accordingly,
prediction accuracy of the detected QTL was moderate for leaf rust but low for stripe
rust resistance. Genome-wide selection increased the prediction accuracy slightly for
stripe rust albeit at a low level but not for leaf rust. Thus, our findings suggest that
marker-assisted selection seems to be a robust and efficient tool to improve leaf rust
resistance in European wheat hybrids.

Keywords: resistance breeding, leaf rust (Puccinia triticina), stripe rust (Puccinia striiformis Westend), genome-
wide selection, marker-assisted selection

INTRODUCTION

Leaf rust caused by Puccinia triticina and stripe rust caused by Puccinia striiformis f. sp. tritici are
important fungal diseases of wheat (Huerta-Espino et al., 2011). Both diseases can cause severe yield
losses with simultaneous reduction of grain quality (Prescott et al., 1986; Chen, 2005). Breeding and
growing of varieties carrying effective resistance genes against rust diseases is a sustainable solution
to avoid or at least reduce yield and quality losses.

Molecular resistance breeding can simplify selection for rust resistances (Ordon et al., 1998;
Miedaner and Korzun, 2012). Two complementary molecular breeding tools are marker-assisted
selection (MAS) (Lande and Thompson, 1990) and genome-wide selection (GS) (Meuwissen et al.,
2001). In MAS, the resistance of genotypes is estimated using a few diagnostic markers. MAS for
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rust resistance is often applied for pyramiding resistance genes
within the same wheat cultivar (Singh et al., 2005). In GS,
a complex genetic architecture is assumed and the resistance
of genotypes is predicted using many markers (Meuwissen
et al., 2001; Bernardo, 2008). GS is of particular interest to
enrich the frequency of resistance alleles underlying quantitative
disease resistance.

Currently, about 90 resistance genes for leaf rust (Lr-genes)
and 80 resistance genes for stripe rust (Yr-genes) are known
(McIntosh et al., 2017). Most of these genes are responsible for
race-specific resistance (Singh et al., 2005; Bolton et al., 2008),
which can easily be broken by rapidly evolving rust populations
(Bolton et al., 2008; Serfling et al., 2013; Schwessinger, 2017).
In contrast, only very few genes that quantitatively and stably
reduce rust infestation are known to be non-race-specific such
as Lr34/Yr18 (Bolton et al., 2008; Chen, 2013) or Yr29 (Chen,
2013). Resistance genes intensively utilized to enhance leaf rust
resistance in European wheat cultivars are Lr1, Lr3a, Lr10, Lr13,
Lr14a, Lr17b, Lr20, Lr26, and Lr37 (Park et al., 2001; Pathan
and Park, 2006), and those used to increase stripe rust resistance
are Yr1, Yr3, Yr4, Yr6, Yr7, Yr9, Yr17, Yr27, Yr32, YrHVII, and
YrSP (Pathan et al., 2008). Nevertheless, only Lr1, Lr10, Lr21,
Lr22a, Lr34, Yr10, and Yr15 have been cloned (Feuillet et al., 2003;
Huang et al., 2003; Cloutier et al., 2007; Krattinger et al., 2011;
Liu et al., 2014; Moore et al., 2015; Thind et al., 2017; Klymiuk
et al., 2018) and diagnostic markers are available for Lr1, Lr10,
Lr26, Lr37, Yr4, Yr6, Yr7, Yr9, Yr17, Yr27, and Yr32 (Chen, 2005;
Serfling et al., 2011; Zheng et al., 2017).

The potential of hybrid wheat breeding has been discussed in
detail previously (e.g., Whitford et al., 2013). Hybrids are well-
known to show a higher grain yield performance in combination
with better yield stability compared to inbred lines. This fact
supports the preference to expand the hybrid breeding strategy
also into self-pollinating crops like wheat (Longin et al., 2013;
Mühleisen et al., 2014; Jiang et al., 2017). Besides this main
advantage, wheat hybrids are on average more resilient facing
different biotic and abiotic stresses (Longin et al., 2013; Miedaner
et al., 2013; Zhao et al., 2013; Gowda et al., 2014). The
accumulation of various resistance genes within the same cultivar
is important to keep existing resistances effective (Singh et al.,
2005). An efficient way to stack a number of resistance genes
is given by hybrid breeding (Longin et al., 2012), while its
potential depends on the degree of dominance for special loci.
Therefore, hybrid breeding might be a promising strategy to
promote resistance breeding. Before routine application, it is
pivotal to estimate the accuracy of MAS and GS. The accuracy
should be determined in the relevant populations and have to
be validated. The latter can be implemented either via cross-
validation (Hjorth, 1994) or by validation with independent
genotypes and environments (e.g., Jiang et al., 2016). Only
a limited number of studies validated the accuracy of MAS
and GS of rust resistances in wheat, and they rely on cross-
validation (Gowda et al., 2014; Rutkoski et al., 2014; Juliana et al.,
2017). Due to the restricted number of environments, cross-
validation was performed for independent genotypes but not
independent environments (Gowda et al., 2014; Rutkoski et al.,
2014; Juliana et al., 2017), which is not reflecting the scenario

relevant for breeding. Validation using independent samples, i.e.,
other genotypes from the same gene pool but tested in other
environments, is, to our knowledge, lacking.

Our study is based on a comprehensive hybrid wheat
population including 1,744 hybrids derived from crossing of
196 female and 40 male lines using an incomplete factorial
mating design. The parents and hybrids were evaluated in multi-
environment field trials for leaf rust and stripe rust resistance
and genotyped using a 15k single-nucleotide polymorphism
(SNP) array. The objectives of this study were to (1) dissect the
genetic basis by performing genome-wide association mapping
and identify quantitative trait loci (QTL) underlying leaf rust
and stripe rust resistances, (2) compare the QTL making use
of a previously published (Beukert et al., 2020) independent
and comprehensive hybrid wheat population including 1,750
wheat hybrids and their 230 parental lines, and (3) contrast the
prediction accuracy of MAS with that of GS.

MATERIALS AND METHODS

Plant Material
This study comprised 196 female and 40 male elite winter
wheat lines, their 1,744 single-cross hybrids, and 11 checks.
The parental lines represent a wide range of diversity used in
wheat breeding in Central Europe and were grouped into male
and female lines according to their pollination capability, plant
height, and flowering time. The elite lines were provided by
the following 14 wheat breeding companies: BASF Agricultural
Solutions GmbH, Deutsche Saatveredelung AG, KWS LOCHOW
GmbH, Limagrain GmbH, Pflanzenzucht Oberlimpurg, RAGT-
Saaten GmbH, Saatzucht Bauer GmbH, Saatzucht Josef Breun
GmbH & Co. KG, Saatzucht Streng-Engelen GmbH & Co. KG,
Secobra Saatzucht GmbH, Strube Research GmbH & Co. KG,
Syngenta Seeds GmbH, Nordsaat Saatzucht GmbH, and W. von
Borries-Eckendorf GmbH & Co. KG. The hybrids were produced
following an incomplete factorial mating design using chemical
hybridization agents (for details, see Zhao et al., in review).

Field Trials and Experimental Design
Hybrids and their parental lines were grown in a multi-
location field trial within the year 2018 to monitor their leaf
rust and stripe rust resistance. Phenotypic data were collected
in five different German environments in unreplicated trials
(Table 1). Correlation of single locations was estimated based
on overlapping check varieties using their raw data corrected for
different design effects of the trials. The field locations of this
study were correlated among each other with mean values of 0.44
and 0.39 for leaf rust and stripe rust resistance, respectively. In
contrast to that, field trial locations mentioned in Beukert et al.
(2020) showed mean correlations among each other of 0.29 and
0.70 for leaf rust and stripe rust resistance.

The genotypes were arranged into plots with a size of 1.00–
2.70 m2 and randomized following an α lattice design considering
environments as replications. The trials also included 11 check
varieties (JB Asano, Julius, RGT Reform, Colonia, KWS Loft,
Rumor, Tobak, Elixer, Hybred, Hystar, and LG Alpha) that were

Frontiers in Plant Science | www.frontiersin.org 2 October 2020 | Volume 11 | Article 594113

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-594113 October 23, 2020 Time: 11:54 # 3

Beukert et al. Prediction of Rust Resistance in Hybrid Wheat

TABLE 1 | Characterization of environments, in which leaf and stripe rust resistance were evaluated.

Location Latitude Longitude Altitude (m) Mean annual precipitation (mm) Mean annual temperature (◦C)

Hadmersleben 51.5837 11.1751 91 334 11.2

Gatersleben 51.824177 11.275706 112 510 9.8

Rosenthal 52.181889 10.105288 72 637 9.5

Seligenstadt 49.511630 10.06230 280 606 9.2

Feldkirchen 48.29217 48.29217 431 800 7.7

grown in each environment. Infection of genotypes occurred
naturally, while local appearing rust populations consist of
mixtures of different races showing similar composition in the
observed German regions as well as similar virulence patterns
across the examined years (2016–2018). Leaf rust and stripe rust
infection was scored at the date of flowering (EC stage 65) on
the flag leaf. An ordinal scale from 1 to 9 on the basis of the
Bundessortenamt (2000) was used in order to score leaf rust
as well as stripe rust infections, where 1 stands for minimal
symptoms and 9 indicates extensive disease symptoms.

Analysis of Phenotypic Data
Detection of outliers and estimation of variance components
were conducted implementing the following mixed linear model:

yijkl = µ+ el + bk|l + gij +mi + fj + sij + (me)il + (fe)jl + εijkl

where yijkl is the performance of lines (i = j) or hybrids (i 6= j)
arising from a cross between the ith parent with the jth parent in
the kth incomplete block in the lth environment. µ refers to the
overall population mean. el is the effect of the lth environment,
i.e., location by year combination; bk|l represents the block effect
of the kth block nested within the lth environment. gij was only
modeled for the parental lines and stands for their genotypic
effect. mi and fj were modeled for hybrids and are the GCA effects
of the ith and jth of the male and female parent, respectively,
sij symbolizes the SCA effect of the cross between the ith and
jth parents. (me)il as well as (fe)jl, which were only modeled
for hybrids, are the interaction between the GCA effect of the
ith and jth parent with the lth environment. εijkl refers to the
corresponding residuals. All effects except the intercept were
modeled as random effects.

A second model was used to obtain best linear unbiased
estimations (BLUEs) across environments:

yikl = µ+ gi + el + bk|l + εikl

where yikl is the phenotypic observation of the ith genotype
in the kth block at the lth environment. µ is the intercept,
gi symbolizes the genotypic effect of the ith individual, and
el stands for the effect of the lth environment. bk|l represents
the block effect of the kth block nested within the lth
environment, while εikl is the residual error associated with
the observation yikl. The genotype effect was assumed as
fixed to estimate the BLUEs, while all remaining effects were
treated as random. Because of the unreplicated field trials,
the residual effect within both equations was confounded with
the SCA × environment interaction. Broad-sense heritability

was calculated using variance component estimates of the first
model as:

h2
=

σ2
Genotype

σ2
Phenotype

=

σ2
Genotype

σ2
Genotype +

σ2
G×E

No. of environment +
σ2

error
No. of environment

Variance of genotypes was estimated as the sum of variance
components of GCA and SCA effects. Variance of interaction
effects of genotypes and environments was estimated as the
sum of variance of GCA-by-environment interaction effects.
Heritability for single locations was estimated to evaluate the
quality of field trials. This was done by estimating the prediction
abilities applying fivefold cross-validation as outlined in detail
elsewhere (Schulthess et al., 2018).

Genotypic Data Analysis
The extraction of DNA was conducted in compliance with known
standard procedures (Stein et al., 2001). Parental lines were
genotyped using a 15k SNP array containing a subset of the wheat
90k Illumina Infinium array (Wang et al., 2014). Composition
of the 15k SNP chip and the genotyping was implemented
by TraitGenetics GmbH.1 Population structure of the parental
pools was examined by using the marker data to calculate
Rogers’ distances and perform a principal component analysis
(PCoA). Genotypic information was imputed in accordance
to He et al. (2015). Quality filtering was performed and
monomorphic markers, markers with missing values >5%,
heterozygosity of >5% in inbred material, or a minor allele
frequency (MAF) <5% were excluded. After this selection, 9,960
markers and 1,974 genotypes of high quality were left and
used for association mapping. The procedure for the association
mapping was previously described in detail by Liu et al. (2016).
Briefly, we applied the following model:

Y = µ+ Aa+ Dd + Zz + ε

where Y describes BLUEs across the locations, µ is the vector
of intercept effects, a symbolizes the vector of additive effects,
d is a vector of dominance effects, z represents the vector of
polygene background effects, and ε stands for the vector of
residual effects. A, D, and Z were incidence matrices, which
relates the BLUEs to the vectors a, d, and z. Further, a Bonferroni-
corrected threshold of P <0.05 was applied to control for multiple
testing. All statistical analyses were done using the software R
(R Development Core Team, 2014) and the package ASReml-R
3.0 (Gilmour et al., 2009). The MAF for significantly associated

1http://www.traitgenetics.com
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markers was calculated and the linkage disequilibrium (LD) was
assessed by the LD measure r2 (Weir, 1996) with an additional
check for collinearity.

Genomic Prediction of the Hybrid
Performance
For genomic prediction, we implemented genomic best linear
unbiased prediction (GBLUP), modeling both additive and
dominance effects as:

Y = 1nµ+ ga + gd + e

Y refers to the genotype BLUEs of lines and hybrids; vector
1n includes only ones and its element number is equal to the
number of genotypes (n) used in this study; µ refers to the
overall mean and was treated as fixed effect. The genotypic value
was decomposed into an additive effect ga and a dominance
effect gd. The vector e represents the residual effect. More
details on the implemented GBLUP model were described by
Zhao et al. (2015). The prediction ability of leaf rust and
stripe rust resistance was evaluated using a cross-validation
scenario, which divides the total population into training and
test population. Since relatedness strongly influences prediction
accuracy (Habier et al., 2007), a cross-validation strategy was used
considering three test sets with varying degrees of relatedness to
the training population. Test set T2 was most closely related to
the training population and included only hybrids derived from
the same parents as the hybrids that had been evaluated. The less
related test set T1 included hybrids sharing one parent with the
hybrids in the training population. The least related test set T0
included only hybrids having no parents in common with the
training population. Prediction ability was calculated as Pearson’s
correlation coefficient between the observed and the predicted
hybrid performance of test sets T2 to T0 including ∼750–30
hybrids, respectively.

Validation of the Accuracy of GS vs. MAS
Using an Independent Sample
A published hybrid wheat population, which was previously
examined for their leaf rust and stripe rust resistance using a
genome-wide association study by Beukert et al. (2020), was
used in addition to the genotypes of this study to validate
the accuracy of GS and MAS based on predictions following
the GBLUP model. This previous published hybrid population
included 1,750 wheat hybrids and their 230 parental lines, which
were examined with the same 15k SNP array. Genotypes of this
study were used as training population to train the statistical
algorithm and in a further scenario as test population to prove
its accuracy and vice versa, while the two examined sets show
no overlapping genotypes. Only significantly associated markers
identified in the association study were used to predict hybrid
performance by MAS, while all available marker information was
used performing GS. Marker effects were estimated based on the
training population and applied to predict the performance of
hybrids in the test population. Both prediction strategies were
compared by observing their prediction ability based on the

Pearson’s correlation coefficient between the observed and the
predicted hybrid performance in the test population.

RESULTS

Phenotypic Data of High Quality Were
Generated in Comprehensive Field Trials
The hybrids and their parental lines were evaluated for leaf
rust and stripe rust resistance in five environments, and BLUEs
were estimated (Supplementary Table 1). The data quality was
examined based on the prediction ability for single locations and
ranged from 0.46 to 0.71 for leaf rust resistance, as well as from
0.24 to 0.60 for stripe rust resistance. The estimated heritability
for leaf rust resistance for parents was h2 = 0.86 and that for
hybrids was h2 = 0.84. Leaf rust resistance of the parental lines
ranged from 1 to 8 with a mean of 3.97 (Table 2). The hybrid
population covered a range from 1 to 8 with a mean value of 3.66.
The assessment of different genotypes for stripe rust resistance
resulted in heritability estimates for parents of h2 = 0.82 and for
hybrids of h2 = 0.67. The parental pool showed a wide phenotypic
distribution from 1 to 8 with an average of 2.51. In comparison,
hybrids were less susceptible taking rating scores ranging from 1
to 6 with a mean value of 2.20.

Absence of Major Population Structure
Among the Parental Lines
Parental lines were genotyped with genome-wide distributed SNP
markers. We examined the population structure and relatedness

TABLE 2 | First- and second-degree statistics of 1,744 hybrids and their 236
parental lines observing leaf rust and stripe rust resistance.

Leaf rust Stripe rust

Lines

min 0.85 0.73

mean 3.97 2.51

max 7.92 7.62

σ2
G 2.22 1.74

error 0.69 0.79

h2 0.87 0.82

Hybrids

min 0.45 0.56

mean 3.66 2.20

max 7.70 6.13

σ2
GCA−female 1.43 0.41

σ2
GCA−male 0.25 0.21

σ2
SCA 0.19 0.18

σ2
GCA female x Env 0.25 0.10

σ2
GCA male x Env 0.07 0.04

h2 0.84 0.67

error 0.69 0.79

genomic h2 0.46–0.71 0.24–0.60

The parameters considered the phenotypic distribution, genotypic variance (σ2
G),

and heritability (h2), as well as the variance due general (σ2
GCA) and special

combining ability effects (σ2
SCA).
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of the 236 parental lines and implemented a PCoA (Figure 1)
based on calculated Rogers’ distances. This procedure indicated
that the population of parental lines is not structured and
distinct parental pools are missing. Therefore, we corrected in
the genome-wide association mapping for relatedness using a
kinship matrix. For the validation of hybrid prediction methods,
an additional population was observed showing no population
structure within. A moderate relationship between the two
different populations occurred due to the overlap of four male
parents and a small effective population (Ne = 25) size of
European elite lines used as parental pools for both hybrid
populations (Supplementary Figure 1).

GWAS Detected Several Putative QTL for
Leaf Rust and Stripe Rust Resistance
Genome-wide association mapping scans were performed with a
significance threshold of P < 0.05 applying Bonferroni correction
for multiple testing. A total of 77 putative QTL were detected for
leaf rust resistance. The putative QTL showed significant additive
and dominance effects at similar frequencies and explained
together 50.92% of the phenotypic variance (Supplementary
Table 2). Strong associations for leaf rust resistance were found
on chromosomes 3D and 4A (Figure 2). The most significant
putative QTL underlying leaf rust resistance were identified
on chromosome 4A with significant additive and dominance
effects (Supplementary Table 2). There were 28 putative QTL on

chromosome 4A in a region from 628 to 742 Mbp of the wheat
reference genome (International Wheat Genome Sequencing
Consortium [IWGSC], 2018). Four of the putative QTL on
chromosome 4A and three putative QTL on 3D were identified
within previously known genome regions that influence disease
resistance (Table 3; International Wheat Genome Sequencing
Consortium [IWGSC], 2018).

For stripe rust resistance, we detected 15 putative QTL all
exclusively with significant additive effects (Figure 2). The 15
QTL explained together 19.53% of the phenotypic variance
(Supplementary Table 3). The majority of seven putative QTL
belonging to chromosome 6A and are physically located in
the genomic region between 462 and 610 Mbp of the wheat
reference genome (International Wheat Genome Sequencing
Consortium [IWGSC], 2018). On chromosome 2B, we found a
putative QTL for RAC875_c1226_652, which was located in a
region of already known NBS-LRR genes (Table 3). Most of the
putative QTL showed desired effects on stripe rust resistance
(Supplementary Table 3).

Prediction Ability of MAS Was Moderate
for Leaf Rust but Low for Stripe Rust
Resistance
We validated the potential of MAS using an independent, already
published hybrid wheat data set (Beukert et al., 2020). The

FIGURE 1 | Result of principal component analysis (PCoA) observing the relationship and aggregation of parental lines and check varieties based on Rogers’
distances calculated using genome-wide marker data.
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FIGURE 2 | Manhattan plots of the genome-wide association scans for additive and dominance effects on leaf rust (A) and stripe rust resistance (B). The horizontal
line symbolizes the significant threshold of P < 0.05 applying Bonferroni correction. The hexaploid genome of bread wheat consists of 42 chromosomes combining
the complete chromosomal sets of three different wild grasses, which are differentiated by the letters A, B, and D. The x-axis shows chromosomal location of the
corresponding markers, while UM are unmapped markers.

published data set included 1,750 wheat hybrids and their 230
parental lines, which were examined with the same 15k SNP
array. Forty-five and six markers were identified to have a
significant association to leaf rust and stripe rust resistance in
both hybrid populations, respectively (Supplementary Table 4).
The genotypes of one population were used for QTL detection
and estimation of their effects based on a GBLUP approach, while
the other population was taken as test population and vice versa.
MAS was performed using only significantly associated markers
detected in the GWAS to calculate the genomic values, while
GS uses all available markers. The prediction ability of MAS,
determined as the correlation between predicted and observed
values, ranged from −0.07 for stripe rust resistance to 0.57 for
leaf rust resistance (Table 4). The substantially higher prediction
ability observed for leaf rust compared to stripe rust resistance
was consistent and did not depend on which data set was used
as training or test population. The low prediction ability for
stripe rust resistance encouraged us to investigate genome-wide
prediction as a possible tool to increase the prediction ability.

MAS for Leaf Rust Resistance Exceeded GS
We implemented GBLUP considering additive and dominance
effects. Interestingly, MAS outperformed GBLUP by 15% for leaf
rust resistance. For stripe rust resistance, GBLUP improved the
prediction ability, but only slightly up to a maximum value of
0.21 (Table 4). We additionally implemented a chessboard-like
cross-validation within the data set of our study, thus confirming
the low prediction ability between unrelated training and test
population for stripe rust resistance (Supplementary Figure 2).

DISCUSSION

Overlapping Check Varieties Indicated a
Higher Pathogen Dynamic Underlying
Leaf Rust Than Stripe Rust Infections
The results of Beukert et al. (2020) and our study are based
on field trials that were possibly influenced by differences in
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TABLE 3 | Comparison of detected markers with a significant effect on leaf rust and stripe rust resistance with the location of previously known resistance genes within
the reference genome.

Marker Disease Type Chr. Marker Pos. Gene function Physical gene Pos.

(ID of reference gene) Start (bp) End (bp)

RAC875_c31922_138 Leaf rust Add 3D 603,414,487 Disease resistance protein RPM1 603,414,478 603,419,584
(TraesCS3D01G522000)
Kukri_c43464_89 Leaf rust Add 3D 603,414,586 Disease resistance protein RPM1 603,414,478 603,419,584
(TraesCS3D01G522000)
Kukri_c23354_183 Leaf rust Add 3D 604,368,095 Leucin-rich repeat containing protein 604,367,900 604,371,312
(TraesCS3D01G524400)
wsnp_Ex_c4331_7808746 Leaf rust Add 4A 707,043,051 Protein enhanced disease resistance 707,040,590 707,048,030
(TraesCS4A01G437200)
Excalibur_rep_c112888_602 Leaf rust Add 4A 714,176,917 Disease resistance protein family (TIR-NBS-LRR class) 714,176,254 714,180,521
(TraesCS4A01G446700)
RAC875_rep_c69632_65 Leaf rust Add 4A 714,179,096 Disease resistance protein family (TIR-NBS-LRR class) 714,176,254 714,180,521
(TraesCS4A01G446700)
BobWhite_c47168_289 Leaf rust Add 4A 726,215,250 NBS-LRR disease resistance protein 726,212,910 726,217,457
(TraesCS4A01G461700)
RAC875_c1226_652 Stripe rust Add 2B 157,693,584 NBS-LRR disease resistance protein 157,688,966 157,696,282
(TraesCS2B01G182800)

the severity and composition of infections with P. triticina and
P. striiformis f. sp. tritici. As an important quality control, we
estimated the genomic heritability for leaf rust and stripe rust
resistance, which allowed us to assess the disease pressure for
each individual environment. The observed variation in genomic
heritability on the one hand showed differences in disease
pressure, but on the other hand, it reached a level that allowed a
genetic differentiation. This differentiation resulted in heritability
estimates for lines in the analysis over environments being above
0.8 for both traits.

Another interesting quality control is possible because Beukert
et al. (2020) and the current study used 11 overlapping check
genotypes, which were relevant released varieties. The checks
showed a limited phenotypic diversity with regard to rust
resistance and were at least moderately resistant to stripe rust and
leaf rust (Figure 3). In addition, a more precise characterization
of the pathogenic variation across field locations was not possible
due to the lack of knowledge about resistance genes fixed in

TABLE 4 | Prediction ability implementing marker-assisted in comparison to
genome-wide selection on different trainings and test populations to predict leaf
rust and stripe rust resistance based on all available marker information in contrast
to significant marker data out of association mapping.

Leaf rust Stripe rust

Test population A

Marker-assisted selection 0.50 −0.07

Genome-wide prediction 0.43 0.21

Test population B

Marker-assisted selection 0.57 0.19

Genome-wide prediction 0.50 0.16

Within the first scenario, hybrid population A examined in detail by a previous study
(Beukert et al., 2020) was set as test population, while genotypes introduced in this
study representing population B were used as training population. Within a second
scenario, the function of populations was changed vice versa.

each check variety. Despite these shortcomings, the comparison
of disease resistance for the overlapping check varieties showed
correlations of r = 0.37 for leaf rust and r = 0.77 for stripe
rust resistance (Figure 3). These findings suggest an excellent
agreement for stripe rust disease screening and points to
inconsistencies for leaf rust and to a climatic-dependent dynamic
in the pathogen population of P. triticina. Such a dynamic
in the pathogen population can of course also influence the
concordance of further downstream analyses.

FIGURE 3 | BLUEs representing leaf rust and stripe rust resistance of 11
check varieties, used in field trials of a previous study realized during field
seasons in 2016 and 2017 in comparison to the field trial of 2018 belonging to
this study.
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MAS for Leaf Rust Resistance Is a
Promising Molecular Breeding Strategy
Validation using independent data sets revealed a substantial
overlap of 45 putative QTL (Figure 4 and Supplementary
Table 5) for leaf rust resistance, as found in our study and in
Beukert et al. (2020). The 45 putative SNPs cover regions on
chromosome 3D, 4A, and 7D that most likely harbor relevant
genes contributing to leaf rust resistance. In particular, the
putative QTL on chromosome 4A were consistently the most
significant in both studies. A more detailed exome association
analysis (Liu et al., 2019) based on the population underlying
the published study by Beukert et al. (2020) suggests that the
underlying resistance gene is Lr34-B, a homolog of the cloned
gene Lr34 (Krattinger et al., 2011).

In hybrid wheat breeding, the degree of dominance of the
QTL determines the optimal breeding strategy (for a detailed
discussion, see Beukert et al., 2020). Therefore, we compared the
degree of dominance for the overlapping 45 putative QTL and
observed that all of them showed the desired negative degree of
dominance in both data sets (Supplementary Tables 2, 4). This
suggests that these putative QTL are interesting targets to develop
resistance strategies for hybrid wheat breeding. The nice overlap
of the putative QTL for leaf rust resistance is also reflected in
validated prediction abilities of MAS amounting to 0.50 and 0.57
(Table 4). In comparison, Juliana et al. (2017) reported a lower
prediction ability of MAS for leaf rust resistance of 0.21 based

FIGURE 4 | Venn diagram showing numbers of detected and overlapping
QTLs for leaf rust (A) and stripe rust resistance (B) comparing results of the
present study with a previous published study by Beukert et al. (2020)
(previous study).

on germplasm of CIMMYT’s spring wheat breeding programs
fingerprinted using genotyping by sequencing. In summary,
our results underline the possibility of a robust and efficient
prediction of leaf rust resistance in European germplasm based
on a limited number of diagnostic markers.

We also performed GS in the hope of further increasing the
prediction ability for leaf rust resistance. Nevertheless, we could
not boost the prediction ability of MAS (0.50 and 0.57) and
observed values of 0.43 and 0.50 in the validation of genome-wide
prediction based on independent data sets (Table 4). These values
outperformed the prediction ability of 0.34 reported by Juliana
et al. (2017) for leaf rust resistance in an inbred line population.
Therefore, these results indicate that MAS is the method of choice
to support the breeding of resistance to leaf rust. Nevertheless,
further studies are needed to validate these findings.

The implementation of MAS promotes the breeding efficiency
(Miedaner and Korzun, 2012; Bassi et al., 2015) and is especially
interesting to accumulate favorable genes within early plant
generations (Bonnett et al., 2005): for instance, MAS was
successfully performed in commercial wheat breeding to fix the
rust resistance genes Lr34 and Yr36 (Miedaner and Korzun,
2012). A challenge when increasing the number of diagnostic
markers for multi-trait selection is of course undesired linkage,
which requires large population sizes. Nevertheless, MAS is of
high relevance for the early stages of single seed descent (SSD)-
based programs allowing a negative selection for rust resistance
in combination with an excellent balance between costs and
informative data (Gupta et al., 2010).

Need to Further Increase the Prediction
Ability for Stripe Rust Resistance
Validation using independent data sets revealed only a minor
overlap of six putative QTL (Figure 4 and Supplementary
Table 5) for stripe rust resistance, as found in our study and
in Beukert et al. (2020). An example for the lack of consistency
is the strong peak on chromosome 2A detected by Beukert
et al. (2020) that could not be confirmed in this study. The
inconsistency also holds true for the degree of dominance. Only
one of the six putative QTL showed a significant dominance
effect causing a reduced susceptibility in both populations
(Supplementary Tables 3, 4). Effects of all other common QTL
resulted in differences between both studies. The minor overlap
of the putative QTL for stripe rust resistance is also reflected in
validated prediction abilities of MAS amounting to −0.07 and
0.19 (Table 4). In comparison, Juliana et al. (2017) reported
higher predicting abilities of MAS for stripe rust resistance
of, on average, 0.32 using CIMMYT’s spring wheat breeding
populations fingerprinted with genotyping by sequencing. The
low prediction ability observed in our study can be caused among
other factors by the presence of many minor genes resulting in a
complex genetic architecture.

We therefore also performed GS, which is more suitable
to predict the performance of complex traits. The validated
prediction ability changed only marginally compared to those
of MAS (Table 4), which is in contrast to the results of
Juliana et al. (2017) reporting average prediction abilities of
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0.35. These findings suggest that the success of genome-wide
prediction strongly depends on the underlying germplasm
base and the used marker system and shows the need for
innovations to boost prediction ability of stripe rust resistance in
European wheat lines.

CONCLUSION

Within this study, we applied a genome-wide association study
to investigate the genetic architecture of leaf rust and stripe
rust resistance in a European hybrid wheat population. In
particular, identified loci significantly associated to leaf rust
resistance were comparable with another hybrid population
based on the same genetic origin. Afterward, this previous
published hybrid population was used in addition to perform
MAS in contrast to GS to compare their prediction accuracy.
Applying MAS resulted in moderate and low prediction abilities
for leaf rust and stripe rust resistance, respectively. GS led to
slightly increased prediction abilities for stripe rust in contrast
to leaf rust resistance. Accordingly, MAS seems to be a viable
option to improve the level of leaf rust resistance in European
wheat. In contrast, the general validity of our results observing
stripe rust resistance is limited by the very low prediction
accuracy. Previous studies of Ornella et al. (2012) and Juliana
et al. (2019) validated genomic prediction for rust resistance
using independent samples from CIMMYT’s breeding material.
Therefore, it is already known that prediction accuracy is highly
influenced by germplasm base, population structure, marker
system, pathogenic system, and phenotyping conditions. Within
this study, the prediction ability for stripe rust was in the range of
values reported for grain yield, taking into account the situation
of unrelated training and test populations (Zhao et al., 2015). The
considerable difference in prediction abilities observed between
leaf rust and stripe rust are surprising, given the fact that the
selection gain for stripe rust resistance in Central Europe has
been high in recent decades, indicating the presence of major
genes (Hovmøller, 2007; Pathan et al., 2008; Sørensen et al., 2014).
Together with the discrepancies compared to previous studies
investigating the prediction abilities of stripe rust resistance in

spring wheat (Juliana et al., 2017), the need for further research is
evident. Beside this, the application of a genome-wide prediction
model treating the major QTLs as fixed effects (Rutkoski et al.,
2014) would be an attractive aspect in order to study the resilience
of different prediction strategies. A further interesting option
is the use of other genotyping platforms such as RenSeq (Jupe
et al., 2013; Steuernagel et al., 2016) or whole genome sequencing
(Huang et al., 2009; Brenchley et al., 2012; Chapman et al., 2015),
which hold the promise to detect the relevant QTL of stripe rust
resistance and thereby boost the prediction ability.
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