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Magnesium hydride (MgH2) is a promising solid-state hydrogen source with high
storage capacity (7.6 wt%). Although it is recently established that MgH2 has potential
applications in medicine because it sustainably supplies hydrogen gas (H2), the
biological functions of MgH2 in plants have not been observed yet. Also, the slow
reaction kinetics restricts its practical applications. In this report, MgH2 (98% purity;
0.5–25 µm size) was firstly used as a hydrogen generation source for postharvest
preservation of flowers. Compared with the direct hydrolysis of MgH2 in water, the
efficiency of hydrogen production from MgH2 hydrolysis could be greatly improved when
the citrate buffer solution is introduced. These results were further confirmed in the
flower vase experiment by showing higher efficiency in increasing the production and
the residence time of H2 in solution, compared with hydrogen-rich water. Mimicking
the response of hydrogen-rich water and sodium hydrosulfide (a hydrogen sulfide
donor), subsequent experiments discovered that MgH2-citrate buffer solution not only
stimulated hydrogen sulfide (H2S) synthesis but also significantly prolonged the vase
life of cut carnation flowers. Meanwhile, redox homeostasis was reestablished, and
the increased transcripts of representative senescence-associated genes, including
DcbGal and DcGST1, were partly abolished. By contrast, the discussed responses
were obviously blocked by the inhibition of endogenous H2S with hypotaurine, an H2S
scavenger. These results clearly revealed that MgH2-supplying H2 could prolong the
vase life of cut carnation flowers via H2S signaling, and our results, therefore, open a
new window for the possible application of hydrogen-releasing materials in agriculture.

Keywords: magnesium hydride, hydrogen gas, hydrogen sulfide, vase life, cut carnation flowers

INTRODUCTION

Hydrogen is an ideal energy carrier that is being increasingly used in both power generation
applications and transportation. Besides, hydrogen gas (H2) has been documented having a range of
biological effects and gradually utilized in medicine and agriculture (Ohsawa et al., 2007; Xie et al.,
2012; Zeng et al., 2013; Wu et al., 2019). Clearly, the storage of hydrogen is one of the key challenges
in developing a hydrogen economy. The storage methods include pressurized gas, a cryogenic
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liquid, and solid fuel as chemically or physically combination
with materials, such as metal hydrides (Sakintuna et al., 2007).
At present, the supplementation of H2 for biological research
includes a gas cylinder and water electrolysis, and H2 is normally
dissolved in water and saline (Ohta, 2011; Xie et al., 2014; Li
et al., 2018; Su et al., 2018). However, the extensive application
of the hydrogen-rich liquid solution is limited due to the low
solubility and short residence time of H2 in water. Fortunately,
the growing development of solid hydrogen-storage materials
may provide ways to improve the issues about production
and storage of H2, considering portable, safety, large hydrogen
contents, and sustainable hydrogen supply of solid-state storage
(Hirscher et al., 2020).

Magnesium hydride (MgH2) stands as a promising hydrogen
source because of its high hydrogen-storage capacity (7.6 wt%),
abundant resources, and low cost (Grochala and Edwards,
2004). The research on applications of MgH2 and its related
compounds has focused on thermal storage for solar power
stations and hydrogen supply for vehicles (Bogdanović et al.,
1995; Schlapbach and Zuttel, 2001; Baricco et al., 2017;
Lototskyy et al., 2018; Hirscher et al., 2020). It is well
documented that MgH2 can produce a desired quantity of
H2 by the following hydrolysis reaction at room temperature:
MgH2 + 2H2O → Mg(OH)2 + 2H2, the by-product of which
is environmentally friendly. This property of MgH2 makes a
possible for biological application. Amazingly, Kamimura et al.
(2016) discovered that orally given MgH2 could increase the
content of blood H2 and decrease the level of plasma triglyceride
in rats, thus extending their average lifespan. These results
indicated that MgH2 with biosafety might also have potential
roles in medical applications.

In fact, there are two disadvantages of MgH2 restricting its
further practical application: (1) the reaction kinetics of MgH2
hydrolysis is extremely slow in pure water; (2) the insoluble layer
of magnesium hydroxide [Mg(OH)2] rapidly coated on the outer
surface of the unreacted MgH2 to further hide reaction as the
pH increases (Hiraki et al., 2012). Subsequently, some organic
acids (including citric acid, ethylenediamine-tetraacetic acid, and
tartaric acid) were found as good buffer agents to effectively
accelerate the reaction, finally improving H2 generation by
decreasing the pH and suppressing Mg(OH)2 formation (Hiraki
et al., 2012; Chao, 2018). On the other hand, it is well-known
that organic acid-induced decrease in pH of vase solutions
inhibits bacterial growth and increases the water conduction
in the xylem of cut flowers, thus prolonging the vase life
(van Doorn, 2010).

The postharvest senescence of cut flowers results in
significant commercial losses, which is closely associated
with a series of signaling molecules, including ethylene (Kumar
et al., 2008), reactive oxygen species (ROS; van Doorn and
Woltering, 2008), nitric oxide (NO; Naing et al., 2017), and
hydrogen sulfide (H2S; Zhang et al., 2011). Highly coordinated
changes in gene expression are also involved (Shahri and
Tahir, 2011). Many senescence-associated genes (SAGs) have
been cloned from carnation petals, and their expression
patterns were examined as well. For example, transcripts of
representative genes encoding β-galactosidase (DcbGal) and

glutathione-S-transferase (DcGST1), previously described as
SR12 and SR8, are increased during flower senescence (Lawton
et al., 1989; Meyer et al., 1991).

Recently, the usage of H2 in the form of hydrogen-rich
water (HRW) was observed to delay postharvest senescence and
improve the quality of cut flowers (Ren et al., 2017; Su et al., 2019;
Wang et al., 2020). Subsequent biochemical analysis showed that
H2 prolonged the vase life of cut rose and lily was mediated
by maintaining water balance, increasing antioxidant defense,
and prolonging cell membranes stability (Ren et al., 2017).
Meanwhile, H2 can inhibit ethylene synthesis and corresponding
signal transduction via regulating the expressions of related
genes (such as ethylene synthesis genes Rh-ACS3 and Rh-
ACO1 and ethylene receptor genes Rh-ETR1), thus delaying
rose senescence during the vase period (Wang et al., 2020). In
addition, H2-stimulated NO, another gaseous molecule, can act
as a downstream signal molecule involving keeping postharvest
freshness in cut lily (Huo et al., 2018). However, the effects of
sustained hydrogen supply on prolonging the vase life of cut
flowers and related mechanisms are still elusive.

In this study, we firstly aim to find an optimized condition
for using MgH2 in the flower vase experiment. It was confirmed
that the application of citrate buffer solution (CBS) could greatly
accelerate the reaction rate of MgH2 hydrolysis, confirmed
by the rapid and sustainable increased H2 generation, thus
showing more efficiency in the residence time of H2 in solution,
compared with HRW. By using pharmacological and molecular
approaches, we discovered that the combined treatment of
MgH2 and CBS could remarkably prolong the vase life of a cut
carnation flower, compared with either treatment with MgH2
or HRW, or CBS alone. It is a new finding. Further results
suggested that the discussed MgH2-CBS response is mediated
by influencing H2S signaling. Together, this work will not only
extend the application of MgH2 to agricultural practices but
also provide a new idea for the development of new plant
growth regulators.

MATERIALS AND METHODS

Chemicals
All chemicals used in our experiments were purchased from
Sigma-Aldrich (St. Louis, MO, United States) unless stated
otherwise. MgH2 was obtained from the Center of Hydrogen
Science, Shanghai Jiao Tong University (Ma et al., 2019).
MgH2 was further characterized by using scanning electron
microscopy (SU-8010, Hitachi, Tokyo, Japan), X-ray diffraction
(D/MAX-Ultima III, Rigaku, Tokyo, Japan) with Cu K radiation
source, differential scanning calorimetry (STA449F3, Netzsch,
Selb, Germany), and thermogravimetry (TG209F3, Netzsch,
Selb, Germany). In addition, sodium hydrosulfide (NaHS) and
hypotaurine (HT) were used as an H2S releasing compound
and a specific H2S-scavenger, respectively (Ortega et al.,
2008). H2S fluorescent probe 3-oxo-3H-spiro[isobenzofuran-
1,9’-xanthene]-3’,6’-diyl bis(2-(pyridin-2-yldisulfanyl)benzoate)
(WSP-5; MKBio, Shanghai, China) was used to monitored
endogenous H2S in cut flowers (Peng et al., 2014). The
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concentrations of these chemicals were selected based on the
results of pilot experiments.

Plant Material and Treatments
Cut carnation “Pink Diamond” flowers at the typical commercial
stage (the petals form a right angle with the stem axis) were
purchased from a flower market in Nanjing City, Jiangsu
Province, China, from July to September of 2019. They were
transported within 1 h to the laboratory. Subsequently, the cut
flower stems were placed in distilled water and re-cut underwater
to a length of 25 cm. The top two leaves were kept as well.

The cut flower stems were incubated in glass bottles with 150-
ml distilled water (control) and 0.1-M CBS (pH 3.4) containing
0.01, 0.1, and 1 g L−1 MgH2. Because the treatment with
0.1-M CBS (pH 3.4) plus 0.1 g L−1 MgH2 showed the most
obvious effects on prolonging the vase life of a cut flower in a
pilot experiment (Supplementary Figures 1A–C), this combined
treatment was applied subsequently. Meanwhile, 0.1 g L−1 MgH2,
0.1 M CBS (pH 3.4), or 10% HRW (obtained by water electrolysis)
alone was, respectively, regarded as controls, and HRW was
prepared according to the previous method (Su et al., 2019).

To confirm the possibility that the effect of MgH2 was only
due to molecular hydrogen and not associated with magnesium
ion, MgH2-CBS solution was boiled for three times, 5 min each to
remove the generated H2, followed by keeping under the normal
temperature condition for 1 day until no H2 was detected.

Because 600-µM NaHS and 10-mM HT showed the obviously
promoting and repressing effects on prolonging the vase life of
a cut flower in pilot experiments, respectively (Supplementary
Figures 1D,E), these treatments were also chosen. For further
tests, the cut flower stems were incubated in treatment solutions
(150 ml) containing distilled water (control), 0.1 g L−1 MgH2-
CBS, 600-µM NaHS, or 10-mM HT, alone and in combination.
For the entire tests, all stems were continuously kept in the
treatment solutions throughout the vase period at 25 ± 2◦C,
60–70% relative humidity, and 12 h per day of light (20 µmol
m−2 s−1). All treatment solutions were renewed daily as well.

Determination of Hydrogen Gas
Concentration
The concentration of H2 in solutions was measured by a
portable dissolved hydrogen meter (ENH-1000, TRUSTLEX,
Osaka, Japan) that was calibrated by gas chromatography
(Su et al., 2019).

Vase Life, Relative Fresh Weight, and
Flower Diameter
The vase life of each flower was calculated as the number of days
from the day that the stems were placed in the vase solutions
(recorded as day 0) until the day that 50% of petals had wilted
or the stems had bent (bent-neck angle greater than 45◦). During
the vase period, the fresh weight of each sample was measured
daily using an analytical balance. The relative fresh weight (RFW)
was calculated as following: RFW% = (FWt/Fw0) × 100, where
Wt is the fresh weight of the sample (g) at day t (t = 0, 1, 2, 3,
etc.), and W0 is the fresh weight of the same sample (g) at day

0. Additionally, flower diameter was defined as the maximum
width of each flower and measured daily using a digital caliper.
In each experiment, 10 flowers were placed per treatment with
three replications, and the means of the vase life, RFW, and flower
diameter were determined.

Measurement of Endogenous Hydrogen
Sulfide
With the aid of laser scanning confocal microscopy, H2S
level in vivo was determined as described previously with
minor modification (Kou et al., 2018). The petals were
incubated with 20-µM WSP5 (an H2S fluorescent probe)
in 20-mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid–sodium hydroxide buffer (pH 7.5) for 30 min in the
dark (25◦C). After three washes (10 min per time) with fresh
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid–sodium
hydroxide buffer, the samples were observed using an LSM
710 microscope (Carl Zeiss, Oberkochen, Germany) with
excitation at 495 nm and emission at 525 nm. The bright-
field images were shown at the lower right corners of their
corresponding fluorescent images. The relative fluorescence
was presented as relative units of pixel intensities calculated
by the ZEN software to the control samples. At least five
sections per sample were determined, and three samples in each
treatment were used.

Histochemical Staining and
Corresponding Measurement of
Hydrogen Peroxide Content
The hydrogen peroxide (H2O2) in petal was visually detected
according to the method of Thordal-Christensen et al. (1997).
The petals were stained with 0.1% 3,3-diaminobenzidine for
12 h at room temperature in the dark. Afterward, the petals
were detected under a light microscope (Stemi 2000-C; Carl
Zeiss, Germany).

The H2O2 content was measured by the spectrophotography
(Mei et al., 2017). The samples were incubated with assay
reagent (containing 50-mM H2SO4, 200-µM xylenol orange, and
200-mM sorbitol) for 45 min in the dark at 25◦C. Then, the
absorbance values were determined at 560 nm. A standard curve
was obtained by adding a variable amount of H2O2.

Analysis of Senescence-Associated
Genes Transcription
Quantitative real-time RT-PCR (qPCR) was used to analyze
the expression of SAGs. Total RNA was extracted from petals
using the SparkZol Reagent (SparkJade, Shandong, China).
The concentration and quality of RNA were determined using
a NanoDrop 2000 (Thermo Fisher Scientific, Wilmington,
DE, United States), and RNA was treated with RNase-free
DNase (TaKaRa Bio Inc., Dalian, China) to eliminate traces
of DNA. Afterward, complementary DNAs were synthesized
using HiScript III RT SuperMix (Vazyme, Nanjing, China).
By using specific primers (Supplementary Table 1), qPCR
was performed using a Mastercycler ep R© realplex real-
time PCR system (Eppendorf, Hamburg, Germany) with
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2 × SYBR Green qPCR Mix (SparkJade, Shandong, China).
Relative expression levels were calculated using the 2−11CT

method (Livak and Schmittgen, 2001) and presented as
values relative to the control samples (0 days) after the
normalization with the transcript levels of an internal control
gene DcActin.

Statistical Analysis
All values are means ± standard error (SE) of three independent
experiments with three biological replicates for each. Data were
analyzed by SPSS 22.0 software (IBM Corporation, Armonk, NY,
United States). Differences among treatments were analyzed by
one-way analysis of variance (ANOVA) followed by Duncan’s
multiple range test or t-test, and P < 0.05 or 0.01 were considered
as statistically significant.

RESULTS

Characterization of Magnesium Hydride
As shown in the scanning electron microscopy images
(Figure 1A), the as-received MgH2 particles are spherical
with a diameter of 0.5–25 µm (mean diameter = 15 µm;
Ma et al., 2019). The X-ray diffraction patterns (Figure 1B)
confirmed that MgH2 is the majority phase with a small amount
of unhydrided magnesium. The dehydriding properties of MgH2
were investigated by using differential scanning calorimetry and
thermogravimetry. It was observed that the peak temperature of
decomposition is 405◦C at a heating rate of 10◦C min−1 with a
mass loss of about 7.2 wt% (Figure 1C).

The amount of H2 generated from complete hydrolysis
of MgH2 was about 1,800 ml g−1 (Figure 1D); namely, the
concentration of H2 in unit volume (1 m3) was 0.18% (v v−1).
It is not flammable and explosive when the H2 concentration is
less than 4% by volume (lower flammability limit of H2). Thus, it
is generally safe by using MgH2 as a vase regent.

Magnesium Hydride–Citrate Buffer
Solution Prolongs the Vase Life of Cut
Carnation Flowers
In our experimental conditions, when 0.1 g L−1 MgH2 was
dissolved in 0.1-M CBS (pH 3.4), this combined treatment (also
abbreviated as MgH2-CBS in the following experiments) was
observed as the most obvious effect on prolonging the vase life
of carnation cut flowers, compared with different doses of MgH2,
various CBS, or 10% HRW alone (Supplementary Figures 1A–
C and Figures 2A,B). In the presence of 0.1 g L−1 MgH2-CBS
(0.1 M, pH 3.4), for example, the vase life of the fresh cut flowers
was the longest among all the treatment and was 11.4 days, which
prolonged 3.9 days compared with the control, which was also
significantly different from the treatments of 0.1 g L−1 MgH2
(prolonged about 2.0 days), 0.1-M CBS (pH 3.4; about 1.6 days),
or 10% HRW (about 1.5 days) alone. This conclusion correlates
with the data from other phenotypic parameters, including RFW
and flower diameter in carnation (Figures 2C,D). By contrast,
the removal of H2 by heating solution impaired the positive

effects of MgH2-CBS. It was also confirmed that the boiling used
in our experiment was sufficient to remove H2 from solutions
(Figure 2E), thus suggesting the function of MgH2-CBS is H2-
dependent.

Consistently, the contents of dissolved H2 in MgH2-CBS and
0.1 g L−1 MgH2 solutions ranked the first and second (rapidly
peaking at 0.80 and 0.48 ppm) and remained in higher levels until
6 and 12 h, respectively. Meanwhile, H2 existing in 10% HRW
progressively decreased, just from an initial 0.16 ppm to the basal
level after 6 h (Figure 2E).

Hydrogen Sulfide Is Involved in
Magnesium Hydride–Citrate Buffer
Solution-Prolonged Vase Life of Cut
Carnation Flowers
To investigate whether H2S is involved in MgH2-CBS-prolonged
vase life of carnation cut flowers, both MgH2-CBS and HT
(a specific H2S scavenger; Ortega et al., 2008) were applied
alone and in combination. Meanwhile, NaHS (an H2S releasing
compound) was used as a positive control. The response of the
endogenous H2S level in the petal was monitored by labeling
H2S using an H2S-specific fluorescent probe (WSP-5; Peng et al.,
2014) and imaging by laser scanning confocal microscopy (Kou
et al., 2018). As shown in Figure 3, the WSP-5-dependent
fluorescent intensity was increased by NaHS but was greatly
impaired by HT. In addition, HT alone decreased fluorescent
intensity in comparison with the chemical-free control. It
was confirmed that some, if not most, of the WSP-5-related
fluorescence is caused by H2S. Further results demonstrated that
MgH2-CBS significantly increased endogenous H2S production.
Consistently, the inducing effect achieved by MgH2-CBS could
be prevented by HT. Moreover, there was no additive response in
fluorescence when MgH2-CBS was added together with NaHS.

The subsequent experiment was to assess the contribution
of H2S in prolonging carnation vase-life achieved by MgH2-
CBS. Consistently, three parameters, in terms of vase life, RFW,
and flower diameter, were used. As expected, compared with
the responses of NaHS, the prolonged vase life of cut carnation
flowers was intensified in the presence of MgH2-CBS, which
was abolished when HT was added (Figure 4). In contrast,
compared with control, HT alone shortened the vase life.
However, MgH2-CBS co-treated with NaHS cannot result in an
additive extension of carnation vase-life. Correlating with the
changes in endogenous H2S production (Figure 3), the results
indicated that endogenous H2S might participate in MgH2-CBS-
prolonged the vase life of cut carnation flowers.

Magnesium Hydride–Citrate Buffer
Solution Maintains Redox Homeostasis
via Hydrogen Sulfide
Histochemical staining of ROS (H2O2) accumulation was
then adopted to reveal the detailed mechanism underlying
MgH2-CBS-prolonged carnation vase-life. As expected, it was
observed that a gradual increase of 3,3-diaminobenzidine-
dependent staining in the control during the vase period
(Figure 5A). The change of endogenous H2O2 level determined
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FIGURE 1 | Characterization of MgH2 used in this work. (A) Scanning electron microscopy (SEM) micrographs of MgH2 (Scale bar = 20 µm). (B) X-ray diffraction
(XRD) pattern of MgH2 powers. (C) Thermogravimetric (TG) and differential scanning calorimetry (DSC) curves of MgH2. (D) H2 generated from hydrolysis of MgH2.

with spectrophotography displayed a similar tendency
(Figure 5B), indicating that redox homeostasis was disrupted
during senescence.

Compared with the control, the treatments with MgH2-
CBS and NaHS individually resulted in slight staining patterns
(Figure 5A). By contrast, the mentioned responses elicited
by MgH2-CBS, and NaHS was reversed by the removal of
endogenous H2S when HT was applied. Alone, HT brought
out extensive straining compared with the control (5 days). No
additive responses were observed in MgH2-CBS plus NaHS.
Meanwhile, changes in endogenous H2O2 contents showed
similar patterns (Figure 5B). These results suggested that MgH2-
CBS could reestablish redox homeostasis in carnation flowers,
which might be mediated by H2S.

Role of Hydrogen Sulfide in Magnesium
Hydride–Citrate Buffer
Solution-Modulated
Senescence-Associated Genes During
Postharvest Senescence
To further elucidate the molecular mechanism of how H2S is
involved in MgH2-CBS-prolonged carnation vase-life, several

molecular probes responsible for senescence, including DcbGal
and DcGST1, were analyzed by qPCR. The time-course
experiment showed that the expression levels of DcbGal and
DcGST1 were increased during postharvest senescence, and
those in petals of control were much higher than those in the
presence of MgH2-CBS (Figures 6A,B). Similar to the responses
of H2S, MgH2-CBS could also downregulate the transcripts of
DcbGal and DcGST1 (5 days; Figures 6C,D). In contrast, the
inhibition mentioned earlier was attenuated by the depletion
of H2S with HT. Additionally, HT alone could greatly increase
the expression levels of these two genes. No additive inhibition
responses occurred in co-treatment of MgH2-CBS and H2S
as well. Therefore, H2S was involved in MgH2-CBS-induced
reduction of DcbGal and DcGST1 expression in carnation during
the vase period.

DISCUSSION

At present, HRW is a major route of H2 administration (Shen
and Sun, 2019). Ample evidence showed that HRW has positive
effects on postharvest physiology. For example, HRW can
prolong the shelf life (Hu et al., 2014) and decrease nitrite
accumulation of fruits during storage (Zhang et al., 2019), as

Frontiers in Plant Science | www.frontiersin.org 5 December 2020 | Volume 11 | Article 595376

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-595376 December 3, 2020 Time: 17:26 # 6

Li et al. MgH2-Supplied H2 and Prolonged Vase-Life

FIGURE 2 | Changes in vase life, relative fresh weight (RFW), and flower diameter of cut carnations and dissolved H2 in solution subjected to MgH2, citrate buffer
solution (CBS), MgH2-CBS, heated MgH2-CBS, and hydrogen-rich water (HRW). (A) Representative photographs of cut flowers (scale bar = 2 cm). Cut flower
stems were incubated in untreated (control) and treatment solutions containing 0.1 g L−1 MgH2, 0.1-M CBS (pH 3.4) with or without 0.01, 0.1, and 1 g L−1 MgH2,
10% electrolytic HRW during vase period. Afterward, vase life (B), RFW (C), maximum flower diameter (D), and H2 content in solutions (E) were expressed as
mean ± standard error (SE). There were three replicates and 10 flowers per each for (A–D), and three replicates per each for (E). Experiments were conducted for
three times. Bars with different letters are significantly different (P < 0.05), as determined by Duncan’s multiple range test.
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FIGURE 3 | MgH2-CBS triggers H2S accumulation. (A) Cut flower stems were incubated in untreated (control) and treatment solutions containing 0.1 g L−1

MgH2-CBS, 600-µM NaHS, 10-mM HT (a scavenger of H2S), alone or their combinations for 3 days. Afterward, epidermis of petals was loaded with 20-µM WSP5
(an H2S fluorescent probe) and detected by laser scanning confocal microscopy (scale bar = 200 µm). Bright-field images corresponding to the fluorescent images
were at the bottom right corner. (B) Relative fluorescence was also presented as values relative to control. Mean and SE values were calculated. At least five sections
per sample were determined, and three samples in each treatment were used. Bars with different letters denoted significant differences in comparison with control at
P < 0.05, according to Duncan’s multiple range test.

well as prolong the vase life of cut flowers (Ren et al., 2017; Su
et al., 2019; Wang et al., 2020). Importantly, the HRW is presently
mainly obtained by water electrolysis, which requires a hydrogen
gas generator. Moreover, the solubility of H2 in water is very low
(approximately 1.84 ml in 100-g H2O at 20◦C, 1 atm; Safonov and
Khitrin, 2013), and especially, the residence time of H2 in HRW
is shorter, as the half-time of dissolved H2 in HRW is less than
1 h (Figure 2E), at least under our experimental conditions. The
discussed disadvantages may restrict the practical applications of
the electrolytic produced HRW.

In this study, H2 was generated by MgH2 hydrolysis,
which was intensified when dissolved in CBS. Additionally,
it can remain in higher amounts of dissolved H2 over a

relatively longer period than the electrolytic HRW (Figure 2E).
It has been reported that hydrolysis of magnesium particles
can produce hydrogen nanobubbles that can exist in the
water solution of a dietary supplement for a sufficiently
long time (Bunkin et al., 2009; Safonov and Khitrin, 2013).
A balance between surface tension and repulsive forces between
surface electric charges is responsible for the stabilization of
nanobubbles (Bunkin et al., 2009). We also found that the
dissolution of MgH2 in water and CBS (in particular) was
accompanied by a large number of small bubbles in the first 1–
2 min. Thus, MgH2 may also produce hydrogen nanobubbles
that increase the solubility and the residence time of H2.
However, the dissolution of MgH2 in water led to a strongly
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FIGURE 4 | MgH2-CBS-prolonged vase life of cut carnation flowers is sensitive to the scavenger of H2S. (A) Cut flower stems were incubated in untreated (control)
and treatment solutions containing 0.1 g L−1 MgH2-CBS, 600-µM NaHS, 10-mM HT (a scavenger of H2S), alone or their combinations throughout the vase period.
Representative photographs of cut flowers were taken (scale bar = 2 cm). Vase life (B), relative fresh weight (RFW; C), and maximum flower diameter (D) were
expressed as mean and SE values. There were three replicates and 10 flowers per each. Experiments were conducted for three times. Bars with different letters are
significantly different (P < 0.05), as determined by Duncan’s multiple range test.

alkaline environment (approximately pH 10; Supplementary
Figure 1F). By contrast, the administration with CBS significantly
accelerated the reaction of MgH2 hydrolysis and increased
H2 generation (Figure 2E) by decreasing the pH, which
is consistent with the previous studies (Hiraki et al., 2012;
Chao, 2018).

It is worth noting the safety of MgH2 use. In fact, the
concentration of H2 generated from MgH2 hydrolysis is far less
than the lower flammability limit of H2 (4% in air). Therefore,
it is safe by using MgH2 as a vase regent. It has been reported
that the citric acid buffered around pH 3 can effectively prolong

the vase life of cut flowers by reducing bacterial growth and
maintaining the water balance (van Doorn, 2010). A similar
result was observed in this study (Supplementary Figures 1B,C
and Figures 2A,B). Although the combination of MgH2 and
acid solutions is impractical for industry application because
it causes equipment corrosion, it precisely favors postharvest
preservation. We also observed that combining MgH2 with CBS
may produce additive or synergistic effects in prolonging the vase
life of cut carnation flowers. Together, MgH2 might be used as
a promising chemical for producing a hydrogen-rich solution
in horticulture.
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FIGURE 5 | MgH2-CBS maintains redox homeostasis via H2S. (A) Cut flower stems were incubated in solutions containing 0.1 g L−1 MgH2-CBS, 600-µM NaHS,
10-mM HT, alone or their combinations throughout the vase period. The petals were stained with 3,3-diaminobenzidine (DAB), then photographed under a light
microscope (scale bar = 1 mm). (B) Spectrophotography also determined H2O2 contents. Values are mean ± SE of three independent experiments with three
replicated for each.

H2S is a well-known important gaseous signaling molecule
involved in plant developmental and environmental responses,
such as root organogenesis, response to abiotic stresses, and
delayed senescence of vegetables, fruits, and flowers (Zhang et al.,
2011; Li et al., 2012, 2013; Wang et al., 2012; Ali et al., 2019;

Corpas, 2019; Mei et al., 2019). It has been confirmed that
L-cysteine desulfhydrase-dependent H2S acts as the downstream
signal molecule involved in NO-induced heat tolerance of maize
seedlings (Li et al., 2013) and methane-induced tomato and
Arabidopsis lateral root formation (Mei et al., 2019). Interestingly,
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FIGURE 6 | Changes in the transcripts of senescence-associated genes. Cut flower stems were incubated in solutions containing 0.1 g L−1 MgH2-CBS, 600-µM
NaHS, 10-mM HT, alone or their combinations throughout the vase period. After treatments for the indicated time points or 5 days, the transcript levels of DcbGal
(A,C) and DcGST1 (B,D) in petals were analyzed by qPCR and presented as values relative to the control samples (0 days) after the normalization with the transcript
levels of an internal control gene DcActin. Values are mean ± SE of three independent experiments with three replicated for each. Bars with asterisks were
significantly different in comparison with control at *P < 0.05 and **P < 0.01 according to t-test. Bars with different letters are significantly different (P < 0.05), as
determined by Duncan’s multiple range test.

a similar requirement of H2S for MgH2-prolonged vase life
of cut carnation flowers was discovered in this work. The
conclusion is supported by the following pharmacologic and
molecular evidence.

HT, a scavenger of H2S (Ortega et al., 2008; Fang et al.,
2014; Mei et al., 2019), was used in our experiments, and
its inhibitory role was confirmed. The increase in endogenous
H2S accumulation triggered by MgH2-CBS was observed to be
sensitive by HT (Figure 3). Correlating with the changes in
the phenotypes of vase life, relative fresh weight, and flower
diameter (Figure 4), the results presented here further revealed
a requirement for endogenous H2S in MgH2-CBS-prolonged
carnation vase-life.

Furthermore, ROS (especially H2O2) has been observed
to increasingly produce during the senescence process in cut
flower (Hossain et al., 2006; Kumar et al., 2007; Su et al.,
2019). It has been demonstrated that H2S could inhibit ROS
overproduction by increasing activities of antioxidant enzymes

(Zhang et al., 2011; Hu et al., 2012, 2015). In this study,
the contents of H2O2 gradually increased during the normal
senescence of cut carnation flowers, which indicated the
disruption of redox homeostasis (Figure 5B). The lower H2O2
levels maintained by MgH2-CBS might be, at least partially,
responsible for delaying senescence. By contrast, the discussed
responses of MgH2-CBS were reversed by the removal of
endogenous H2S with HT (Figure 5B). Changes in histochemical
staining showed a similar pattern (Figure 5A). The discussed
results, therefore, confirmed that MgH2-CBS-reestablished redox
homeostasis was closely associated with the alteration in
endogenous H2S.

Recent evidence proved that H2S decreased the expression
levels of SAGs, resulting in delaying the postharvest senescence
of broccoli (Li et al., 2014). Furthermore, sucrose and silver
thiosulphate (an inhibitor of ethylene receptor) could repress the
upregulation of SAGs (including DcbGal and DcGST) in petals
of carnation (Hoeberichts et al., 2007). Similarly, our further
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FIGURE 7 | Schematic model summarizing the MgH2-CBS-prolonged the vase life of cut carnation flowers. CBS, citrate buffer solution; HT, hypotaurine; H2,
hydrogen gas; H2S, hydrogen sulfide; MgH2, magnesium hydride; MgH2-CBS, magnesium hydride dissolved in citrate buffer solution; NaHS, sodium hydrosulfide;
SAGs, senescence-associated genes.

molecular data revealed that MgH2-CBS could downregulate
the expression of DcbGal and DcGST (Figure 6). By contrast,
such inhibition effects of MgH2-CBS were alleviated by HT.
Combined with the changes in phenotypes and endogenous H2S
level (Figures 3, 4), we also speculated that SAGs might be the
target genes responsible for MgH2-CBS-triggered H2S-prolonged
vase life of cut flowers.

Accordingly, a schematic model shown in Figure 7
summarizes the role of H2S in the MgH2-CBS-prolonged
the vase life of cut carnation flowers.

CONCLUSION

This study revealed the effectiveness of MgH2-mediated H2
sustainable supply in postharvest preservation of cut flowers.
Compared with hydrogen-rich water, the utilization efficiency
of MgH2 was improved by buffering with CBS. Thus, MgH2
may have great potential for application in horticulture. In
addition, it also demonstrated a vital role of H2S in MgH2-
CBS-prolonged the vase life of cut flowers by modulating the
expression of SAGs.
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