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Editorial on the Research Topic

Co-Evolution of Plant Cell Wall Polymers

Possessing a cell wall, composed of different types of polymers including polysaccharides, lignins,
and proteins, is one of the defining features of plant and algal cells (Carpita and Gibeaut, 1993;
Neutelings, 2011). It has been instrumental in the ability of a single lineage within the streptophyte
algae to successfully transition to life on land in the mid-Paleozoic and subsequently to diversify to
form the entire terrestrial macroflora (de Vries and Archibald, 2018). Cell walls provide mechanical
support to the plant and constitute a physical protective barrier against the environment (Niklas
et al., 2017). They also enable cell-to-cell communication (Tavormina et al., 2015; De Lorenzo et al.,
2019; Shi et al,, 2019) and are modified in a dynamic manner during plant development and in
response to biotic and abiotic stresses (Frankova and Fry, 2013; Le Gall et al., 2015; Cosgrove, 2018;
Herger et al., 2019). Their structural organization and composition display a large diversity between
species and between organs, and even cells, of a single species (Freshour et al., 1996; Sarkar et al.,
2009; Popper et al., 2011).

Since the emergence of land plants, important physiological, morphological and environmental
changes have occurred corresponding to major cell wall innovations (Graham et al., 2000). Three
major innovations can be highlighted: (i) the evolution of multicellularity, and change in body plan
to a three-dimensional, rather than planar or filamentous, form, leading to the requirement for cell
adhesion and cell-to-cell communication; (ii) the appearance of a composite cuticle made of several
layers of polysaccharides, wax, and cutin to protect cells against UV light and desiccation; and (iii)
the addition of aromatic compounds eventually polymerized into lignins to waterproof the walls of
conducting vessels and reinforce walls, thus allowing the growth in height of vascular plants. The
adaptability of cell wall components is, in part, inherently enabled by being carbohydrate-based. For
example, Prestegard et al. (2017) were able to construct 1,792 distinct tetrasaccharides from a single
sugar in ring form, and there are more than 10 major sugar residues that are commonly found in
plant cell wall components, each of which can occur in multiple forms. The evolution and diversity
of cell wall polysaccharides and aromatic compounds have necessarily been accompanied by the
diversification of cell wall structural proteins and wall-localized remodeling enzymes and of proteins
contributing to the biosynthesis of cell wall constituents. Biosynthesis of pectin alone, a highly
structurally diverse carbohydrate, is hypothesized to require the activities of at least 67 distinct
enzymes (Atmodjo et al., 2013).

Tools for molecular analyses and genomic data are now available and allow more integrative studies
to better understand the evolution and co-evolution of cell wall polysaccharides, aromatic compounds,
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and proteins in the context of multicellularity and terrestrialization.
This Research Topic has collected eight original contributions,
including two reviews and six original research articles.

Interestingly, and perhaps because of the key role of the cell wall
in terrestrialization, three articles focus on the extracellular matrix of
Charophytes, the extant group of green algae that are most closely
related to living land plants. Fitzek et al. have analyzed and
assembled the transcriptome of Zygnema circumcarinatum. They
have compared three glycosyl transferase families (GT2, GT8, and
GT43) involved in the biosynthesis of cell wall polysaccharides in
eight charophytes including the Zygnematophyceae, with those of
five embryophytes, and two chlorophytes used as outgroups.
Regarding the GT2 family, orthologs to the land plant cellulose
synthases (CesA) were only found in Zygnematophyceae and not in
the seven other charophytes nor in the two chlorophytes, whereas
the cellulose synthases-like (Csl) genes detected in all the
charophytes form a distinct cluster. Interestingly, in response to
osmotic stress, the Z. circumcarinatum genes encoding ZcCesA
(cellulose synthase), ZcCsIC (possibly mannan synthase), and
ZcCslA-like (possibly xyloglucan synthase) were induced as is
found in land plants. Herburger et al. have focused their study on
the pectic cell wall polysaccharides, and particularly on
homogalacturonans (HG). They show that the accumulation of
HG in Z. circumcarinatum filaments increases their resistance to
dessication. This feature could have played a role during
colonization of the land by the Zygnematophyceae. Palacio-Lopez
et al. highlight the importance of arabinogalactan proteins (AGPs)
in cell-to-cell and cell-to-surface adhesion in four Charophytes,
Z. circumcarinatum, Penium margaritaceum, Chlorokybus
atmophyticus, and Coleochaete orbicularis. They hypothesize that
effective adhesion mechanisms would likely have supported land
colonization because they are an asset in highly changeable wetlands
and that a stable position on a substratum increases light absorption
and favors water movement, helping combat dessication.

Dehors et al. provide a review article on the evolution of cell
wall polymers in the tip-growing gametophytes of land plants. A
massive deposition of cell wall material is required to support
rapid elongation of tip-growing structures like pollen tubes as
well as a tight control of the remodeling of the cell wall to ensure
its rigidity. The authors review the diversity of the cell wall
polymers, which contribute to the growth expansion of
gametophytes from basal to later diverging land plants.

Two articles are devoted to grass cell walls which show
particularities with the presence of (1,3; 1,4)-B-glucans and
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