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Co-expression networks are a powerful tool to understand gene regulation. They
have been used to identify new regulation and function of genes involved in plant
development and their response to the environment. Up to now, co-expression networks
have been inferred using transcriptomes generated on plants experiencing genetic or
environmental perturbation, or from expression time series. We propose a new approach
by showing that co-expression networks can be constructed in the absence of genetic
and environmental perturbation, for plants at the same developmental stage. For this,
we used transcriptomes that were generated from genetically identical individual plants
that were grown under the same conditions and for the same amount of time. Twelve
time points were used to cover the 24-h light/dark cycle. We used variability in gene
expression between individual plants of the same time point to infer a co-expression
network. We show that this network is biologically relevant and use it to suggest new
gene functions and to identify new targets for the transcriptional regulators GI, PIF4,
and PRR5. Moreover, we find different co-regulation in this network based on changes
in expression between individual plants, compared to the usual approach requiring
environmental perturbation. Our work shows that gene co-expression networks can
be identified using variability in gene expression between individual plants, without the
need for genetic or environmental perturbations. It will allow further exploration of gene
regulation in contexts with subtle differences between plants, which could be closer to
what individual plants in a population might face in the wild.
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INTRODUCTION

Understanding how transcriptomes are regulated is key to shed
light on how plants develop and also respond to environmental
fluctuations. A powerful tool often used to reveal transcriptional
regulation at a genome-wide level is gene co-expression networks
(Stuart et al., 2003; Serin et al., 2016). In gene co-expression
networks, genes that co-vary in expression in different conditions
are detected and paired together (Usadel et al., 2009; Ruan et al.,
2010; Contreras-López et al., 2018). By doing this for the entire
transcriptome, a multitude of genes can be linked, indicating a
similar gene regulation. Communities of genes, called modules,
that are more closely linked can then be identified (Mao et al.,
2009). The presence of genes in a given module indicates a
close co-regulation and is usually the starting point to look for
their implication in the same pathway, or their regulation by
the same transcription factor(s) [TF(s)] (Aoki et al., 2007; Zheng
et al., 2011; de Luis Balaguer et al., 2017; Liu et al., 2019). Most
studies using co-expression networks can be separated into two
categories: targeted analyses that use only a subset of genes
(selected based on their function or transcriptional regulation) or
specific genetic/environmental perturbations and global analyses
that make use of hundreds or thousands of transcriptomes
performed in various conditions, often publicly available ones,
and do not select genes based on their function prior to the co-
expression analysis. Co-expression networks are now commonly
used in a variety of work in plant research and have allowed the
identification or prediction of new genes and TFs involved in
development (Xie et al., 2015; Silva et al., 2016; de Luis Balaguer
et al., 2017), in metabolic pathways (Wisecaver et al., 2017), and
in response to biotic and abiotic stresses (Prasch and Sonnewald,
2013; Shaik and Ramakrishna, 2013; Amrine et al., 2015; Sharma
et al., 2018; Liu et al., 2019). It has also been proposed that the
topology of the co-expression network and position of genes
in the network can be of interest in itself to identify genes
involved in natural diversity in development and in the response
to environment (Ichihashi et al., 2014; Des Marais et al., 2017).

One limit of gene co-expression networks is that they only
provide information about correlation in expression but do not
indicate the direction and type of relationship between genes that
are co-expressed. In order to define which genes are TFs that
regulate the expression of other genes in the network, additional
types of data should be used or integrated (Rao and Dixon,
2019). These additional data can be, for example, ChIP-seq (Chen
et al., 2018; Kulkarni and Vandepoele, 2019) that provides the list
of targets of a given TF, protein–protein interaction (He et al.,
2010; Kulkarni and Vandepoele, 2019), as well as the presence
of TF binding motifs in the promoter of genes (Vandepoele
et al., 2009; Ma et al., 2013). Another limit is that genes should
exhibit changes in expression between the different samples used
for the analysis in order to detect co-expressed pairs of genes.
This is usually achieved by using genetic and/or environmental
perturbations in order to cause changes in the transcriptome
regulation. However, these perturbations often have large effects,
and it can be time-consuming and challenging to produce the
large number of samples required. In order to analyze gene
regulation in a biologically context that is more relevant, more

subtle changes in expression might be preferred. This could be
achieved by using milder genetic or environmental perturbations.
Another option would be to analyze changes in expression
that occur in the absence of any genetic or environmental
perturbation (Bhosale et al., 2013). This can be possible in theory
as widespread differences in gene expression levels have been
observed between genetically identical plants, in the absence
of any environmental perturbation (Hall et al., 2007; Jimenez-
Gomez et al., 2011; Shen et al., 2012; Mönchgesang et al.,
2016; Cortijo et al., 2019). The idea is to use this variability in
gene expression to find potential co-regulation. In mammals,
variability in gene expression between single cells of the same cell
type has been used to identify co-expression patterns for genes
that show a high level of gene expression variability between cells
(Mantsoki et al., 2016). Moreover, gene co-expression networks
have been inferred using transcriptomes of individual plant
leaves, after removing in silico the genotype, environment, and
genotype × environment effects on gene expression (Bhosale
et al., 2013). The modules identified in this network were
functionally relevant, and this study allowed the identification
of a new regulator of the jasmonate pathway (Bhosale et al.,
2013). It thus shows that the analysis of gene expression
regulation can be as powerful in the absence of genetic and
environmental fluctuation. However, the first step of the study of
Bhosale et al. was to remove in silico the genotype, environment,
and genotype × environment effects on gene expression, as
the transcriptomes were performed on plants from different
genotypes, as well as plants that were grown in different research
laboratories. It is thus not clear if co-expression networks can
be identified in plants from transcriptomes performed in the
absence of genetic and environmental perturbation.

We thus decided to test if it is possible to infer gene
co-expression networks using transcriptomes generated on
single plants in the absence of any genetic and environmental
perturbation. In particular, we wanted to define if such a
network would provide different information compared to a
network using environmental perturbation. Finally, we wished
to determine if modules that would be detected in such a
network would have functional relevance. In order to answer
these questions, we took advantage of the existence of a set
of published transcriptomes carried out on single seedlings of
the same genotype that were grown in the same environmental
conditions (Cortijo et al., 2019). In this dataset, multiple
genetically identical seedlings had been harvested at several
time points during a day/night cycle. Differences in expression
between seedlings in each time point were previously observed
for many genes in this dataset. In particular, 8.7% of the
genes in this dataset have been identified as highly variable
genes (HVGs), as their expression was statistically more variable
between seedlings than the rest of the transcriptome. Using
this dataset, we were able to infer co-expression networks in
the absence of genetic and environmental perturbations. Based
on enrichment in a module for genes involved in flavonoid
metabolism, we speculated that AT4G22870, a 2-oxoglutarate
(2OG) and Fe(II)-dependent oxygenase, could also have a role in
flavonoid metabolism. Finally, we identified new targets for the
transcriptional regulators PHYTOCHROME INTERACTING
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FACTOR 4 (PIF4), GIGANTEA (GI), and PSEUDO-RESPONSE
REGULATOR 5 (PRR5).

RESULTS

Co-expression Networks Can Be Inferred
Using Expression Variation Between
Individual Seedlings
Co-expression networks in plants are normally inferred using
transcriptomes obtained from pools of plants, using genetic
or environmental perturbations in order to identify genes that
co-vary in expression between these conditions. In order to
define if co-expression networks can be inferred from expression

measurements obtained from single seedlings in the absence of
genetic and environmental perturbations, we used the previously
published dataset of transcriptomes generated on single seedlings
grown in the same environment. This dataset contained a total
of 14 seedlings per time point, for 12 time points spanning a 24-
h day/night cycle (Cortijo et al., 2019). Widespread differences
in expression levels have been observed between seedlings in this
dataset, which is a prerequisite to be able to infer a co-expression
network (Usadel et al., 2009; Ruan et al., 2010; Contreras-López
et al., 2018) (Figure 1A and Supplementary Figure S1). We first
detected co-expressed genes in each time point, by measuring
Spearman correlation for each pair of genes in profiles of
expression in the 14 seedlings of this time point. In order to keep
robust correlations in the final network, we used a Benjamini–
Hochberg correction with a false-discovery rate of 10% to keep

FIGURE 1 | Inference of gene co-expression networks in absence of genetic and environmental perturbations. (A) Description of co-expression network inference
using transcriptomes performed on single seedlings. Transcriptomes were generated for a total of 14 seedlings per time point, with 12 time points spanning a
day/night cycle over 24 h. In each time point, genes with correlated expression profiles in the 14 seedlings were identified. The co-expression network was inferred
based on pairs of genes significantly correlated in at least four consecutive time points. Finally, modules in the network, which consist of groups of genes that are
densely connected, were detected. (B) Total number of edges in the final network that are detected in each time point. (C) Distribution of the number of genes
present in each of the 153 modules. Inset shows the same data plotted with a logarithmic scale. (D) Number of edges that are detected in each time point for four
modules: module 1 in which most edges are detected during day time, module 21 in which most edges are detected during the night time, module 8 in which most
edges are detected at the transition between night and day, and module 12 in which most edges are detected at the transition between day and night.
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the most significant correlations and then selected edges of the
network that are detected in at least four consecutive time points,
with one gap allowed (section “Materials and Methods”). Using
this approach, we find a total of 4715 edges, connecting 1729
genes in this network, from now on referred to as the variability
network. The number of edges detected for each time point varies
from 787 to 3221, with a higher number of edges being detected
at the end of the day and the beginning of the night (Figure 1B).
We then used the Louvain community detection algorithm in
order to identify modules of genes that are densely connected
in the network (Blondel et al., 2008). In total, we identified 153
modules (Supplementary Table S1), containing between two
and 334 genes, with most of the modules only composed of
two genes (Figure 1C). To test the robustness of the variability
network, we also selected significantly correlated edges that are in
at least three consecutive time points and compared the detected
modules in both networks (Supplementary Figure S2). Similar
modules with a similar overall connectivity between them are
found in the two networks, which confirms the robustness of
the modules in our original network. Modules in the network
based on four consecutive time points are smaller. In some cases,
several modules of the network based on four consecutive time
points correspond to a single module in the network based on
three consecutive time points and these smaller modules have
differences in several features (Supplementary Figure S2). That
is why we decided to focus our analysis on the network obtained
when selecting edges present in four consecutive time points,
and in particular for the 28 modules of this network containing
five genes or more.

First, we analyzed the number of edges at each time point
throughout the time course for each module (Figure 1D and
Supplementary Figure S3). In most modules, the edges are
distributed non-uniformly across the 12 time points. Some
exhibit a larger number of edges during the day or the night, while
in other modules, a larger number of edges are observed at the
transitions from night to day, or from day to night. It indicates
that genes in these modules are co-regulated at some moments of
the day/night cycle but not at others. While for some modules,
this is linked to the genes being more expressed at these same
times of the day (module 1 for example), this is not the case for
other modules in which genes are expressed throughout the time
course (module 12 for example; Figure 2). Most of the edges in
module 1 are observed during the day (Figure 1D), and we were
able to confirm co-expression of genes in this module by doing an
RT-qPCR in a replicate experiment for a few genes in this module.
In this replicate experiment, we find a very high correlation
during the day (ZT6) and a lower correlation during the night
(ZT14) (Supplementary Figure S4). On the other hand, most
edges in module 21 are observed during the night (Figure 1D).
We also find in a replicate RT-qPCR experiment that genes of
module 21 were more correlated during the night than during
the day (Supplementary Figure S4). These results confirm that
the co-expression of genes in modules of the variability network,
and also the differences in co-expression between the day and
night, can be reproduced in a replicate experiment. Moreover,
we find that modules with a high percentage of edges during the
night are more connected to one another than with modules for

which most edges are observed during the day, and vice versa
(Figure 3A). We can measure this assortativity of the network
(i.e., the tendency of similar nodes to be connected to each other)
through the Pearson correlation of the daytime-specific edge
percentages of connected modules (Pearson correlation = 0.4573,
p-value = 0.043). This result shows that modules that are more
connected to one another are more similar, at least for this
feature, indicating that the community detection in the network
worked well and provides modules that are relevant.

Since high gene expression variability between genetically
identical plants was previously observed in the transcriptome
dataset we used to infer the variability network (Cortijo et al.,
2019), we tested if the network is enriched in HVGs. We find a
total of 477 HVGs in the network, that is, 27.6% of all genes in
the variability network. This is higher than the 8.7% of HVGs
that were detected in the full transcriptome dataset (Cortijo
et al., 2019). This result suggests that most of the genes in
the variability network do not have to display a high level of
gene expression variability to be able to detect co-expression
between individual seedlings. We find that most modules are
either strongly enriched in HVGs, or strongly depleted in HVGs,
with only a few modules containing around 27% of HVGs
(Table 1 and Supplementary Figure S5a). Modules 37, 43, and
66 for example are only composed of HVGs, while a total of
eight modules do not have a single HVG. This result suggests
that HVGs can co-vary in expression and are potentially co-
regulated. It also suggests that HVGs are not likely to co-vary
in expression with non-variable genes. To test if this result
could indicate a bias in the method used to construct the
variability network and detect modules, we analyzed expression
levels in single seedlings for genes in modules with high or low
percentage of HVGs (Supplementary Figure S5b). We find that
modules with high or low percentage of HVGs have different
expression profiles in the seedlings, indicating an absence of
bias. Moreover, modules with a high percentage of HVGs
tend to be more connected to one another than with modules
containing a low percentage of HVGs, and vice versa (Pearson
correlation = 0.6896, p-value = 0.0007683, Figure 3B).

Our results show that gene co-expression networks can
be inferred in the absence of genetic or environmental
perturbation. Moreover, genes do not need to show a high
level of gene expression variability between seedlings to be
integrated in the network.

Additional Gene Co-expression Is
Identified in the Variability Network
Compared to a Network Inferred From
Pools of Plants
Next, we decided to test whether the co-expression network
based on the variability of expression between genetically
identical plants grown in the same environment is different
from what is the standard practice in the field. Usually, co-
expression networks are inferred by comparing transcriptomes
obtained from pools of plants experiencing an environmental
or genetic perturbation. Given that our dataset contains data
for several time points throughout a day/night cycle, this
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FIGURE 2 | Expression profiles throughout the time course for genes in each module with 5 genes or more, using the average expression of the fourteen seedlings
for each time point. Each line represents the normalized expression (z-score) for one gene. Modules are ordered by the percentage of genes in the averaged time
course network (high to low). Modules highlighted in blue contain 50% or more of genes that are also in the averaged time course network. Modules highlighted in
red contain 15% or less of genes that are also in the averaged time course network.

would correspond to comparing the average expression of the
14 seedlings for each time point and exploiting changes in
expression happening during the time course. We used this
strategy to infer a co-expression network, referred to as the
averaged time course network, that allows the identification of
co-expression throughout the time course and is the closest to
standard practices using our dataset. Using this approach, we find
a total of 9332 edges, connecting 3861 genes in the averaged time
course network. A total of 524 genes of this averaged time course
network are also present in the variability network, that is, 30%
of the genes in the variability network (Table 2). Only 35 edges
are shared between the two networks. This result shows that the

majority of the genes and edges present in the variability network
are not detected in this dataset using a classical approach with
pools of plants.

We find that between 0 and 87.5% of genes in modules of
the variability network are also in the averaged time course
network, with most of the modules having between 20 and
50% of genes also present in the averaged time course network
(Table 2). The modules with the highest percentage of genes
also in the averaged time course network are modules 71 (87%:
seven out of eight genes) and 13 (76%: 59 out of 77 genes).
We find that genes in these modules have very similar and
clear expression profiles throughout the time course (Figure 2).
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FIGURE 3 | Network architecture is mainly influenced by the time of day when edges are detected and by the presence of highly variable genes in modules.
Organization of modules in the network, with the size of circles representing the module size (i.e., number of edges). Number of edges connecting the modules is
represented by the thickness of the lines between modules. The number in each module corresponds to the module number. (A) Modules are color coded based on
the percentage of edges that are detected during the night in each module. Blue modules are composed of a majority of nighttime edges, while yellow modules are
mainly composed of daytime edges. (B) Modules are color coded based on the percentage of highly variable genes (HVGs) in the modules. Green modules are
composed of a majority of HVGs while red modules have a low percentage of HVGs.
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TABLE 1 | Number and percentage of HVGs in each module, for modules with at
least five genes.

Module size_modules nb_HVG percentage_HVG Fisher’s
p-value

37 12 12 100.0 0.0022

43 8 8 100.0 0.0118

66 6 6 100.0 0.0287

18 15 14 93.3 0.0022

24 47 42 89.4 0.0001

59 9 8 88.9 0.0181

15 44 38 86.4 0.0001

1 19 15 78.9 0.0052

32 56 43 76.8 0.0001

64 7 5 71.4 0.1496

23 6 4 66.7 0.2384

21 79 50 63.3 0.0001

79 10 6 60.0 0.1322

4 175 97 55.4 0.0001

25 24 9 37.5 0.4014

8 41 8 19.5 0.482

2 150 17 11.3 0.0002

13 77 6 7.8 0.0009

9 101 3 3.0 0.0001

0 334 3 0.9 0.0001

5 91 0 0.0 0.0001

6 61 0 0.0 0.0001

36 24 0 0.0 0.0047

12 21 0 0.0 0.0127

71 8 0 0.0 0.2142

126 7 0 0.0 0.3578

70 6 0 0.0 0.3512

86 5 0 0.0 0.5915

This is also the case for all modules with at least 50% of genes
in the averaged time course network (modules highlighted in
blue in Figure 2). This result could suggest that the reason
why these modules contain many genes also present in the
averaged time course network is because their genes have very
similar expression patterns throughout the day/night cycle. On
the other hand, several modules that only have 15% or less
of genes present in the averaged time course network are
composed of genes without clear expression patterns during
the time course. These results show that additional gene co-
expression is identified in the variability network compared to
the averaged time course network. Most importantly, using gene
expression in single seedlings, co-expression between genes can
be detected even in absence of expression patterns throughout
the day/night cycle.

Modules Identified in the Variability
Network Are Functionally Relevant
In order to define if the modules identified in the variability
network are functionally relevant, we performed a Gene
Ontology (GO) enrichment analysis. We find that some of the
modules have strongly enriched GO (Supplementary Table S2).

TABLE 2 | Number and percentage in each module of genes also detected in the
averaged time course network, for modules with at least five genes.

Module Module
size

Number
genes

averaged time
course

network

Percentage
genes

averaged time
course

network

Fisher’s
p-value

71 8 7 87.5 0.0585

13 77 59 76.6 0.0001

126 7 4 57.1 0.2947

8 41 21 51.2 0.0671

70 6 3 50.0 0.4431

21 79 37 46.8 0.0431

25 24 10 41.7 0.4146

37 12 5 41.7 0.566

9 101 41 40.6 0.1273

23 6 2 33.3 1

5 91 29 31.9 0.8248

1 19 6 31.6 1

12 21 6 28.6 1

64 7 2 28.6 1

36 24 6 25.0 0.8289

24 47 11 23.4 0.5296

4 175 37 21.1 0.0592

0 334 69 20.7 0.0063

86 5 1 20.0 1

2 150 26 17.3 0.0087

6 61 10 16.4 0.0845

32 56 9 16.1 0.0985

15 44 6 13.6 0.0627

79 10 1 10.0 0.4744

18 15 1 6.7 0.1401

59 9 0 0.0 0.1286

43 8 0 0.0 0.2106

66 6 0 0.0 0.3465

For example, module 8 is enriched in multiple GO related
to photosynthesis. In particular, 33 genes out of the 41 in this
module are members of photosystem I or II, or of the light
harvesting complex (Figure 4A and Supplementary Table S3).
Other genes in this module also have functions related to
photosynthesis: CURT1A is required for a proper thylakoid
morphology (Pribil et al., 2018), while RBCS1A, RBCS3B, and
RCA are members of the Rubisco or necessary for Rubisco
light activation (Izumi et al., 2012; Carmo-Silva and Salvucci,
2013). Most edges of module 8 are observed at the transition
between night and day. This module contains 51% of genes
that are also in the averaged time course network, which could
be expected as most of the genes have very similar expression
patterns throughout the day/night cycle. In particular, all genes of
this module present in photosystem I, II, or the light harvesting
system have the same expression profile with a peak of expression
at dawn and the beginning of the day, while other genes
have different expression profiles with a peak of expression at
the beginning of the day and another one during the night
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FIGURE 4 | Modules enriched in genes involved in the photosynthesis and the glucosinolate pathway. (A) Functional analysis of modules 8 and 37. For each
module, the number of genes that are part of photosystem I (green), photosystem II (orange), the light harvesting complex (blue), or the ATP synthase (purple) is
indicated. (B) Functional analysis of module 1. Genes of the module are color coded depending on their role in the glucosinolate pathway: biosynthesis (turquoise),
transport (green), or regulation (orange). Genes previously identified as co-expressed with glucosinolate biosynthesis genes are also indicated (gray). On the right
side, the glucosinolate biosynthesis pathway is shown with an indication of the number of genes present in module 1 at each step of the pathway.

(Supplementary Figure S6a). Also, we find that these other genes
are at the periphery of module 8 (Supplementary Figure S6b),
which highlights that these genes are less well correlated with
the dense core of highly correlated photosystem genes in the
center of the network. Another module enriched in GO related
with photosynthesis is module 37 (Supplementary Table S2), in
which nine out of the 12 genes are chloroplast genes, some being
present in photosystem I or II, in the Cytochrome b6/f complex,
or in the ATP synthase (Figure 4A and Supplementary Table S3).
Genes in module 37 are mainly expressed at the beginning of the
day. These results suggest that the expression of genes involved
in photosynthesis is co-regulated, not only over time but also
between plants at a given time.

Module 71 is enriched in GO related to DNA packaging
(Supplementary Table S2) and is in fact only composed of

histones, including two variants of H2A, two variants of H2B,
and H3.1 (Supplementary Table S3). None of the genes in this
module are HVGs, and seven out of eight genes are also present
in the averaged time course network.

Module 1 is enriched in GO related to glucosinolate
(Supplementary Table S2). We find that 16 out of 19 genes
of the module are in the glucosinolate biosynthesis pathway,
transporters of glucosinolate, or TFs regulating the pathway
(Figure 4B and Supplementary Table S3). All genes in module
1, except one, were previously identified as co-expressed, in a
previous study of the glucosinolate pathway (Wisecaver et al.,
2017). Among the genes that are not known to be involved in
glucosinolate biosynthesis, but are co-expressed with it, AKN2
is regulated by the MYB TF also regulating the glucosinolate
pathway (Yatusevich et al., 2010). AKN2 is involved in sulfate
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assimilation, which is linked to glucosinolate metabolism
(Yatusevich et al., 2010). It thus makes sense that AKN2 is co-
expressed with genes of the glucosinolate biosynthesis pathway.
Most edges of module 1 are observed during the day, which is
when the genes in the module are more expressed. Also, 15 out of
the 19 genes of the modules are HVGs.

Module 43 is enriched in GO related to flavonoid metabolism
(Supplementary Table S2), with six out of eight genes shown to
be involved in flavonoid biosynthesis (Saito et al., 2013). Among
the other genes, AT4G22870 has not been shown to be involved
in the flavonoid pathway, and our result suggests that it might
have a role in this pathway. It is a protein of the 2OG and Fe(II)-
dependent oxygenase superfamily. We also find that all the genes
in module 43 are HVGs. Most edges of the module are observed
during the day, and the genes in the module have very similar
expression patterns throughout the time course with a peak of
expression at the beginning of the day and another one at the
end of the day. However, none of the genes in module 43 are also
present in the averaged time course network.

Overall, we find that several modules in the variability network
are functionally relevant, with modules showing enrichment
for functions such as photosynthesis, DNA packaging, and
glucosinolate or flavonoid metabolism, even in the absence
of genetic and environmental perturbations. Moreover, we
could identify a potential role in the enriched pathways for
some genes, based on their co-expression with other genes in
the same module.

Identification of New Targets for GI, PIF4,
and PRR5
To go further in the functional analysis of the modules, we
looked for enrichment of targets of transcriptional regulators in
the modules. We focused on transcriptional regulators for which
ChIP-seq was performed under similar conditions (seedlings
grown in day/night cycles) and for which a list of target
genes have been previously published (Pfeiffer et al., 2014;
Zhang et al., 2014; Liu et al., 2016; Nohales et al., 2019). We
define, as targets, genes that are in proximity to regions where
transcriptional regulators are binding to the DNA (ChIP-seq
peaks), without considering if they are misregulated in the
mutant for the transcriptional regulator. This way, we identified
an enrichment in modules for targets of the TFs SPL7, PIF4, and
PRR5, and of the transcriptional regulator GI (Supplementary
Table S4). For example, all 41 genes in module 8 are SPL7
targets (Supplementary Table S4) (Zhang et al., 2014). This
is significantly more compared to the entire network in which
244 genes are SPL7 targets (14%). SPL7 targets have been
previously shown to be enriched in multiple GO terms, including
photosynthesis (Zhang et al., 2014), in agreement with the
predominant role in photosynthesis of genes in this module 8.

Targets for GI have been identified genome-wide, even if it
does not bind directly to the DNA. We find that six out of seven
genes in module 64 are targets of GI (Supplementary Table S4
and Figure 5A). This is more compared to the entire network
in which 394 genes are GI targets (22%). To explore more in
detail GI binding at the genes in module 64, we downloaded the
ChIP-seq data, mapped it on the Arabidopsis thaliana genome,
and looked at the ChIP-seq signal for GI at all the seven genes

of module 64 (Nohales et al., 2019). We find a strong signal
for the GI ChIP-seq at the promoter of the six genes that were
already identified as GI targets (Figure 5A). Interestingly, the
signal for GI at the seventh gene, AT1G03630, not previously
described as a GI target, is equally strong at the promoter of
the gene (Figure 5A). This result indicates that AT1G03630 is
also a target of GI, even if it has not been previously identified
as such. AT1G03630, or PORC, encodes for a protein with
protochlorophyllide oxidoreductase activity that is NADPH- and
light-dependent (Gabruk et al., 2015).

Another TF with enriched targets in some modules is PIF4.
We find that three out of the five genes (60%) in module 86 are
PIF4 targets (Supplementary Table S3 and Figure 5B), while
only 305 genes in the full network are PIF4 targets (17.6%). To
explore more in detail PIF4 binding at the genes in module 86,
we downloaded the ChIP-seq data, mapped it on the A. thaliana
genome, and looked at the ChIP-seq signal for PIF4 at all the
five genes of module 86 (Pfeiffer et al., 2014). We observe a
strong signal for the PIF4 ChIP at the promoters of the three
known targets in module 86 (Figure 5B). We also see a clear
signal for the PIF4 ChIP for the two other genes in module 86,
AT4G26542 and AT5G55730, suggesting that they are also targets
of PIF4 (Figure 5B). AT4G26542 is an anti-sense transcript
for AT4G26540. AT5G55730 (FLA1) encodes a fasciclin-like
arabinogalactan-protein 1 (Johnson et al., 2011).

Finally, we find an enrichment for PRR5 targets in modules
8 and 21 with, respectively, 78 and 70% of genes in the module
that are PRR5 targets (Liu et al., 2016). For comparison, 27% of
all genes in the network are PRR5 targets. To explore more in
detail PRR5 binding at the genes in module 8, we downloaded
the ChIP-seq data, mapped it on the A. thaliana genome, and
looked at the ChIP-seq signal for PRR5 at all the 41 genes of
module 8 (Nakamichi et al., 2012). We find a strong ChIP-seq
PRR5 signal at the 32 target genes in module 8, and a similarly
strong signal for most of the other nine genes in the module that
were not listed as a PRR5 target (Supplementary Figure S7a).
In order to look for PRR5 targets, and to expand the analysis
to other modules, we re-identified peaks for the PRR5 ChIP-
seq and looked for PRR5 targets in the modules with a high
proportion of already described PRR5 targets (Supplementary
Table S4). This way, we identified five additional PRR5 targets
in module 8, and nine additional PRR5 targets in module 21.
When combining the PRR5 targets from both analyses, the total
percentage of PRR5 targets is 90% in module 8, and 83% in
module 21 (Supplementary Figure S7b). These results suggest
that most, if not all, genes in modules 8 and 21 are in fact PRR5
targets. PRR5 is a core component of the circadian clock. To test
if genes in modules 8 and 21 might be regulated by the circadian
clock, we analyzed other TFs involved in the circadian clock:
PRR7 (Liu et al., 2016), PRR9 (Liu et al., 2016), TOC1 (Liu et al.,
2016), LUX (Ezer et al., 2017), and CCA1 (Kamioka et al., 2016).
We found the strongest enrichment in modules 8 and 21 for PRR7
targets (53 and 32%, when 3.9% of all genes are PRR7 targets). On
the other hand, none of the modules were strongly enriched in
targets for CCA1 or TOC1 (Supplementary Table S4). We did
not analyze enrichments for targets of PPR9 and LUX as only
nine targets of PRR9 and two targets of LUX are present in
the network. This result suggests that modules 8 and 21 could
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FIGURE 5 | Additional TF targets can be identified using TF target enrichment in modules. (A) Analysis of GI transcriptional regulator targets on module 64: six of the
seven genes in module 64 are known targets of GI (left). IGV screenshot showing the signal for the GI ChIP-seq (right) at a known GI target (top) and for the seventh
gene in module 64 that is not known as a GI target (bottom). (B) Analysis of PIF4 TF targets on module 86: three of the five genes in module 86 are known targets of
PIF4 (left). IGV screenshot showing the signal for the PIF4 ChIP-seq (right) at a known PIF4 target (top) and for the two other genes in module 86 that are not known
as a PIF4 target (bottom).

be regulated by several PRR TFs, but probably not by other
circadian clock TFs.

Overall, we find that some modules are enriched for targets
of several transcriptional regulators and that this enrichment
can be used to identify additional targets for the transcriptional
regulator in the modules showing enrichment for its targets.

DISCUSSION

In this work, we have analyzed gene co-expression networks
inferred using expression data generated in the absence of genetic
and environmental perturbations. To do this, we made use of
an already published dataset of transcriptomes performed on
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single seedlings that were grown in the same environment. We
showed that genes do not need a high level of gene expression
variability between seedlings to be able to integrate them in the
network (Table 1). Moreover, we find that modules identified
in this network are biologically relevant, as several are strongly
enriched in GOs (Figure 4) and in targets of transcriptional
regulators (Figure 5). Based on these enrichments, we speculated
that AT4G22870 could also have a role in flavonoid metabolism
and identified new targets for the transcriptional regulators
GI, PIF4, and PRR5.

We find that it is possible to infer gene co-expression networks
using transcriptomes of genetically identical plants of the same
age grown in the exact same environment. This is in agreement
with previous work, where co-expression networks have been
inferred on transcriptomes generated on individual plants and
for which genetic and environmental effects have been removed
in silico (Bhosale et al., 2013). We also find an interesting topology
of the network with some modules more connected with one
another and that connected modules share similar characteristics
in terms of percentage of edges detected during the day or
night, and percentage of HVGs (Figure 3 and Supplementary
Figure S8). We observe that modules have either a high or
low percentage of HVGs, but rarely a mix of HVG with non-
HVGs. This suggests that some pathways are more variable
than others. We find that, in general, modules with genes
involved in the response to the environment are also composed
of a high percentage of HVGs. This is the case, for example,
for module 37, enriched in photosynthesis (100% of HVGs);
module 43, enriched in flavonoid metabolism (100% of HVGs);
or module 1, enriched in glucosinolate metabolism (78% of
HVGs). Flavonoids are secondary metabolites and have been
shown to be involved in many biotic and abiotic responses in
plants (Tohge et al., 2017). Glucosinolates are involved in the
response to pathogens (Burow et al., 2010). In agreement with
our observation, previous work showed that HVGs are usually
involved in the response to the environment (Newman et al.,
2006; Yin et al., 2009; Hirao et al., 2015; Gasch et al., 2017; Cortijo
et al., 2019). In particular, plant-to-plant variability has already
been observed for glucosinolates (Mönchgesang et al., 2016),
showing that the variability in expression we observe for genes
involved in this pathway can lead to differences in glucosinolate
content between plants.

Like for Bhosale et al. (2013), we find that the modules of the
network identified in the absence of genetic and environmental
perturbation are biologically relevant and can be used to
speculate new gene function or regulation. We only explored the
function for the most obvious GO enrichment in modules as GO
can be sparse for some functions and many genes do not have a
GO. For example, module 43 is enriched in genes involved in the
flavonoid pathway. We speculate that AT4G22870, a member of
this module, is also involved in the flavonoid pathway. To support
our suggestion, AT4G22870 codes for a protein of the 2OG and
Fe(II)-dependent oxygenase superfamily, and three 2OG- and
ferrous iron-dependent oxygenases have been previously shown
to be involved in flavonoid biosynthesis (Saito et al., 2013). Most
importantly, this new potential candidate gene could not have
been detected by analyzing the network inferred using day/night

environmental fluctuations as none of the genes in module 43 are
also present in the averaged time course network.

We find several modules with enrichment for genes involved
in photosynthesis, particularly modules 8 and 37. The main
distinction between these two modules is that module 8 is
composed of genes from the nuclear genome, while module 37
is mainly composed of genes from the chloroplast genome. Our
approach was not designed to specifically identify and separate
genes from different organelles, suggesting that genes from the
nuclear and chloroplast genomes involved in photosynthesis
vary differently in expression between seedlings. Our result is
in agreement with the fact that organelle functional modules
can be detected in A. thaliana (Penga et al., 2016). However,
genes that are not from the nuclear genome are usually ignored
in network analysis, and it would be of interest to integrate
them in the future.

Finally, we identified enrichment for targets of the
transcriptional regulators GI, PIF4, and PRR5 in different
modules and used this enrichment to highlight new targets. We
find that in most cases, when a module is enriched in targets for
a transcriptional regulator, the remaining genes of that module
are also targets of this regulator. By reanalyzing the ChIP-seq
data for PRR5, we could increase the percentage of targets in
modules already showing a strong enrichment. This result shows
the double interest of combining co-expression networks with
ChIP-seq data (Chen et al., 2018; Kulkarni and Vandepoele,
2019). On the one hand, ChIP-seq data add information about
the regulation of genes in the co-expression network. On the
other hand, the co-expression network is a good way to focus
on some of the targets of the TF to better understand their
regulation and also to detect extra targets. In the case of PRR5,
we find that 90% of the genes in module 8 are targets of this TF.
Genes in module 8 are involved in photosynthesis. This is in
agreement with the fact that the circadian clock, of which PRR5
is a core member, has been shown to regulate the photosynthesis
(Harmer et al., 2000; Schaffer et al., 2001; Dodd et al., 2014).

The functional characterization of the network has been
restricted to some modules with obvious GO enrichments and
to transcriptional regulators for which ChIP-seq data and lists
of targets were available and performed in similar conditions.
However, this network, being the first to be performed in the
absence of genetic and environmental fluctuation, could bring
further information on other pathways we have not explored in
this paper. Moreover, our approach could reveal co-regulations
that might not be detected using environmental perturbations, as
shown by the fact that the variability network provided additional
co-expression relationships that were not detected in a network
inferred on the same dataset using expression fluctuations caused
by the day/night cycle. That is why we encourage readers to look
at the modules for their genes or pathway of interest and have
developed an interactive website where readers can do so1.

We show that most genes in the network are not HVGs
(Table 1), showing that high gene expression variability between
seedlings is not needed to be able to detect co-expression. These
results indicate that we are not in the presence of random

1https://jlgroup.shinyapps.io/VariabilityNetwork/
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fluctuation in expression, or noise, but that pathways are slightly
differently regulated in individual seedlings even if the plants
are in the same environment. Our approach uses these small
differences between seedlings that might be caused by micro-
environmental fluctuation or a different state of the plant caused
by internal factors. It indicates that plants are very sensitive
to minor changes in their environment and that we could
harness this sensitivity to better understand gene expression
regulation. Phenotypic differences have been observed between
genetically identical plants grown in the same environment
(Paxman, 1956; Sakai and Shimamoto, 1965; Hall et al., 2007;
Forde, 2009; Jimenez-Gomez et al., 2011; Mönchgesang et al.,
2016), indicating that the changes in expression of pathways
we highlight here might be physiologically relevant (Cortijo
and Locke, 2020). It shows that it is not necessary to perform
experiments in very different environmental conditions to
identify co-expression networks that could be relevant to the
studied pathway. This is particularly true for crops growing
in outdoor fields, like very recently shown in maize (Felipe
Cruz et al., 2020). Strong fluctuations (mutants, over-expressors,
and environmental fluctuations) could potentially affect a big
part of the transcriptome that could mask some co-expressions
of interest showing the usefulness of our approach in some
contexts. Our work shows the interest in harnessing gene
expression variability between genetically identical individual
plants in order to better understand gene regulation in a
context where differences between plants are not known and
probably very subtle.

MATERIALS AND METHODS

Transcriptome Data
The transcriptomes we used were already published [GSE115583
(Cortijo et al., 2019)] and performed on single seedlings, for a
total of 14 seedlings per time point every 2 h over a 24-h cycle.
Expression levels and corrected variability levels for all genes
were downloaded from https://jlgroup.shinyapps.io/AraNoisy/,
as these data had already been corrected as previously described
(Cortijo et al., 2019).

Network Construction
Variability Network
For each of the 12 time points (0, 2, 4, . . . 22 h), we calculated
the Spearman correlation between every pair of genes, using
their expression profiles across the 14 seedlings (Figure 1A).
Using a Benjamini–Hochberg correction with a false discovery
rate of 10%, the most significant correlations were selected and
further filtered by only considering those for which a significant
correlation appeared in four consecutive time points (with one
gap allowed, e.g., 8, 10, 14, and 16 h). These correlations
form the edges of the variability network. We also calculated
a version of the network using a filter that only required
three consecutive time points and calculated network modules
using the same community detection algorithm. As can be seen
in Supplementary Figure S1, similar modules with a similar
overall connectivity between them are found, which confirms the

robustness of the modules in our original network. All network
analysis was carried out using the Python NetworkX and python-
louvain libraries.

Averaged Time Course Network
For the averaged time course network, we calculated the mean
expression across all seedlings for every time point, generating
a time series of average expression for every gene. We again
calculated the Spearman correlations for every pair of genes and
generated a network by applying the Bonferroni correction as a
(highly conservative) significance cutoff. This yielded a network
that was similar in size to the variability network. All network
analysis was carried out using the Python NetworkX and python-
louvain libraries.

Community Detection
The Louvain community detection algorithm (Blondel et al.,
2008) was used to identify modules in the networks. This
algorithm attempts to maximize the modularity of the network
by searching the space of network partitions. Due to the size
of the search space, it is unable to find the global maximum.
The composition of modules may therefore (as with most
community detection algorithms) vary somewhat between runs
of the algorithm.

RT-qPCR
Col-0 WT A. thaliana seeds were sterilized, stratified for 3 days
at 4◦C in the dark, and transferred for germination on solid 1/2X
Murashige and Skoog (MS) media at 22◦C in long days for 24 h.
To reduce the level of phenotypic variation between plants, we
selected the seeds that were at the same stage of germination
with a binocular microscope and transferred them into a new
plate containing solid 1/2X MS media. Seedlings were grown in
a conviron reach-in cabinet at 22◦C and 65% humidity, with
12 h of light (170 µmoles) and 12 h of dark. After 7 days of
growth, 16 individual seedlings were harvested at ZT6 and at
ZT14 into a 96-well plate and flash-frozen in dry ice. All seedlings
harvested in a given time point were grown in the same plate.
Total RNA was isolated from one seedling. We assessed RNA
concentration using Qubit RNA HS assay kit. cDNA synthesis
was performed on 700 ng of DNase-treated RNA using the
Transcriptor First-Strand cDNA Synthesis Kit. RT-qPCR analysis
was performed in the LightCycler 480 instrument using LC480
SYBR green I master, on 0.4 µl of cDNA in a 10-µl reaction.
Gene expression relative to two control genes (SandF and PP2A)
was measured (see Supplementary Table S5 for the list of primers
used for RT-qPCR).

GO Term Enrichment
We used the Ontologizer (Bauer et al., 2008) command line
tool with Bonferroni multiple-hypothesis correction to perform
GO term enrichment analysis of the network modules. Only the
significantly enriched non-redundant GO are shown.

ChIP-seq Data and Analysis
ChIP-seq data were downloaded from GSE45213 for
SPL7 (Zhang et al., 2014), from GSE129865 for GI
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(Nohales et al., 2019), from GSE43286 for PIF4 (Pfeiffer
et al., 2014), and from GSE36361 for PRR5 (Liu et al., 2016).

Reads were aligned to the TAIR10 genome using
Bowtie2 (Langmead et al., 2009) and Picard tools were
used to remove potential optical duplicates2. Peak calling
was performed using MASC2 (Zhang et al., 2008),
with the corresponding INPUT used as a reference.
The Integrative Genomics Viewer (IGV; Robinson
et al., 2011) was used to show snapshots of ChIP-seq
signal around targets.
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Supplementary Figure 1 | Expression in seedlings of genes in module 1, from
the RNA-seq data, with one line per gene. Expression is mean
normalized for each gene.

2https://github.com/broadinstitute/picard

Supplementary Figure 2 | Comparison of edges in modules detected in the
networks containing edges present in three or four consecutive time points.
Modules detected in the network based on edges present in at least three
consecutive time points are shown in blue. Modules detected in the network
based on edges present in at least three consecutive time points are shown in red.
For the later, the percentage of edges of the modules that are also detected in the
blue modules is indicated.

Supplementary Figure 3 | Number of edges in the final network that are
detected in each time point, for every module containing at least five
genes.

Supplementary Figure 4 | (A) Correlation in expression between seedlings for
genes of the module 1 and module 21, for the RNA-seq experiment. AT5G07690
at ZT14 was removed as it is not expressed. (B) Correlation in expression
between seedlings for genes of the module 1 and module 21, based on an
RT-qPCR replicate of the RNA-seq experiment. Sixteen seedlings where
harvested at ZT6 and at ZT14. (C) Normalized expression level in the fourteen
seedlings for the genes of the module 21, from the RNA-seq data. Expression
level for AT4G13250 is shown as the x axis while expression for the other
genes of the module is shown on the y axis. Expression is mean normalized for
each gene.

Supplementary Figure 5 | (A) Inter-individual gene expression variability profiles
throughout the time course for genes in each module with five genes or more.
Each line represents the corrected variability level for one gene:: corrected
CV2 = [log2(CV2/trend)], with CV2 = variance/(average2)] (see Cortijo et al., 2019).
Modules are ordered by the percentage of HVG (high to low). Modules highlighted
in blue contain 75% or more of HVGs. Modules highlighted in red contain 10% or
less of HVGs. (B) Heatmap of normalized gene expression for genes in modules
2, 6 (less than 15% HVG), module 4 (55% of HVG), and modules 15 and 24 (more
than 85% of HVG). Expression is shown in single seedlings from the time point
ZT20. Expression is mean normalized: expression in a seedling/averaged
expression in all seedlings. The left color coded bar indicates the
module of each gene.

Supplementary Figure 6 | (A) Expression profiles throughout the time course for
genes in module 8. Each line represents the normalized expression (z-score) for
one gene. Genes of the photosystem I, II, or the light harvesting system are in
blue. (B) All edges and nodes of module 8. Genes of the photosystem I, II, or the
light harvesting system are in blue.

Supplementary Figure 7 | (A) Analysis of PRR5 TF targets in the module 8. 32 of
the 41 genes in the module 8 are known targets of PRR5 (left). IGV screenshot
showing the signal for the PRR5 ChIP-seq (right) at a known PRR5 target (top)
and for a gene in the module 8 that is not known as a PRR5 target (bottom). (B)
Comparison of published (blue) and realized (gray) PRR5 targets in modules 8
(left) and 21 (right).

Supplementary Figure 8 | Organization of modules in the network, with the size
of circles representing the module size (i.e., number of edges). Number of edges
connecting the modules are represented by the thickness of the lines between
modules. (A) Most enriched GOs are written in each module. (B) Modules are
color coded based on the percentage of edges in the averaged time course
network. Dark blue modules have a high percentage of genes in the averaged
time course network while light blue modules have a low percentage of genes in
the averaged time course network.

Supplementary Table 1 | List of genes in each module.

Supplementary Table 2 | GO enriched (corrected p-value < 0.5) in each
module.

Supplementary Table 3 | Function of genes in modules 1, 43, and 71.

Supplementary Table 4 | Number and percentage in the modules of targets for
the TFs SPL7, GI, PIF4, and PRR5.

Supplementary Table 5 | List of primers used for RT-qPCR.
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