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Numerous quantitative trait loci (QTLs) have been identified for wheat quality; however,
most are confined to low-density genetic maps. In this study, based on specific-locus
amplified fragment sequencing (SLAF-seq), a high-density genetic map was constructed
with 193 recombinant inbred lines derived from Chuanmai 42 and Chuanmai 39. In total,
30 QTLs with phenotypic variance explained (PVE) up to 47.99% were identified for
falling number (FN), grain protein content (GPC), grain hardness (GH), and starch pasting
properties across three environments. Five NAM genes closely adjacent to QGPC.cib-
4A probably have effects on GPC. QGH.cib-5D was the only one detected for GH with
high PVE of 33.31–47.99% across the three environments and was assumed to be
related to the nearest pina-D1 and pinb-D1genes. Three QTLs were identified for FN
in at least two environments, of which QFN.cib-3D had relatively higher PVE of 16.58–
25.74%. The positive effect of QFN.cib-3D for high FN was verified in a double-haploid
population derived from Chuanmai 42× Kechengmai 4. The combination of these QTLs
has a considerable effect on increasing FN. The transcript levels of Basic 7S globulin
and Basic 7S globulin 2 in QFN.cib-3D were significantly different between low FN
and high FN bulks, as observed through bulk segregant RNA-seq (BSR). These QTLs
and candidate genes based on the high-density genetic map would be beneficial for
further understanding of the genetic mechanism of quality traits and molecular breeding
of wheat.
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INTRODUCTION

Wheat (Triticum aestivum L.) is an important cereal crop,
being one of the main sources of food for approximately
35% of the world’s population (FAOSTAT, 2013; Curtis and
Halford, 2014; Liu J. et al., 2017). Currently, wheat is widely
consumed and processed into bread, noodles, cakes, pasta, beer,
and other products. Enhancement in the quality and yield of
wheat has significant impacts on food security and human
health. Improving end-use quality to meet the increasing market
demand is becoming a critical topic in crop sciences (Kong
et al., 2013; Amiri et al., 2018). The quality traits of wheat
are controlled by many genes and are easily influenced by
the environment. Quantitative trait locus (QTL) analysis and
genome-wide association studies are regarded as useful tools
for understanding the genetic mechanism and for identifying
markers for marker-assisted selection (MAS) of quantitative
traits of wheat.

Grain hardness (GH), which defined endosperm texture, is the
most important determinant for wheat quality and classification
(Pasha et al., 2010). Difference in GH is suggested to be due
to the continuity of the protein matrix and the strength with
which it physically entraps starch granules (Pomeranz and
Williams, 1990). Changes in GH affect milling, baking, and
other end-use applications of wheat. Hard wheat is suited for
fermented products such as bread, because starch granules were
liable to be broken under stronger grinding forces, and these
broken starch granules with higher water-absorbing capacity
and enzymatic digestion rate are beneficial for yeast growth
and fermentation (Henry, 1996; Pasha et al., 2010). In contrast,
for soft wheat, more intact starch granules remain during the
milling process; soft wheat is usually used in the production
of biscuits, cakes, pastries, and confectionaries. The major QTL
for GH is located at the Ha loci of chromosome 5DS (Mattern,
1973; Law et al., 1978). Pina-D1 and Pinb-D1 genes are close
to the Ha loci, encoding “friabilin,” which is an endosperm-
specific lipid-binding protein that has been proven to largely
determine the GH of wheat (Morris, 2002). However, up to
40% of the variation in GH was due to other unknown factors
(Weightman et al., 2008).

Grain protein content (GPC) is another key factor
determining the nutritional value and end-use quality of
wheat. For example, wheat with higher GPC is suitable for
making bread, pasta, and yellow alkaline Chinese noodles
(Ramen); however, for white-salted Japanese noodles (Udon),
wheat flour with low or moderate GPC is preferred (Distelfeld
et al., 2008). In general, GPC is a complex trait controlled by
multiple quantitative QTL/genes (Tsilo et al., 2010; Simons
et al., 2012; Kumar et al., 2018) and largely influenced by
the environment (Chope et al., 2014; Fatiukha et al., 2019).
Approximately 367 QTLs identified for GPC have been mapped
on all chromosomes of wheat, explaining the phenotypic
variance of 0.6–66%. Most major QTLs have been detected on
chromosomes 2A, 2B, 3A, 4A, 6B, 7A, and 7B (Kumar et al.,
2018). Gpc-B1 on chromosome 6BS, explaining up to 66% of
the phenotypic variation for GPC (Olmos et al., 2003), was
further fine mapped to an NAC transcription factor (NAM-B1),

which affects nutrient remobilization (Uauy et al., 2006), is an
important QTL, and is deployed in several breeding programs
(Kumar et al., 2018).

The Hagberg falling number (FN), which reflects α-amylase
activity in mature grains and simulates the rheological properties
of starch in cooking, is an important grading index for wheat
quality. Wheat flour with excessively low FN (LFN) related to
higher α-amylase activity usually produces a sticky dough and
discolored and poorly structured loaves (Zhang et al., 2014;
Newberry et al., 2018). Elevated levels of α-amylase activity in
mature grains are usually associated with preharvest sprouting
(PHS) and late maturity α-amylase (LMA), which downgrades
the grain (Munkvold et al., 2009). PHS refers to grain germination
in the spikes of the mother plant before harvest especially
during rainy days, which reduces not only the yield, but also
nutrition and industry quality (Gubler et al., 2005; Newberry
et al., 2018). LMA is a genetic defect with the characteristic of a
single α-amylase isoform 1 (α-Amy-1) during later stages of grain
development (Mares and Mrva, 2008; Newberry et al., 2018).
QTLs for PHS and LMA rated by FN were mapped to almost
all wheat chromosomes (Zanetti et al., 2000; Groos et al., 2002;
Osa et al., 2003; Kulwal et al., 2004, 2011; Mares et al., 2005; Mori
et al., 2005; Kottearachchi et al., 2006; Fofana et al., 2008; Mohan
et al., 2009; Munkvold et al., 2009; Jaiswal et al., 2012; Cabral et al.,
2014), of which most QTLs were distributed on chromosome 3A,
3B, 3D, 6B, 7B, 4A, and 4B and were related to plant height, grain
color, and grain dormancy. However, the mechanism for PHS and
LMA remains unclear, with few genes cloned.

Starch pasting properties usually receive far less attention than
other quality traits, but pasting parameters measured by rapid-
viscosity analysis (RVA) can simulate flour changes in the cooking
process and are closely associated with Asian noodle and steamed
bread quality (Zhang et al., 2005; Jin et al., 2016). The Wx gene
located on chromosomes 7A, 4A, and 7D responsible for amylose
synthesis has large effects on starch pasting properties (Nakamura
et al., 1993; Hung et al., 2007; Blazek and Copeland, 2008; Jin
et al., 2016). Although many QTLs for pasting properties were
detected on all chromosomes (Bao et al., 2000; Kuchel et al., 2006;
Zhao et al., 2009; Deng et al., 2015; Wang et al., 2017), few key
genes have been cloned and characterized.

Thus, although many QTLs have been identified to determine
the genetic basis of quality traits in wheat, the average distances
of most genetic maps are too large, or markers are mainly
distributed on partial regions of chromosomes. Therefore, rare
genes were cloned based on QTL analysis, and few molecular
markers can be developed for MAS in wheat breeding. Therefore,
high-density genetic maps are necessary for the genetic dissection
of complex quality traits of wheat.

High-throughput single-nucleotide polymorphism (SNP)
genotyping plays an important role in constructing high-density
genetic maps of wheat (Wang et al., 2014; Maccaferri et al., 2015).
Specific-locus amplified fragment sequencing (SLAF-seq) based
on restriction-site associated DNA tag sequencing (RAD-seq)
was developed for economic and efficient high-throughput SNP
discovery (Sun et al., 2013; Qi et al., 2014). SLAF-seq can provide
abundant InDel and SNP markers and has been applied in high-
density genetic map construction and candidate functional gene
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identification for many species in recent years (Zhang et al.,
2013; Han et al., 2019; Ma et al., 2019; Sun et al., 2019; Zhuang
et al., 2019; Wang et al., 2020). In addition, for wheat, as the
genome sequencing has been completed, a predesign experiment
in SLAF-seq can be performed to evaluate restriction enzymes
and sizes of restriction fragments, which have improved the
efficiency of SLAF-seq. SLAF-seq has been mainly used for the
identification of desirable genes on alien chromosomes or for
yield traits such as thousand seed weight of wheat; however, there
has been no report on the quality traits of wheat based on SLAF-
seq yet (Hu et al., 2016; Li G. et al., 2016; Li Q. et al., 2016;
Yin J. L. et al., 2018).

In this study, a high-density genetic map was constructed
based on recombinant inbred lines (RILs) derived from
Chuanmai 42 and Chuanmai 39 through SLAF-seq, and QTLs
for quality traits were identified. Chuanmai 42, with high yield
and good resistance, is a backbone parent used in wheat breeding
in southwest China. Chuanmai 39 has high protein content and
strong gluten. The QTL and candidate genes would be beneficial
for MAS in wheat breeding for quality.

MATERIALS AND METHODS

Plant Materials and Field Trials
The RILs, including 193 lines derived from Chuanmai 42
(♀)× Chuanmai 39 (♂), were applied to construct genetic maps.
Chuanmai 42 is a soft and red-grained wheat with high yield and
resistance. Chuanmai 39 is a hard and white-grained wheat with
higher gluten strength. The population was grown in Shuangliu,
Sichuan Province, China, in 2016–2017 (E1) and 2017–2018 (E2),
and in Shifang, Sichuan Province, China, in 2017–2018 (E3).
The double-haploid (DH) population, including 376 lines derived
from Kechengmai 4 (♀)×Chuanmai 42 (♂), was applied for QTL
validation and was planted in Shifang, Sichuan Province, China,
in 2018–2019. Each line was planted in 2 blocks; each block was
2 m long, with three rows 30 cm apart. Crop management was
implemented according to local cultivation practices. Grains were
collected separately by each block and dried naturally. Grains
were milled using FOSS Cyclotec CT1093.

Phenotyping
Grain protein content was detected by near-infrared reflectance
spectroscopy on a Perten DA-7200 instrument (Perten
Instruments, Huddinge, Sweden). GH was determined using a
single-kernel characterization system 4100 (Perten Instruments,
Springfield, IL, United States). Grains were ground to whole
meal using a 1-mm-sieve Cyclotec mill (Foss Tecator AB,
Höganäs, Sweden). FN was measured using Falling Number
FN 1000 (Perten, Sweden). Pasting properties parameters were
analyzed by Micro Visco-Amylo-Graph (A. W. Brabender
Instruments, South Hackensack, NJ, United States) as follows:
whole meal (15 g) was suspended in distilled water (98 mL)
and 10% (m/v) AgNO3 (2 mL). The suspension was then
heated from 50◦C to 92◦C at a rate of 7.5◦C/min, held at
92◦C for 5 min, cooled to 50◦C at 7.5◦C/min, and held at
50◦C for 1 min; the rotation speed was 250 rpm. α-Amylase

activity was determined according to Whan et al. (2014) and
expressed in the Ceralpha unit per gram four as determined
by Bradford assays (Bradford, 1976) on the CERALPHA
extracts. All traits were measured for two replicates of each
block of one line.

SLAF Library Preparation and
Genotyping
Total DNA was extracted from seedlings according to the
CTAB procedure (Wang, 1997), quantified using NanoDrop 2000
(Thermo Scientific, Waltham, MA, United States), and stored at
−80◦C. SLAF library was prepared and genotyped according to
Sun et al. (2013). The DNA digestion sites and the length and
distribution of the resulting fragments were investigated using
the wheat reference genome (IWGSC RefSeq v1.01), and RsaI
was chosen as the appropriate restriction enzyme. Oryza sativa
L. was used to control SLAF library preparation. Fragments of
464–484 bp were selected to generate paired-end reads on an
Illumina HiSeq-2000 sequencing platform (Illumina, San Diego,
CA, United States) at Biomarker Technologies Corporation in
Beijing2. Then, low-quality reads (quality score B20e) were
filtered out and sorted to each line according to duplex
barcode sequences using SLAF_Poly.pl software (Biomarker,
Beijing, China). High-quality reads were barcoded, terminal 5 bp
were removed, and clean reads were mapped to the wheat
reference genome (IWGSC RefSeq v1.01) using SOAP software
(Li et al., 2008).

Genotyping was performed using the Bayesian approach to
ensure quality (Sun et al., 2013). First, a posteriori conditional
probability was calculated using the coverage of each allele
and the number of SNPs. Then, the genotyping quality score
translated from the probability was used to select qualified
markers for subsequent analysis. Low-quality markers for each
marker and each individual were counted and the worse markers
or individuals were deleted during the dynamic process. When
the average genotype quality scores of all SLAF markers reached
the cutoff value, the process was stopped. Only polymorphic
SLAF tags having full parental homozygosity (aa × bb) were
chosen. Then, high-quality SLAF markers were obtained for
high-density linkage map construction referring to the following
filter standard. First, average sequence depths should be > 2-fold
for each line and > 4-fold for the parents. Second, markers with
more than 90% (A and B genome) or 75% (D genome) missing
data were removed. Third, markers with significant segregation
distortion (P < 0.01) were excluded.

Construction of a High Genetic Linkage
Map
Based on the genotyping results of the 193 RILs and the wheat
reference genome (IWGSC RefSeq v1.01), a genetic linkage map
including 21 linkage groups was constructed using HighMap
software (Liu et al., 2014). The genetic distances of marker and
genotypes of each RIL are listed in Supplementary Table 1.

1https://wheat-urgi.versailles.inra.fr/
2http://www.biomarker.com.cn/
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The physical positions were obtained by referring to the wheat
reference genome, and the collinearity between the genetic
and physical positions was measured using the Spearman
correlation coefficient.

QTL Mapping
Additive QTL mapping (individual environment) was performed
with the package “R/qtl” in R using Haley–Knott regression.
The significance of the mapped QTLs was determined at an
experimental probability of error P < 0.05, using genome-wide
LOD thresholds≥ 3. The best linear unbiased predictors (BLUPs)
were calculated for quality traits over different environments
using SAS. The walking step was set to 1 cM. Genetic
maps of chromosomes with significant QTL were drawn using
MapChart version 2.1.

QTL Validation
Quantitative trait loci QFN.cib-3D was selected for validation in
the DH derived from Kechengmai 4 × Chuanmai 42 containing
376 lines. As shown in Supplementary Table 2, four pairs
of primers (3D55982, 3D55956, 3D56098, and 3D56055) were
designed for QFN.cib-3D based on the four flanking SLAF
markers (SLAFs) (M56098, M56055, M56098, and M56055).
Parents and 310 lines from DH were randomly chosen for
amplification with the four pairs of primers. At least three
amplifications were applied to each line. The amplified bands
were sequenced by TSINGKE Biological Technology Company
(Beijing, China). Then, the SNP differences in the amplified
sequence were compared among parents and DH lines, to identify
the effect of QFN.cib-3D on FN.

Annotation of Genes Within QTL Region
and Comparison With Previous Studies
Flanking SLAF markers of QTLs stable in at least two
environments were used to blast against IWGSC RefSeq
v1.03 to obtain the physical locations and were compared
to previously reported QTLs. The sequences of previously
reported QTLs were obtained from GrainGenes4 or
“iwgsc_refseqv1.0_Marker_mapping_summary_2017Mar13/”
downloaded from https://urgi.versailles.inra.fr/download/iwgsc/.
Genes within the QTL region were retrieved from CDS
sequences in IWGSC_RefSeq_Annotations_v1.05. Gene function
was analyzed using UniProt, COG, GO, Swissprot, and KEGG.

Bulked Segregant Analysis by RNA-Seq
Referring to FN in three environments, 10 lines of RILs derived
from Chuanmai 42 and Chuanmai 39 with extremely high FN
(HFN) and LFN from RILs were chosen for bulk segregant RNA-
seq (BSR). Total RNA was extracted from grains at 35 days
after flowering using the TRIzol method for each chosen line.
Then, equal amounts of RNA from the 10 lines with extremely
high FN were mixed as HFN bulk, and equal amounts of

3https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies
4https://wheat.pw.usda.gov/cgi-bin/GG3/browse.cgi?class=marker
5https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations

RNA from 10 lines with extremely low FN were mixed as LFN
bulk. Two libraries including the two bulks were constructed
using the NEBNext Ultra RNA Library Preparation Kit (New
England Biolabs, United States) and sequenced through Illumina
HiSeqTM 2500 platform (Illumina, United States). Reads with
adaptors or more than 10% unknown nucleotides and low-
quality reads (> 50% bases with a quality score ≤ 20) were
removed. The filtered reads were aligned to IWGSC RefSeq v1.0
using HISAT2.0.4.

Gene expression differential display was analyzed using the
DEGseq package (version 1.18.0). The statistical significance of
differentially expressed genes (DEGs) was determined using a
combination of multiple tests and false discovery rate (FDR).
Genes with FDR < 0.05 were classified as significant DEGs. Gene
function was analyzed using UniProt, GO, KEGG, and Mapman.
GO and KEGG pathway enrichment analyses were performed
using GO Seq 2.12 and KOBAS v2.0, with FDR < 0.05.

Single nucleotide polymorphisms were obtained initially using
the GATK package (Genome Analysis Toolkit, v3.2-2; Broad
Institute, United States). These SNPs were then filtered based on
the following criteria: (1) sequencing depth for each SNP ≥ 7;
(2) SNP index of HFN and LFN is both lower than 0.3. The
SNP index value was calculated using the MutMap method (Abe
et al., 2012). Then, the 1SNP index for each SNP was calculated
through the following formula: 1SNP index = |(SNP index of
HFN bulk) - (SNP index of LFN bulk)|. The average value for the
1SNP index in the corresponding window was calculated using
a sliding window with a window size of 1 Mb and slides at a size
of 1 kb. SNPs with 1SNP index > 0.80 in candidate regions were
considered as candidate loci related to FN.

Statistical Analysis
Analysis of variance was conducted by the general linear model
using SPSS Statistics 20. The phenotypic variance of each
trait included nγσ2

G + γσ2
GE + σ2

e , where n is the number of
environments, r is the number of blocks, σ2

G is the genetic
variance, σ2

GE is the genotype × environment variance, and σ2
e

is the error variance. The entry-based broad sense heritability
(H2) was measured by H2 = σ2

G/(σ2
G + σ2

GE/n+ σ2
e/nγ). The

significance test and Pearson correlation were analyzed by
SPSS Statistics 20.

RESULTS

Phenotypic Variation of Quality Traits
Grain protein content, GH, FN, and starch pasting parameters
exhibited continuous variation in each environment, of which
GH showed a bimodal distribution (Supplementary Figure 1).
GPC, GH, and FN of the male parent Chuanmai 39 were
consistently and significantly higher than those of the female
parent Chuanmai 42 in all three environments (Table 1).
Chuanmai 42 was characterized by higher peak viscosity (PV),
through viscosity (TV), and final viscosity (FV), but no
significant difference in starch pasting parameters was found
between parents (Table 1). The RILs exhibited high variations
among these quality traits, of which GH showed the highest
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TABLE 1 | Quality traits of parents and RILs in different environments.

Trait Env Parent (mean ± SD) RILs

Chuanmai 39 Chuanmai 42 Mean ± SD Range CV

GPC (%)* E1 15.19 ± 0.39 12.11 ± 0.45 15.86 ± 1.63 12.55–20.30 10.28

E2 15.82 ± 0.00 12.47 ± 0.52 13.54 ± 1.31 10.40–17.12 9.68

E3 15.73 ± 0.55 11.82 ± 0.41 12.71 ± 1.21 9.72–16.74 9.52

FN (s)* E1 398.29 ± 20.11 282.15 ± 15.18 516.16 ± 139.96 104–969 27.12

E2 437.00 ± 10.00 293.00 ± 38.18 333.92 ± 111.84 119–756 33.49

E3 401.50 ± 13.44 301.00 ± 19.80 287.04 ± 85.32 96–466 29.72

GH* E1 70.31 ± 0.51 26.31 ± 0.34 54.45 ± 22.11 19.07–90.23 40.62

E2 75.61 ± 0.44 28.49 ± 0.32 51.44 ± 21.80 19.30–88.02 42.37

E3 73.20 ± 0.39 26.00 ± 0.33 52.70 ± 22.36 19.55–91.89 42.43

BD (BU) E1 116.61 ± 15.87 165.78 ± 16.11 181.16 ± 67.18 41–386 37.08

E2 119.50 ± 16.26 148.00 ± 15.56 149.20 ± 40.19 59–299 26.94

E3 126.00 ± 15.56 201.00 ± 16.24 161.25 ± 52.38 36–314 32.48

PT (min) E1 5.32 ± 0.15 5.32 ± 0.12 5.38 ± 0.24 5.07–7.93 4.46

E2 5.59 ± 0.12 5.52 ± 0.07 5.50 ± 0.24 5.23–8.10 4.36

E3 5.62 ± 0.12 5.67 ± 0.14 5.57 ± 0.29 5.13–8.27 5.21

PV (BU) E1 664.53 ± 15.78 823.89 ± 21.14 832.84 ± 50.27 701–1,009 6.04

E2 752.00 ± 16.97 846.50 ± 20.18 826.50 ± 72.87 562–965 8.82

E3 647.00 ± 18.54 888.00 ± 25.00 842.53 ± 74.26 527–998 8.81

SB (BU) E1 327.75 ± 38.14 376.20 ± 32.47 411.62 ± 130.67 29–591 23.93

E2 366.50 ± 25.19 359.00 ± 24.12 351.82 ± 68.58 102–639 19.49

E3 323.50 ± 24.72 433.00 ± 27.00 353.01 ± 69.72 140–538 19.75

TV (BU) E1 547.91 ± 22.57 691.13 ± 25.81 651.67 ± 63.54 508–797 9.75

E2 632.50 ± 33.21 768.00 ± 30.20 676.82 ± 79.90 352–816 11.81

E3 521.00 ± 25.45 687.00 ± 25.87 681.28 ± 84.95 385–861 12.47

FV (BU) E1 875.66 ± 19.79 1, 034.31 ± 21.46 1, 080.24 ± 87.58 537–1,218 8.11

E2 999.00 ± 20.57 1, 057.50 ± 28.31 1, 027.81 ± 85.96 700–1,197 8.36

E3 844.50 ± 25.35 1, 120.00 ± 30.21 1, 034.28 ± 76.44 712–1,230 7.39

BD, break down value; PT, peak time; SB, setback value. ∗Significant difference in quality traits between parents.

coefficient of variation (CV) across the three environments, from
40.62% (E1) to 42.37% (E3), and peak time (PT) showed the
lowest CV ranging from 4.36% (E2) to 5.21% (E3) (Table 1).

The broad-sense heritability (H2) values of FN, GH, and
GPC were 0.78, 0.71, and 0.75, respectively, which indicated that
phenotypic variations were mainly due to genetic differences,
although genotype, environment, and genotype × environment
(G × E) interaction had significant effects on all traits
(Supplementary Table 3).

The Pearson correlation was analyzed among quality
traits (Supplementary Figure 2). Higher correlation was
detected among pasting parameters especially PV, TV, and FV
(r = 0.482∗∗–0.975∗∗), in the three environments. In terms
of the correlation between pasting parameters and GPC, FN,
and GH, higher and significant correlations were found in
E1 as follows: r = 0.401∗∗–0.697∗∗, r = 0.519∗∗–0.722∗∗, and
r = 0.254∗∗–0.559∗∗. The correlation between pasting properties
and GPC and FN was slightly higher than that between pasting
properties and GH. Among these pasting properties, PT and FV
were more relevant to GPC, FN, and GH with higher correlation
coefficients (r = 0.551∗∗–0.697∗∗). In terms of the correlation
among GH, FN, and GPC, a higher and significant correlation
was found in E1. For E1, a relatively higher correlation was

detected between GH and FN (r = 0.722∗∗) than between FN and
GPC (r = 0.501∗∗) and between GPC and GH (r = 0.431∗∗).

SLAF-seq and Genotyping of RILs
Population
In total, 233.90 Gb of raw data, including 1,169.49 M pair-end
reads, were obtained by high-throughput sequencing of the SLAF
libraries. The average Q30 ratio and guanine–cytosine content
for parents and progenies were 90.61% and 43.70%, respectively
(Supplementary Table 4). A total of 397,199 high-quality SLAFs
harboring 4,448,250 SNPs were detected. After removing markers
lacking polymorphisms between parents and low-quality markers
with average sequence depths less than 4-fold, 114,140 SNPs were
retained and classified into eight segregation patterns (aa × bb,
ab × cc, cc × ab, ef × eg, hk × hk, lm × ll, nn × np). Only
aa× bb pattern including 88,234 SNPs was used for construction
of the genetic map.

Construction of a High-Density Genetic
Map Based on SLAFs
The detected 88,234 SNPs were further filtered, and 13,599 SLAFs
were retained, of which 12,674 SLAFs (93.20%) were assigned to
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21 chromosomes compared with the reference genome IWGSC
RefSeq v1.0. The genetic map spans 2,859.94 cM with an average
interval of 0.23 cM (Supplementary Table 5). The average
distance between markers of each chromosome was lower than
1 cM, except for chromosomes 1D and 6D (Supplementary
Table 5). The average marker densities of chromosomes 1B and
1D was highest (0.05 cM) and lowest (1.11 cM), respectively
(Supplementary Table 5). A total of 93 markers (0.73%) showed
segregation distortion at a significance level of P < 0.01. These 93
distorted markers were distributed on chromosomes 6B (50), 5B
(19), 2B (9), 2A (8), 2D (5), and 6A (2).

The A genome included 3,759 SLAFs (29.66%), covering
859.89 cM with an average marker density of 0.30 cM. The
B genome contained 6,887 SLAFs (53.96%) and spanned
1,022.87 cM with an average interval of 0.20 cM, and the D
genome included 2,386 SLAFs (15.89%) covering 977.18 cM
with an average interval of 0.66 cM (Supplementary Table 5).
SLAFs are concentratedly distributed on the B genome, and
unfortunately, the polymorphisms detected in the D genome
were still relatively low.

Collinearity analysis results of the SLAFs between the genetic
map and the physical map of wheat are shown in Figure 1
and Supplementary Figure 3. The average Spearman correlation
coefficient of 21 chromosomes was 0.96 (Supplementary
Table 6). This indicated that the genetic map constructed by
SLAFs had a sufficient coverage over the wheat genome, and the
majority of SLAFs on the linkage map were of the same order as
those on the corresponding chromosomes of the physical map of
the wheat genome.

Additive QTL Analysis for Quality Traits
A total of 30 QTLs were identified for FN, GPC, GH, and
starch pasting properties (Table 2, Supplementary Table 7, and
Figure 2). Most QTLs were distributed on chromosome 5D (5),
followed by 3D (3), 3B (3), 2D (3), 2A (3), and 1A (3) (Table 2,
Supplementary Table 7, and Figure 2). Five of the 30 QTLs
were stable in at least two environments also detected by the
BLUPs (Table 2 and Figure 2). The average phenotypic variance
explained (PVE) by individuals of the 5 QTLs varied from 4.32%
to 25.74% (Table 2).

For FN, the number of QTLs (8) and major or stable QTLs
(3) detected were much higher than other quality traits (Table 2
and Supplementary Table 7). All QTLs conditioned higher FN
value through Chuanmai 39 alleles except QFN.cib-3D, with
PVE ranging from 2.85 to 25.74% (Table 2 and Supplementary
Table 7). Three QTLs on chromosomes 3A, 2B, and 3D could be
detected in two environments and by BLUP, of which QTL qFN-
3D.1 and qFN-3D.2 had the highest PVE of 16.58%–25.74% with
additive effects ranging from 25.57 to 56.63 s (Table 2).

Five QTLs were detected for GPC, of which only QGPC.cib-
4A located on chromosome 4A was detected in all three
environments and by BLUP, explaining 5.11–12.24% phenotypic
variations (Table 2 and Supplementary Table 7). All these QTLs
resulting in higher GPC content were contributed by Chuanmai
39 alleles (Table 2 and Supplementary Table 7).

Only one QTL located on the ends of chromosome
5D (QGH.cib-5D) was detected for GH with PVE reaching

33.31–47.99% (Table 2). This QTL contributing to harder grains
with a hardness index increase by 13.17–15.62 was derived from
Chuanmai 39 alleles and was stable in all three environments and
detected by BLUP (Table 2).

In total, 16 QTLs with a PVE of 1.89-17.38% were detected
for starch pasting parameters except FV, including 5, 2, 1, 6,
and 2 QTLs for PV, TV, PT, BD, and SB, respectively, but
no one stable QTL was detected in at least two environments
(Supplementary Table 7).

A QTL cluster on chromosome 4D was simultaneously
identified for FN (QFN.cib-4D) and PV (QPV.cib-4D), with PVEs
of 2.85–3.45% and 6.39–6.84% (Table 2, Supplementary Table 7
and Figure 2). Another QTL cluster located on chromosome
5D, including QFN.cib-5D.1, QGH.cib-5D, and QPV.cib-5D,
was simultaneously identified for FN, GH, and PV, explaining
14.31–22.93%, 33.31–47.99%, and 6.78% of phenotypic variance,
respectively (Table 2, Supplementary Table 7, and Figure 2).

Effects of QTL Combination on FN
To determine the combination of three major or stable QTLs
(QFN.cib-3A, QFN.cib-2B, and QFN.cib-3D) on FN, the RILs
were grouped into eight genotypes by using the flanking markers
for each QTL (Figure 3A). Each genotype represents one QTL
combination, which refers to a group of alleles from different loci
that are inherited from parents and expressed in the progeny.
Genotypes containing fewer than three lines were not analyzed.

Although there were some conflicts in E1, the FN of
lines with all the three QTLs (QFN.cib-3A + QFN.cib-
2B + QFN.cib-3D) was the highest, ranging from 375–583 s
in different environments, followed by QFN.cib-3A + QFN.cib-
3D, QFN.cib-2B + QFN.cib-3D, QFN.cib-2B + QFN.cib-3A,
QFN.cib-3D, QFN.cib-3A, QFN.cib-2B, and null (Figure 3A and
Supplementary Table 8). The null genotype without any detected
QTLs showed the lowest FN of 194–442 s (Supplementary
Table 8). Compared with the genotype with no QTL, the
FN of QFN.cib-3A + QFN.cib-2B + QFN.cib-3D increased by
31.87%, 109.09%, and 93.28% in E1, E2, and E3, respectively
(Supplementary Table 8). This indicated that FN was positively
related to the number of QTLs, and QFN.cib-3D had larger
effects on FN increase.

QTL Effect Confirmation and a
PCR-CTPP Marker Development
The effect of QFN.cib-3D was also verified in the DH population
containing 376 lines derived from Kechengmai 4 × Chuanmai
42. The parent lines were polymorphic for four pairs of primers
(Supplementary Table 2) designed for the four flanking SLAFs
of these QTLs, and the RILs were classified into two groups
through amplification and sequencing. A total of 310 lines
were randomly chosen for QFN.cib-3D validation, and the four
primers (3D56098, 3D56055, 3D55982, 3D55956) were closely
linked in RILs derived from Chuanmai42 and Chuanmai39.
Of these, 147 lines with the same alleles as Kechengmai 4 or
Chuanmai 39 displayed significantly lower FN (277.03± 59.62 s)
than the other lines (300.57 ± 45.94 s) with the same allele
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FIGURE 1 | High-density genetic map construction based on SLAFs and collinearity analysis of the SLAFs between the genetic map and the physical map. The left
and right panels represent the genetic map and the physical map, respectively.
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TABLE 2 | Additive QTL characterization for quality traits in RILs of wheat across different environments*.

QTL Chr Position (cM) Physical distance (bp) Marker interval LOD Additive effect PVE (%) Env. Previously reported QTL or genes

FN

QFN.cib-3A 3A 60.93–61.39 665,089,892–665,719,134 M40843–M40845 4.58 −51.33 to −51.34 12.94–12.95 E1 Vp-1A (Yang et al., 2007)

59.90–65.16 659,709,535–669,003,077 M40796–M40794 3.21–3.39 −28.77 to −29.81 10.95–11.75 E2

64.23–64.70 659,709,535–669,003,077 M40918–M40793 5.23–5.26 −38.8 to −38.82 11.59–11.60 E3

59.90–60.20 660,715,550–665,099,094 M40796–M40844 5.79 8.47 18.30 BLUP

QFN.cib-2B 2B 44.77–53.10 144,970,701–226,440,533 M29420–M30439 3.07–3.17 −19.67 to −21.27 5.12–5.98 E2 QPhs.cnl-2B.1 (WMC474) (Munkvold et al., 2009),
ABA receptor, genes involved in calcium signaling
(Somyong et al., 2011; Somyong et al., 2014)

48.93 165,935,653–185,743,586 M29775–M29669 2.81 −23.69 4.32 E3

44.77–45.08 145,086,838–152,515,245 M29424–M29549 3.87 −14.94 5.53 BLUP

QFN.cib-3D 3D 144.87–145.13 569,960,720–575,258,758 M56032–M56100 13.89–14.71 43.03–44.12 24.48–25.74 E2 Tamyb10-D1(R gene) (Yang et al., 2007),
Xwmc533–Xwmc552 (Fofana et al., 2008),
Xgwm314 –Xcfd9 (Groos et al., 2002)

140.72–141.24 562,182,150–566,595,891 M55934–M55975 12.96–13.40 56.0–56.63 24.16–24.69 E3

140.98–141.24 563,227,642–566,551,688 M55982–M55956 10.67 25.57 16.58 BLUP

GH

QGH.cib-5D 5D 0 144,933–3,154,627 M85128–M85140 26.96 −15.62 47.99 E1 Pin a (Xmta 9) (Igrejas et al., 2002), Pin b (Xmta 10)
(Igrejas et al., 2002)

14.60 −13.17 33.31 E2

16.87 −14.39 41.95 E3

0–3.62 144,933–4,897,157 M85128–M85146 27.25 −14.14 44.31 BLUP

GPC

QGPC.cib-4A 4A 72.98 691,534,098–692,487,644 M57887–M57882 3.00 −0.38 5.11 E1

72.98 3.00 −0.35 7.93 E2

72.98 3.45 −0.35 6.81 E3

72.98–81.71 692,012,332–703,166,613 M57885–M57916 6.60 −0.26 12.24 BLUP

*QFN.cib-2B was identified as a stable QTL because it was detected in two environments and by BLUP, although the LOD value in E3 was slightly lower than 3.
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FIGURE 2 | Distribution of QTLs on chromosomes. Orange-marked QTLs were detected in E1, blue ones were detected in E2, purple ones were detected in E3,
and black ones were detected by BLUP. Underlined QTLs denote those that could be detected in at least two environments or by BLUP.

as Chuanmai 42 (Figure 3B). This indicated that for QFN.cib-
3D, the alleles from Chuanmai 42 had positive effects on
maintaining HFN.

A polymerase chain reaction with a confronting two-pair
primers (PCR-CTPP) marker was designed for QFN.cib-3D to
detect its presence or absence. The same allele as Chuanmai
42 was amplified with two DNA fragments of 483 and 787 bp,
whereas the same allele as Kechengmai 4 or Chuanmai 39 was
amplified with 360 and 787 bp (Figures 3C,D). The marker
profile was in accordance with the sequencing results.

Identification of SNPs and Candidate
Genes for FN Based on BSR
The RNA-seq result was successfully submitted to the SRA
database of NCBI (accession no. PRJNA661989). In total, 80.17

and 93.94 million clean reads were obtained from the LFN
and HFN bulks. The total mapped rates to IWGSC RefSeq
v1.0 for the LFN and HFN bulk were 84.16 and 80.29%,
respectively (Supplementary Table 9). In total, 282 significant
DEGs were screened, including 170 downregulated genes and 112
upregulated genes by LFN/HFN bulk (Figure 4A). Among these
genes, 10 genes were enriched in four pathways, including protein
processing in endoplasmic reticulum, sphingolipid metabolism,
starch and sucrose metabolism, and galactose metabolism
based on KEGG enrichment analysis (Figure 4B). Through
GO enrichment, 130 of these genes were enriched in 18
biological processes, 7 cellular components, and 27 molecular
functions (Figure 4C). These DEGs comprised α-Amy-3 and
α-amylase inhibitor (Figure 4A), which is consistent with
the variation in α-amylase activity between HFN and LFN
bulk (Figure 4D).
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FIGURE 3 | The effects of major QTLs for FN and marker development. (A) Effects of QTL combinations on FN of RILs in different environments shown by violin plot.
(B) The effects of QFN.cib-3D on FN in RILs derived from Chuanmai 42 × Kechengmai 4. Group A denotes alleles that are the same as those of Kechengmai 4 and
Chuanmai 39; group B denotes alleles that are the same as those in Chuanmai 42. (C) The principle of PCR-CTPP for QFN.cib-3D. “A” and “G” denote the SNPs in
QFN.cib-3D. Four primers 3D11G-ANF, 3D11G-ANR, 3D11G-AWF, and 3D11G-AWR were applied in PCR. (D) Two patterns of PCR-CTPP amplification in RILs
derived from Chuanmai 42 × Kechengmai 4. ∗∗∗Significant difference (p < 0.001) in FN between group A and group B.

A total of 117,664 SNPs and 5,993 InDels were obtained
between the HFN and LFN bulks (Supplementary Figure 4).
Under the threshold of 1SNP/InDel index > 0.80, 27 candidate
regions distributed on chromosomes 1B, 2A, 2B, 3A, 3B, 3D,
4A, 5B, 7A, and 7B, including 37 SNPs and InDels related
to FN, were screened (Table 3 and Supplementary Figure 4).
Most of the candidate regions were located on 3D (13),
followed by 3A (9) (Table 3 and Supplementary Figure 4).
Compared to the QTL results, two candidate regions partially
overlapped with QFN.cib-3A and QFN.cib-3D, respectively,
suggesting that there were genes controlling FN in the two
regions. They were located on chromosome 3A (656618001–
660197000, 668527001–669767000) including three SNPs and
3D (565077001–566487000) including 1 SNP. By searching
QFN.cib-3A and QFN.cib-3D, two genes annotated as Basic 7S

globulin and Basic 7S globulin 2 annotated in QFN.cib-3D were
detected in 282 significant DEGs. The gene expression of Basic
7S globulin and Basic 7S globulin 2 was significantly higher
(log2FCLFN/HFN = 1.39) and lower (log2FCLFN/HFN = −3.57)
in the LFN than HFN bulk (Figure 4A). They are probably
candidate genes related to FN.

DISCUSSION

High-Density Genetic Map for MAS in
Wheat Quality Breeding
Numerous QTL analyses have been conducted to clarify the
genetic mechanism controlling complex traits of yield, quality,
and resistance in wheat. However, because of the large genome
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FIGURE 4 | DEGs between the LFN and HFN bulk and α-amylase activity analysis. (A) Volcano plot of DEGs; ns represents no significant DEGs (FDR > 0.05).
(B) KEGG enrichment analysis of DEGs. (C) GO enrichment analysis of DEGs. (D) α-Amylase activity analysis between 10 lines of the LFN and HFN bulk.

size and limited genome sequence information in wheat, the
one common problem is that the interval of QTL mapping is
too large to further clone genes, especially for complex quality
traits. Therefore, it is necessary to construct high-density genetic

maps for gene identification and marker development in MAS for
wheat breeding. Recently, high-density linkage map construction
was facilitated by high-throughput SNP genotyping such as 55K,
90K, and 660K SNP arrays (Cui et al., 2017; Liu J. et al., 2017;
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TABLE 3 | Candidate region and position of BSR.

Chromosome Candidate region SNP/InDel Type Annotated gene

Position Reference Alteration index_HFN index_LFN

chr1B 98600001_100160000 1E + 08 T C 0.14 1 Intergenic Peroxidase

472530001_474448000 4.74E + 08 G A 1 0.14 Intergenic FBD-associated F-box protein, NBS-LRR-like resistance protein

4.74E + 08 C T 1 0.2 Synonymous NBS-LRR-like resistance protein

chr2A 557528001_559122000 5.59E + 08 C A 1 0.17 Intergenic C2 and GRAM domain-containing protein, Ribonuclease H2
subunit B

chr2B 674064001_674066000 6.74E + 08 G A 1 0 Intergenic C2 and GRAM domain-containing protein, Ribonuclease H2
subunit B

chr3A 336877001_337499000 3.37E + 08 T C 1 0.19 Downstream Translation initiation factor IF-2

647028001_650058000 6.48E + 08 A G 1 0.06 Downstream Legume-specific protein

6.5E + 08 G T 1 0 Synonymous plasminogen activator inhibitor

656618001_660197000 6.57E + 08 C T 0.19 1 Downstream BTB/POZ and TAZ domain protein

6.57E + 08 G A 0.1 1 Downstream

668527001_669767000 6.7E + 08 A G 1 0 Downstream RING/U-box superfamily protein

676830001_677830000 6.78E + 08 AT A 0.07 1 Intergenic MADS-box transcription factor, Chaperone protein dnaJ

681935001_684306000 6.83E + 08 G A 0.08 1 Non-synonymous Glycosyltransferase family exostosin protein

6.83E + 08 G C 0.09 1 Non-synonymous

chr3B 366553001_367488000 3.67E + 08 A AT 0.14 1 Intergenic Protein transport protein Sec61 beta subunit, Protein CHUP1

771397001_772397000 7.72E + 08 GGCC G 1 0.14 Non-frameshift deletion Voltage-dependent L-type calcium channel subunit

chr3D 476905001_478135000 4.78E + 08 A G 1 0.11 Synonymous Transcription initiation factor TFIID subunit 12

504737001_509082000 5.06E + 08 C T 1 0.08 Intronic DUF1685 family protein

5.07E + 08 A G 1 0.07 Upstream Beta-glucosidase

504999001_505999000 5.06E + 08 CAG C 1 0.14 Intronic DUF1685 family protein

516692001_517008000 5.17E + 08 A G 1 0.11 Downstream 2-Oxoglutarate (2OG) and Fe(II)-dependent oxygenase
superfamily protein

520654001_520863000 5.21E + 08 A G 1 0.07 Non-synonymous GPI transamidase component PIG-S

525977001_529347000 5.28E + 08 T C 1 0 Synonymous Subtilisin-like protease

544416001_545650000 5.45E + 08 G C 1 0 Iintronic NAC domain protein

550392001_552252000 5.51E + 08 A T 1 0.07 Non-synonymous Alcohol dehydrogenase, putative

5.52E + 08 G A 1 0 Downstream Auxin response factor

565077001_566487000 5.66E + 08 C T 1 0 Non-synonymous Eukaryotic aspartyl protease family protein

577928001_578928000 5.79E + 08 G C 1 0.11 Synonymous Amino acid permease

5.79E + 08 C T 1 0 Synonymous Amino acid permease

chr4A 713726001_714049000 7.14E + 08 A T 0 1 Intergenic Calcium-dependent lipid-binding domain-containing protein,
Receptor-like protein kinase

chr5B 549848001_551806000 5.52E + 08 C T 1 0.12 Downstream 60S ribosomal protein L5

chr7A 693565001_694565000 6.95E + 08 T C 1 0.14 Intergenic DNA-3-methyladenine glycosylase, Cytochrome b561 and
DOMON domain-containing protein6.95E + 08 A C 1 0.19 Intergenic

693565001_694565000 6.95E + 08 T C 1 0.12 Intergenic

6.95E + 08 A G 1 0.15 Intergenic

6.95E + 08 T A 1 0.19 Intergenic

chr7B 576432001_576676000 5.77E + 08 T C 1 0 Intergenic 60S ribosomal protein L28, Retrovirus-related pol polyprotein
from transposon tnt 1-94

Frontiers
in

P
lantS

cience
|w

w
w

.frontiersin.org
12

D
ecem

ber
2020

|Volum
e

11
|A

rticle
600788

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-600788 December 5, 2020 Time: 21:24 # 13

Li et al. QTL Mapping and Gene Discovery

Liu et al., 2018; Xu et al., 2019; Guo et al., 2020; Xin et al., 2020;
Yang et al., 2020), thus increasing the accuracy and shortening
the confidence interval of QTL mapping even to 0.09 cM/marker
compared to those based on simple sequence repeats (SSRs) or
DArTs (Jin et al., 2016).With the rapid development of next-
generation high-throughput DNA sequencing, some procedures
including restriction site–associated DNA tag sequencing (RAD-
seq) and genotyping-by-sequencing are used in sequence-based
marker development for genetic map construction, which have
some advantages such as abundance, uniform distribution, and
cost-effectiveness (Ganal et al., 2009; Liu H. et al., 2017).

SLAF-seq based on RAD-seq for SNP discovery and
genotyping in large populations has been widely applied for high-
density genetic map construction, QTL analysis, and gene cloning
of extensive species such as rice (Li D. et al., 2016; Li et al.,
2018; Quan et al., 2018; Zhu et al., 2018), soybean (Chen et al.,
2016; Cao et al., 2017; Li et al., 2017; Kong et al., 2018; Pei
et al., 2018; Yin Z. et al., 2018; Zhang et al., 2018), cotton (Zhang
et al., 2016, 2017; Palanga et al., 2017; Ali et al., 2018; Keerio
et al., 2018), and peanut (Hu et al., 2018; Wang et al., 2018).
Some studies have investigated chromosomal localization (Li G.
et al., 2016; Li Q. et al., 2016) and gene cloning for agronomic
traits and resistance based on SLAF-seq of wheat (Hu et al.,
2016; Yin J. L. et al., 2018). In our study, high-density genetic
map construction and QTL analysis based on SLAF-seq were
first applied for quality traits of wheat. Compared with most
maps constructed previously by dozens or hundreds of markers
such as SSRs or DArTs, the map in this study contained up to
12,674 SLAF markers; the average density of markers increased to
0.23 cM, and the region of gap > 5 cM in each chromosome was
almost lower than 5%. Based on this genetic map, we identified a
QTL QGH.cib-5D on the short arm of chromosome 5D, which is
near the major QTL Ha loci for GH detected in previous studies
(Mattern, 1973; Law et al., 1978). This suggests that the genetic
map constructed by SLAFs is effective and reliable. In particular,
genome sequencing of wheat has already been completed, which
makes this genetic map more beneficial for discovering candidate
genes for wheat quality.

Comparison With Previous Studies and
Candidate Gene Screening
Starch Pasting Properties Were Controlled by Many
Loci With Minor Effects and Greatly Influenced by the
Environment
Starch pasting properties predicted by RVA parameters were
significantly associated with Asian noodle quality (Zhang et al.,
2005; Wang et al., 2017). However, fewer QTL analyses for starch
pasting properties have been conducted compared with those for
other quality traits, and hardly any genes have been cloned, partly
due to the complexity of the trait. In this study, 16 QTLs for starch
pasting properties were detected, but no one was stable in at
least two environments, even if SB (CV = 19.49–23.93%) and BD
(CV = 26.94–37.08%) presented large variations among parents
and RILs. This is consistent with the results of some previous
studies that showed QTLs for pasting parameters were not stable
in different environments (Mattern, 1973; Deng et al., 2015).

It also suggested that starch pasting properties were complex,
controlled by many loci with minor effects, and greatly influenced
by the environment. Although previous studies indicated that
the Wx gene plays an important role in starch properties (Law
et al., 1978; Giroux and Morris, 1998; Deng et al., 2015), no QTLs
around the Wx gene were detected in this study. In addition,
some QTLs including Ha loci on chromosome 5D identified for
GH, and QTLs for gluten content correlated with Glu-B3 gene
on chromosome 1B, were also detected for RVA parameters such
as PV, FV, and SB (Zhang et al., 2009). These results suggest that
starch pasting properties are associated with other grain quality
traits and are regulated by complex genetic factors. For some
QTLs explaining higher phenotypic variance, such asQBD.cib-1A
on chromosome 1A with PVE of 17.27%–17.38%, further studies
are required in more environments.

Grain Protein Content
Quantitative trait locis for GPC were detected on all wheat
chromosomes (Kumar et al., 2018). In this study, only one stable
QTL, QGPC.cib-4A on chromosome 4A, was identified across all
three environments (Table 2 and Figure 2). Previous studies also
found GPC QTLs on chromosome 4A (Groos et al., 2003; León
et al., 2006; Kunert et al., 2007; Peleg et al., 2009; Raman et al.,
2009; Blanco et al., 2012; Chen et al., 2019), but they were far away
from QGPC.cib-4A (Figure 5A). Considering the low density of
makers in this area, further verification is required to confirm
whether QGPC.cib-4A is a new QTL. The QGPC.cib-4A interval
contained no genes, but closely adjacent to this loci, there were
five consecutive genes classified into NAC domain-containing
and no apical meristem (NAM) protein. NAC domain-containing
proteins are a class of plant-specific transcription factors that
play important roles in the growth and stress response. Through
RNA interference, Uauy et al. (2006) showed that an NAC
transcription factor, classified into NAM protein and encoded by
TtNAM-B1 gene, accelerates senescence and increases nutrient
remobilization from leaves to developing grains, resulting in an
increase in grain protein, Zn, and Fe content by more than 30%
in hexaploid wheat. This suggested that these five NAM genes
closely adjacent to QGPC.cib-4A have effects on GPC.

In addition, QGPC.cib-4A is near the gene encoding the
coatomer subunitβ’-1 (COPI-β’), which is primarily responsible
for intra-Golgi and Golgi to endoplasmic reticulum transport of
proteins (International Rice Genome Sequencing Project, 2005).
To date, there have been no reports about the relationship
between COPI-β’and GPC, but the efficiency of protein
transport may affect GPC.

Grain Hardness
The Ha loci (Mattern, 1973; Law et al., 1978), a major QTL
for GH, were close to the end of chromosome 5DS and
contained three genes—Pina-D1, Pinb-D1, and Gsp-1. Pina-
D1 and Pinb-D1 have significant effects on hardness (Giroux
and Morris, 1998; Pasha et al., 2010; Chen et al., 2013; Ma
et al., 2017). Pina-D1 and Pinb-D1 encode lipid-binding proteins
and form a multiprotein complex “friabilin” bound to starch
granules in the endosperm. Mutations in Pina-D1 or Pinb-D1
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FIGURE 5 | Comparison with previous QTLs or markers. Physical distance (Mbp) is listed on the left of the chromosome. Red-marked region on the chromosomes
represent the QTL region detected in this study. The black bracket indicates previous QTLs overlapped with QTLs detected in this study. The dashed line represents
larger area on chromosomes.

caused reduced amount of “friabilin,” thus increasing wheat GH
(Giroux and Morris, 1997, 1998).

In this study, a major and stable QTL QGH.cib-5D was also
identified at the end of chromosome 5DS with a PVE of 33.31%–
47.99% in all three environments (Table 2 and Figure 2). Pina-D1
and Pinb-D1 were located within this QTL detected by BLUP
(Figure 5B). To analyze the relationship between QGH.cib-5D,
Pina-D1, and Pinb-D1, Pina-D1, and Pinb-D1 were amplified by
the marker designed by Chen et al. (2013) and compared between
Chuanmai 39 and Chuanmai 42. There was no difference in
Pinb-D1; Pina-D1 was missing in Chuanmai 39, which exhibited
the hard phenotype. This suggested that the variance in GH
was mainly due to Pina-D1. Pina-D1 was further amplified and
compared to the polymorphism of flanking markers (M85128
and M85140) of QGH.cib-5D in 147 random lines of RILs derived
from Chuanmai 39 and Chuanmai 42. Specifically, if QGH.cib-5D
was controlled by Pina-D1, null Pina-D1 should correspond to
“a” genotype of M85128 and M85140, the same as hard grain–
type Chuanmai 39, whereas the presence of Pina-D1 should
correspond to the “b” genotype of M85128 and M85140, the
same as soft grain–type Chuanmai 42. All these consistent types
are shown by a transparent circle in Supplementary Figure 5A.
However, the polymorphism of Pina-D1 was not consistent with
that detected by the flanking markers of QGH.cib-5D for 36
lines; of them, 25 lines shown in green circles did not contain
Pina-D1 but corresponded to the “b” genotype. Eleven lines
shown in red circles contain Pina-D1 but corresponded to the
“a” genotype (Supplementary Figure 5A). M85128 and M85140
had advantages in screening hard grains (hardness index > 70)
compared to Pina-D1 (Supplementary Figure 5A). Probably
genes other than Pina-D1 affect GH.

There are some reports about the molecular mechanism of GH
difference excluding the effect of Pina-D1 and Pinb-D1. The main
difference between soft and hard wheat was in adhesive strength

among starch granules and the protein matrix surrounding starch
granules, and proteins in soft grains are easier to separate from
starch granules. Previous studies indicated that there was no
relationship (Miller et al., 1984; Pomeranz et al., 1985) or some
positive relationship (r = 0.26–0.43) between GPC and GH
(Groos et al., 2004). One QTL identified for GH was close to
the GluA3 locus on chromosome 1A, which is a candidate for
GPC (Arbelbide and Bernardo, 2006). However, in this study,
no QTL was identified for GPC and GH simultaneously, and the
correlation coefficients between GH and GPC was lower than 0.15
in the two environments (Supplementary Figure 2). This means
that the difference in GH is not mainly due to GPC variance and
other carbohydrates such as lipids (Morrison et al., 1989; Panozzo
et al., 1993; Pasha et al., 2010) and pentosans (Hong et al., 1989;
Bettge and Morris, 2000; Pasha et al., 2010).

In addition to semidwarfing genes Rht-B1 and Rht-D1
associated with plant height, some agronomic traits and disease
resistance were found to have an effect on GH, which was
reflected by major QTL on chromosome 4BS and 4DS close to
the semidwarfing (gibberellin-insensitive) genes; Reduced height
(Rht)-B1 and Rht-D1 explained up to 20 and 34% of GH variance
of RILs derived from the soft × soft type (Wang et al., 2012).
Pina-D1 and Pinb-D1 were also found to play a role in plant
defense mechanisms against pathogens (Bhave and Morris, 2008;
Gautier et al., 1994). This suggested that difference in GH was
regulated by gibberellin and other plant hormones, and it was also
related to plant defense.

In our study, the physical localization of QGH.cib-5D revealed
33 genes were in this region. Only 11 genes express in the
grain based on gene expression data of 22 genes from WheatExp
(Supplementary Figure 5B)6. The 11 genes include Ethylene
receptor, Carotenoid cleavage dioxygenase participating abscisic

6https://wheat.pw.usda.gov/WheatExp/
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acid (ABA) synthesis, Sugar phosphatase and transport genes,
Fantastic four–like protein, Protein kinase, Trypsin family protein,
and Protein yippee-like. NBS-LRR disease resistance protein-like
gene was also found in QGH.cib-5D. These genes related to
plant hormone and disease defense will also be analyzed in
further studies.

Falling Number
Falling Number is a quick evaluation method for α-amylase
activity in wheat grains. Extremely high α-amylase activity with
lower FN in mature wheat grain often results in downgrading
quality and a sharp fall in wheat prices. PHS and LMA are two
major causes of elevated α-amylase activity, but they differ in
their formation mechanisms. LMA refers to high-pI α-amylase
mainly synthesized during latter grain development, which seems
to have little effect on grain germination and quality (Wrigley,
2006; Mares and Mrva, 2014; Newberry et al., 2018). However,
the mechanism of LMA synthesis is not clear, and most QTLs
for LMA were distributed on the long arm of chromosome 7B
and were located near α-Amy-2 (Mrva and Mares, 2001; Mrva
et al., 2009; Barrero et al., 2013; Mares and Mrva, 2014; Mohler
et al., 2014). α-Amy-1 on chromosome 6 and α-Amy-4 genes were
also involved in LMA synthesis (Barrero et al., 2013; Mieog et al.,
2017). In addition, Rht-B1 and Rht-D1 genes also seem to be
related to LMA, because some LMA QTLs were near the Rht-
B1 and Rht-D1 genes on chromosomes 4B and 4D, and lower
LMA expression genotypes were usually semidwarf (Kunert et al.,
2007; Kulwal et al., 2012; Mohler et al., 2014; Börner et al.,
2017). This is probably because Rht and α-amylase activities
were both regulated by gibberellin. In this study, no stable QTLs
were identified in the above regions. However, during late grain
development, it was found that the transcript level of α-Amy-3 on
chromosomes 5B and 5D of the LFN bulk was relatively higher
than that of the HFN bulk through BSR results. In addition,
the expression of 12 α-amylase inhibitor genes was significantly
lower in the LFN than in the HFN bulk. It seems that α-Amy-
3 was involved in α-amylase activity difference among RILs,
possibly resulting from an α-amylase inhibitor, although the role
of α-Amy-3 during grain development process is not clear yet.

α-Amylase activity was inhibited during grain dormancy
regulated by ABA. The majority of QTLs for PHS were usually
related to grain dormancy and were mainly distributed on
chromosome 4A (Kato et al., 2001; Flintham et al., 2002; Mares
et al., 2005; Kerfal et al., 2010), chromosome 2B (Anderson et al.,
1993; Kulwal et al., 2004; Liu et al., 2008; Munkvold et al., 2009;
Chao et al., 2010; Somyong et al., 2011), and chromosome 3
(Zanetti et al., 2000; Groos et al., 2002; Himi et al., 2005, 2011;
Law et al., 2005; Kunert et al., 2007; Yang et al., 2007; Fofana
et al., 2008; Liu et al., 2008, 2015; Mohan et al., 2009; Munkvold
et al., 2009; Tan et al., 2010; Shao et al., 2018). Until now, no any
candidate genes for PHS have been cloned on chromosome 4A.

In our study, eight QTLs on seven chromosomes were
identified for FN (Table 2, Figure 2, and Supplementary
Table 7). This indicated that FN is a complex trait and is
regulated by many genes. We paid particular attention to three
major or stable QTLs, including QFN.cib-3A, QFN.cib-2B, and
QFN.cib-3D. QFN.cib-2B on chromosome 2B was detected in

two environments, which partially overlapped with previous
QTL QPhs.cnl-2B.1, which was simultaneously identified for
PHS, grain dormancy, and rate of germination with the closest
marker WMC474 (Table 2 and Figure 5C) (Munkvold et al.,
2009). Subsequently, some genes related to grain dormancy,
including an ABA receptor and other genes involved in calcium
signaling, were speculated to be candidates for QPhs.cnl-2B.1
through comparative genetic analysis of rice and Brachypodium
(Somyong et al., 2014).

We also identified a stable QTL QFN.cib-3A spanning 59.90–
65.16 cM on chromosome 3A with a PVE of 10.95–18.30%
(Table 2 and Figure 2). It could be detected in all three
environments, also by BLUP over three environments and BSR
(Tables 2, 3). This QTL is close to the downstream region (about
153 kb) of the Viviparous-1 (Vp-1) gene (Figure 5D), which
is a transcription factor that is positively correlated to grain
dormancy and embryo sensitivity to ABA and inhibit α-Amy
genes expression (Hoecker et al., 1995; Bailey et al., 1999; Yang
et al., 2007). Therefore, the effect of QFN.cib-3A on FN may be
attributed to the function of Vp-1 gene. In addition, 95 genes
were located in this QTL; three genes including nitrate transporter
NRT1-2, NRT1/PTR family protein 2.2, and cysteine proteinase
inhibitor were potential candidate genes for FN.

QFN.cib-3D spanning 140.72–145.13 cM on chromosome
3D was detected in two environments and by BLUP, which
also explained the relatively higher phenotypic variation
(16.58–25.74%) (Table 2 and Figure 2). Its effect was also
validated by RILs derived from Kechengmai 4 × Chuanmai
42 (Figure 3B). QFN.cib-3D was located between the previous
QTL for PHS and grain color, flanked by marker Xgwm314
and Xcfd9 (Groos et al., 2002). All these QTLs were located in
another previous QTL for germination index, sprouting index
and FN, flanking by Xwmc552 and Xwmc533 (Fofana et al.,
2008; Figure 5E). This indicates the presence of important
genes in this region controlling FN. A total of 149 genes were
annotated in QFN.cib-3D. The Tamyb10 gene, which encodes an
MYB transcription factor and is a candidate for R loci of grain
color, grain dormancy, and PHS, was included in QFN.cib-3D
(Himi et al., 2005, 2011). Previous studies showed that red-
grained wheat (R-A1b/R-B1b/R-D1b, dominant wild-type alleles)
is usually more resistant to PHS than white-grained varieties (R-
A1a/R-B1a/R-D1a, recessive mutant alleles) (Gfeller and Svejda,
1960; Debeaujon et al., 2000; Groos et al., 2002; Fofana et al., 2008;
Seshu and Sorrells, 2008; Mares and Mrva, 2014) and that the R
loci upregulate flavonoid biosynthesis involved in antioxidation,
such as grain dormancy in cereal plants (Himi et al., 2005) or
enhanced grain dormancy through increasing the sensitivity of
embryos to ABA (Himi et al., 2002). Tamyb10 may be candidate
gene for QFN.cib-3D, based on that the effect of QFN.cib-3D on
HFN was derived from the red-grained Chuanmai 42 allele.

However, no significant difference was found in transcript
levels of either Tamyb10 or Vp-1 through BSR result (data
not shown). This suggested that other genes in QFN.cib-3A
and QFN.cib-3D affected FN. The transcript levels of Basic 7S
globulin and Basic 7S globulin 2 annotated in QFN.cib-3D were
significantly higher and lower in the LFN than in the HFN
bulk, respectively. In addition, eight other continuous genes
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that belong to Basic 7S globulin 2 were in this region. They
encode proteins with xylanase inhibitor domain and play roles
in inhibiting cell wall degradation and radicle extension during
germination. Therefore, the series of Basic 7S globulin 2 genes
could be related to α-amylase activity and could be candidates for
QFN.cib-3D on chromosome 3D.

QTL Clusters for Quality of Wheat
In this study, the location of QFN.cib-4D detected for FN
and QPV.cib-4D detected for PV is partially overlapping
(Figure 2 and Supplementary Table 7), which corresponds
to the phenomenon that the measurement of FN and starch
pasting properties both go through starch swelling and pasting.
It suggests that some genes involved in starch synthesis and
metabolism on chromosome 4D also affect FN. However, these
genes have a relatively small impact on FN (PVE = 2.85–3.45%)
and PV (PVE = 6.39–6.84%) and are easily disturbed by
environmental deviation (Supplementary Table 7).

In addition, QGH.cib-5D on chromosome 5D identified for
GH with PVE of 33.31–47.99% is also detected for FN (QFN.cib-
5D.1) and PV (QPV.cib-5D) with PVE of 14.31–22.93% and
6.78% (Figure 2, Table 2, and Supplementary Table 7). Although
QFN.cib-5D.1 and QPV.cib-5D for FN and PV were detected only
in single environment, it may be a major QTL that was also
identified by BLUP (Supplementary Table 7). It is interesting
that the expression of Pina-D1 and Pinb-D1 gene in LFN was
relatively higher and lower compared to HFN bulk (data not
shown). This indicated that variation of GH has large effect in
FN in special environment.

A previous study also found that QGh.caas-5D for GH flanked
by marker Xcfd18 and Ha was detected in PV with a PVE of
10.4%, and Pinb-D1b at the Ha locus explained a large portion
of the phenotypic variances for PV, FV, and SB, especially
for pasting temperature (71.5%) (Zhang et al., 2009). Some
studies have confirmed the obvious effects of GH on starch
properties. Soft wheat has better starch properties than hard
wheat because more intact starch granules obtained from soft
grains during the mill process resulted in higher flour viscosity
compared to hard grains (Rogers et al., 1993; Xu et al., 2005;
León et al., 2006).

A relatively higher PVE of QFN.cib-5D.1 means GH also
has a large effect on FN in a special environment. This was
also reflected by the fact that GH and FN are both related to
Rht gene regulation by gibberellin (Tan et al., 2010; Gooding
et al., 2012; Wang et al., 2012; Mohler et al., 2014; Zhang et al.,
2014); therefore, some genes involved in the gibberellin response
are probably candidates for QFN.cib-5D.1. As mentioned above,
there is a pleiotropic gene or genes in QFN.cib-5D.1 controlling
FN, grain texture, starch pasting properties, and mixograph
parameter (Fofana et al., 2008; Zhang et al., 2009; Tan et al., 2010;
Börner et al., 2017).
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Supplementary Table 2 | Primers applied for QFN.cib-3D confirmation and
PCR-CTPP markers.

Supplementary Table 3 | Analysis of variance and broad-sense heritability
for quality traits.

Supplementary Table 4 | High quality data and SNPs generated by sequencing
the SLAF library.

Supplementary Table 5 | Characteristics of the 21 chromosomes of the
wheat genetic map.

Supplementary Table 6 | Spearman correlation coefficient of genetic and
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Supplementary Table 7 | Additive QTL characterization for quality traits in RILs of
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